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ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of
the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly
expressed in human embryonic, cardiac, and renal tissues and involves various
biological functions, such as embryonic development, blood circulation
regulation, and maintaining body fluid homeostasis. ELA is also closely related
to the occurrence and development of acute kidney injury, hypertensive kidney
damage, diabetic nephropathy, renal tumors, and other diseases. Understanding
the physiological role of ELA and its mechanism of action in kidney-related
diseases would provide new targets and directions for the clinical treatment of
kidney diseases.
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1 Introduction

In 1993, O’Dowd et al. first identified the APJ receptor (putative receptor protein related
to the angiotensin receptor AT1) from the human genome (O’Dowd et al., 1993). It is a G
protein-coupled receptor (GPCR) with a seven α-transmembrane helices and is also known
as an orphan G protein-coupled receptor (oGPCRs) because no endogenous ligands have
been identified. The gene sequences of APJ and AT1 receptors share about 35% homology
but do not bind to angiotensin II (Read et al., 2019).In 1998, Tatemoto et al. extracted and
purified a new neurocardiovascular active peptide, Apelin, from bovine gastric secretions
using a reverse pharmacological approach and established it as an endogenous ligand for the
APJ receptor (Tatemoto et al., 1998). Apelin and its receptor are distributed in various tissues
and organs of the body and are involved in the regulation of cardiovascular activity,
angiogenesis, and the adipose islet axis, and play a critical role in the maintenance of
body fluid homeostasis (Galanth et al., 2012; Chapman et al., 2014).

In 2013, Chng et al., for the first time, identified another novel endogenous ligand of APJ,
ELABELA (ELA), in zebrafish embryos (Chng et al., 2013); also, Pauli et al. reported the same
peptide structure and named it Toddler (Pauli et al., 2015). ELA is highly expressed in human
embryonic, heart, and kidney tissues, and its role in promoting embryonic development,
regulating blood circulation, and maintaining fluid homeostasis is being discovered
gradually (Deng et al., 2015; Freyer et al., 2017; Sato et al., 2017). A current study
showed that ELA is closely related to the pathophysiological function of the kidney and
exerts a protective role in various kidney diseases (Chen et al., 2020a). This article reviews the
structure, physiological function, and role of ELA in the development of kidney diseases.
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2 General biological characteristics
of ELA

The ELA gene of zebrafish is located on chromosome 1 and consists
of three exons. ELA is expressed during zebrafish embryogenesis, from
the middle blastocyst to 3 days after fertilization (Pauli et al., 2014). The
human gene encoding ELA, AK092578, is located on chromosome
4 and contains three exons and a non-coding RNA transcript gene (Xie
et al., 2014).The ELA mRNA consists a conserved open reading frame
(ORF) and encodes a precursor protein composed of 54 amino acids.
The N-terminal signal sequence of ELA consists 22 amino acid residues
and a mature peptide ELA-32 comprising 22 amino acid residues, of
which 13 amino acids at the C-terminal are conserved across vertebrates
Under the action of endoplasmic reticulum and Golgi apparatus, ELA-
32 is then disassembled into small molecular isoforms, such as ELA-21
and ELA-11(Ma et al., 2021). The specific amino acid sequences of the
different isoforms are illustrated in Figure 1.

ELA was first identified in zebrafish embryogenesis, highly
expressed in the neural tube (Stock et al., 2022). It mediates
endodermal differentiation and cell migration, thereby inducing
angiogenesis to promote early cardiac development during zebrafish
embryogenesis (Pauli et al., 2014). Thus, ELA plays a critical role in
the development of the embryonic cardiovascular system (Eberlé
et al., 2019). Human embryonic stem cells (hESCs) also express and
secrete ELA. Although ELA maintains self-renewal capacity in
hESCs in a paracrine manner, its expression is rapidly
downregulated during hESC differentiation (Miura et al., 2004;
Ho et al., 2015). In addition to expression during embryonic
development, ELA was highly expressed in adult kidney and
prostate tissues (Wang et al., 2015; Coquerel et al., 2017; Xie
et al., 2022; Xiong et al., 2023). In human vasculature, ELA is
more highly expressed in the arteries than in veins but at low
levels in the human heart and lung tissues (Yang et al., 2017a).

ELA and apelin also act as endogenous ligands for APJ receptors,
but their sequence similarity is minimal (Murza et al., 2016). Various

isoforms of ELA can bind to APJ; ELA-32 and ELA-21 bind toAPJ with
subnanomolar and nanomolar affinities significantly better than that of
the short peptide ELA-11 interaction with APJ (Yang et al., 2017a). The
experiments of alanine scanning and mutational analysis suggest that
ELA and apelin bind to different residues in the APJ receptor
(Couvineau et al., 2020), resulting in distinct binding patterns
between these endogenous ligands and the APJ receptor (Shin et al.,
2017). Apelin or ELA binding to APJ initiates intracellular signaling by
coupling different G proteins and exerting a wide range of biological
effects (Masri et al., 2006; Zhang et al., 2017). On one hand, APJ
mediates the vasodilation response of blood vessels through the
coupling of Gαi/o to activate downstream ERK and PI3K-AKT
signaling cascades (Zhang et al., 2017). On the other hand, APJ
activates phospholipase C (PLC) and AMPK signaling by coupling
Gαq/11 to enhance myocardial contractility and glucose uptake in
skeletal muscle cells (Szokodi et al., 2002; Dray et al., 2008; Murza et al.,
2016). Subsequently, the activated APJ receptor is uncoupled from G
proteins, following which it mediates receptor endocytosis by recruiting
β-arrestin and initiating β-arrestin-dependent intracellular signaling
pathways that are involved in a key physiological regulatory
processes in the body, including transcription, cell division, and
apoptosis (Ceraudo et al., 2014; Ma et al., 2021). In addition to that,
ELA can also bind to an unknown receptor and plays a crucial role in
cell growth, survival, and self-renewal by activating the PI3K/AKT
phosphorylation signaling pathway or inhibiting the p53 signaling
pathway(Ho et al., 2017; Sato et al., 2017). (Figure 2)

Compared to [Pyr1]apelin-13, longer ligand isoforms such as
apelin-17, apelin-36, ELA-21, and ELA-32 demonstrate a stronger
bias towards the β-arrestin signaling pathway (Yang et al., 2017a;
Yang et al., 2017b; Nyimanu et al., 2019). Our team’s previous
research has also confirmed that apelin and ELA form a
spatiotemporal dual-ligand system, exhibiting distinct signaling
profiles upon binding to the APJ receptor (Nyimanu et al., 2019).
ELA-32 and apelin-17 display a stronger preference for β-arrestin-
dependent signaling pathways, while ELA-21 and pGlu1-apelin-

FIGURE 1
Amino acid sequences of ELA-32, ELA-21, and ELA-11 isoforms. The signal sequence of ELA, a precursor protein consisting of 54 amino acids, is
cleaved to produce a mature 32 amino acid peptide (ELA-32). ELA-32 contains two cleavage sites that are cleaved to produce two additional amino acid
fragments, ELA-21 and ELA-11, where in the N-terminal Gln of ELA-32will be converted to pyroglutamic acid. ELA- 32 and ELA-21 form a bridge between
Cys residues.
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13 exhibit more pronounced activity in G-protein-dependent
signaling pathways (Chen J. et al., 2020). The involvement of this
bias in the physiological functions and pathophysiology of APJ
requires further investigation. In conclusion, the ligand activity and
signaling bias demonstrated by different apelin and ELA isoforms
contribute to a better understanding of the functionality of the APJ
receptor and provide more options for drug development targeting
this receptor.

3 Physiological role of ELA in the kidney

Apelin and its receptor APJ are widely distributed in various tissues
and highly expressed in glomerular and tubular structures in humans
and rats (Hosoya et al., 2000). While ELA is mainly distributed in the
kidney, RNAscope and immunofluorescence detected that these are
concentrated on the apical membrane of the main cells of the outer to
inner medullary collecting ducts in rats and co-localized with the AQP-
2marker of the main cells (Xu C. et al., 2020). A previous study showed
that either lateral ventricular or intravenous administration of apelin or
ELA significantly increases the urine output of the animals (Deng et al.,
2015; Jiang et al., 2021). These findings suggested that ELAmay directly
affect the kidney, regulating renal hemodynamics and the substance
transport function of the renal tubules and collecting ducts.

Renal blood flow is tightly regulated by renin-angiotensin system
(RAS), which in turn affects glomerular blood flow and glomerular
filtration rate (Gerbier et al., 2017). Apelin inhibits angiotensin II-
induced contractile activity of the small glomerular inlet and outlet
arteries (Hus-Citharel et al., 2008), regulates renal hemodynamics, and
increases renal blood flow. This might be one of the mechanisms by
which apelin produces its diuretic effect, but it is dependent on intact

vascular endothelium and nitric oxide (NO) production (Hus-Citharel
et al., 2008; Wang et al., 2015; Yang et al., 2015). On the other hand,
since the straight small vessels receive blood supply from the small
outflowing arteries, the apelin-induced vasodilatory response may

FIGURE 2
Signaling pathways associated with the Elabela-Apelin-APJ systemNote. After binding with the APJ receptor, ELA/Apelin exerts different biological
effects through G-protein-dependent and/or β-arrestin-dependent signaling pathways. ELA, Elabela; X receptor, unknown receptor; PI3K,
phosphatidylinositol 3-kinase; pAKT, phosphorylated serine/threonine protein kinase; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; mTOR,
rapamycin target protein; MEK1/2, mitogen-activated protein kinase; ERK1/2, extracellular regulatory protein kinase; p70S6, p70 ribosomal
S6 kinase; AMPK, AMP-dependent protein kinase; PIP2, phosphatidylinositol diphosphate; IP3, inositol triphosphate; PLC, phospholipase C; PKC, protein
kinase C; DAG, diacylglycerol; CCND1, cell cycle protein.

FIGURE 3
Physiological role of ELA in the kidney. Apelin acts on the afferent
and efferent arterioles, promotes vasodilation by producing nitric
oxide (NO), and counteracts the effect of Ang II. The action of apelin
antagonizes vasopressin signaling in renal tubules. In the
principal cells of the collecting duct, apelin or elabela prevents
pressor-induced translocation of aquaporin 2 (AQP2) to the apical
membrane, thereby preventing water reabsorption. Afferent
arterioles, small inlet arterioles; efferent arteriole, small outlet
arterioles; AT1 receptor, angiotensin II-1 type 1 receptor; AVP, arginine
vasopressin; V2R, arginine vasopressin type II receptor; AQP2,
aquaporin 2.
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promote diuresis by increasing renalmedullary blood flow. Studies have
demonstrated that ELA can also counteract the action of the renin-
angiotensin system (RAS) in the distal renal tubules, exerting
physiological effects similar to apelin (Chapman et al., 2021). (Figure 3)

In addition, APJ expression was progressively increased along
the rat cortex to the inner medullary collecting duct (Hus-Citharel
et al., 2014). Apelin acts directly on the renal tubules, exerting a
diuretic effect in a dose-dependent manner and reducing urine
osmolality (Hus-Citharel et al., 2014; 2008). In vivo and in vitro
studies have shown that apelin affects water reabsorption and
regulates urine output by inhibiting the translocation of water
channel protein-2 to the apical membrane (Boulkeroua et al.,
2019). In rodent kidneys, ELA is more abundantly expressed
than apelin and is predominant in the medullary collecting ducts
(O’Carroll et al., 2017). In adult rats, urinary flow rate and water
uptake were significantly increased after intravenous administration
of ELA or apelin. Interestingly, the effect of ELA was five times
greater than that of apelin, suggesting that ELA is involved in the
regulation of renal function (Deng et al., 2015). The urine flow rate
and water intake in rats were inhibited by the use of ELA antagonist
(ELA-PA). In addition, under pathological conditions of
hypertension, long-term use of ELA can reduce the excretion of
electrolyte sodium and chlorine, possibly through the regulation of
osmotic pressure through reabsorption of sodium chloride
(Schreiber et al., 2017). Since ELA expression is confined to the
vascular endothelium and kidney in adults, it may play a critical role
in the regulation of fluid homeostasis.

The specific mechanism by which ELAmaintains fluid balance is
not yet fully elucidated. In the central nervous system, apelin and
arginine vasopressin (AVP) coexist in the same hypothalamic
neuroendocrine neurons (Reaux et al., 2001; De Mota et al.,
2004). Apelin, as a potent neurodiuretic peptide, directly inhibits
the periodic firing activity of AVP neurons and the release of AVP
through the APJ receptor, antagonizing the effects of AVP (Reaux-
Le Goazigo et al., 2004; Azizi et al., 2008). Studies have shown that
neuroendocrine neurons in the hypothalamus of humans and other
mammals regulate the secretion of apelin and AVP in opposite
directions via a “Yin-Yang” pattern in response to stimuli of
different osmotic pressures. This control of AVP release and
antidiuretic effect at the “optimal level” is crucial for maintaining
body fluid balance (Girault-Sotias et al., 2021). It has been found that
intracerebroventricular injection of ELA in mice can activate AVP
neurons in the paraventricular nucleus (PVN), reduce food intake,
and exert anorectic effects (Girault-Sotias et al., 2021).
Microinjection of ELA-21 into the PVN increased renal
sympathetic nerve activity and AVP levels in spontaneously
hypertensive rats (Geng et al., 2020). However, it remains to be
further studied whether ELA and AVP also maintain fluid balance
through opposing regulatory effects.

4 Role of ELA in kidney disease

Recent studies have demonstrated a protective role of ELA in
kidney-related diseases. ELA treatment preserves glomerular
structure, inhibits the expression of pro-fibrosis-related genes in
rat kidneys, and improves renal fibrosis in rats (Schreiber et al., 2017;
Xu C. et al., 2020; Chen et al., 2020c). When ELA levels in serum

were reduced, renal function was impaired and the progression of
renal disease was accelerated (Lu et al., 2020). These findings
suggested that ELA is involved in the pathophysiological process
of renal disease development and is a novel therapeutic target for
renal disease.

4.1 ELA and acute kidney injury

Acute kidney injury, mainly caused by ischemia/reperfusion
injury (IRI) and nephrotoxins, is characterized by rapid
deterioration of renal function and high mortality; however, there
is a lack of effective clinical treatment(Sharma et al., 2019). The
pathological process of IRI includes inflammation and
apoptosis(Bonventre and Zuk, 2004; Wang et al., 2020). In vitro
studies found that the overexpression of ELA-32 and ELA-11 in
renal tubular epithelial cells (NRK-52E) significantly inhibits cellular
DNA damage, apoptosis, and inflammatory response induced by I/R
or adriamycin treatment (Chen et al., 2017). Further in vivo
experiments revealed that ELA expression levels were
significantly reduced in mouse kidneys in the renal I/R injury
model. The expression levels of inflammatory factors (IL-6, IL-8,
andMCP1), kidney injury factor (KIM-1), fibrotic factors (vimentin,
TGF-β1, fibronectin, collagen1a), DNA damage markers, and
apoptotic factors were significantly elevated. At the same time,
ELA-32 and ELA-11 inhibited I/R injury-induced renal fibrosis,
inflammation, apoptosis, DNA damage response, and macrophage
infiltration and attenuated tubular lesions and pathological scores of
renal function (Chen et al., 2015; Chen et al., 2017). Furthermore,
ELA improved the levels of blood creatinine, 24-h urine volume,
proteinuria, urinary creatinine, and urea nitrogen in mice.
Compared to ELA-32, ELA-11 showed better protection against
I/R injury-induced DNA damage response, apoptosis, and cell
viability (Chen et al., 2017). In addition, only ELA-11 showed
significant inhibition of renal I/R injury-induced autophagy,
although the mechanism of action is unclear(Chen et al., 2017).
To further clarify whether ELA is involved in the protective effect
against renal I/R injury through APJ receptor, Chen et al. knocked
down APJ using siRNA in I/R-induced NRK-52E cells. This
significantly enhanced cell viability and inhibited inflammatory
responses and DNA damage effects, suggesting that the
protective role of ELA in I/R is independent of the presence of
APJ, and that ELA exerts nephroprotective effects through other
unknown receptors (Chen et al., 2017).

Acute kidney injury caused by sepsis is a common clinical
condition, and ELA has been reported to ameliorate cardiorenal
injury in sepsis (Singbartl and Kellum, 2012). ELA is a small
molecule peptide with short half-life in vivo, rendering it
unsuitable for clinical treatment. Xu et al. fused the Fc structural
domain of human immunoglobulin IgG with ELA-21 to produce Fc-
ELA, which prolonged the plasma half-life of ELA and made it
biologically active(Xu F. et al., 2020). In a mouse model of
liposaccharide (LPS)-induced acute kidney injury, Fc-ELA fusion
protein significantly ameliorated LPS-induced kidney injury and
attenuated macrophage infiltration, renal inflammation, and
apoptotic response(Wang, 2020). Therefore, Fc-ELA fusion
protein has a significant nephroprotective effect on LPS-induced
acute kidney injury and could be used in the treatment of the disease.
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4.2 ELA and hypertensive kidney damage

Hypertensive renal damage is the structural and functional
damage to the kidney caused by primary hypertension, which has
become the third cause of end-stage renal disease (ESRD) after
primary glomerular disease and diabetic nephropathy (Bidani and
Griffin, 2004). Hypertension-triggered RAS is involved in the
pathophysiology of hypertensive renal damage (Yang and Xu,
2017; Xu et al., 2021). Sato et al. found that exogenous ELA
inhibited Ang Ⅱ-induced hypertension in C57/BL6J wild-type
mice and significantly reduced Ang Ⅱ-induced myocardial
fibrosis, suggesting that ELA antagonizes the RAS (Sato et al.,
2017). In high salt-loaded Dahl salt-sensitive rats, exogenous
administration of ELA-32 significantly reduced blood pressure
and proteinuria levels and was accompanied by a decline in the
levels of soluble (pro) renin receptor (sPRR), Angiotensin
converting enzyme (ACE), Ang Ⅱ, and reninogen/renin
expression in the renal medulla of rats (Xu C. et al., 2020). ELA
also significantly reduced the expression of inflammatory factors,
renal fibrosis markers, and renal injury markers in high salt-induced
hypertensive rats, confirming its role in regulating blood pressure
and ameliorating hypertensive renal damage by antagonizing
intrarenal RAS (Xu C. et al., 2020).

Schreiber et al. mediated ELA gene expression in Dah1 salt-
sensitive rats by injection of adeno-associated virus type 9 (AAV9)
vector. The study also used a high-salt diet to establish a
hypertension rat model and found that ELA delayed the
development of elevated blood pressure in animals (Schreiber
et al., 2017). After 12 weeks of ELA treatment, the excretion of
sodium and chloride gradually decreased in rats, glomerulosclerosis
and tubular injury were reduced, and the transcript levels of
transforming growth factor β (TGF-β), type 1 collagen and
fibronectin, and marker genes of renal fibrosis were decreased,
suggesting that the sustained expression of ELA significantly
reduces the blood pressure. Also, inhibition of the gene
expression of fibrotic factors decreases interstitial fibrosis in the
kidney(Schreiber et al., 2017). Thus, ELA may improve renal
damage caused by long-term hypertension by inhibiting the
activity of RAS and the development of interstitial fibrosis. These
findings indicate that ELA provides a potential long-term treatment
for hypertension and renal remodeling.

4.3 ELA and diabetic nephropathy

Diabetic kidney disease (DKD) is one of the most common and
serious chronic microvascular complications of diabetes mellitus. It
has become a major cause of ESRD and is considered an
independent risk factor for many cardiovascular diseases
(Umanath and Lewis, 2018; Zheng et al., 2018). DKD is clinically
characterized by increased urinary protein excretion and loss of
renal function, manifested by glomerular hypertrophy,
hypofiltration, and renal fibrosis (Oshima et al., 2021). Clinical
studies have found that serum ELA levels are reduced in patients
with DKD and are significantly negatively correlated with urinary
albumin/creatinine ratio (ACR) and serum creatinine, suggesting
that the molecules is involved in the progression of DKD (Zhang
et al., 2018).Therefore, the decrease in serum ELA levels may be a

clinical predictive indicator for DKD patients, and may also become
a new therapeutic drug for preventing or delaying the progression of
DKD. However, currently we need to conduct more clinical studies
to evaluate its safety and effectiveness in greater depth.

As a key regulator of diabetic glomerular injury, damage and a
reduced number of podocytes are closely associated with the
production of DKD proteinuria (Guo et al., 2015). In an STZ-
induced type 1 diabetic mouse model, Zhang et al. observed
decreased expression of the podocyte-specific associated proteins,
synaptopodin and podocin (Zhang et al., 2018). ELA upregulates
synaptopodin and podocin expression through PI3K/AKT/mTOR
signaling pathway and reduces the apoptosis of foot cells (Zhang
et al., 2019). In addition, ELA treatment for 6 months inhibited the
renal inflammatory and fibrotic responses in diabetic mice and
significantly improved renal dysfunction, thus exhibiting a
protective effect against diabetic nephropathy.

Oxidative stress leads to excessive accumulation of reactive
oxygen species (ROS) and causes kidney damage, which is crucial
in the pathogenesis of DKD. Xu et al. confirmed that ELA reduces
LPS-induced ROS production in kidney and renal tubular epithelial
cells, prevents cell apoptosis, and participates in ELA-mediated cell
protection through the PI3K/AKT signaling pathway(Xu F. et al.,
2020). Furthermore, overexpression of renal ELA blocked the
NADPH oxidase/ROS/NLRP3 inflammasome pathway and
reduced ROS production in DOCA/salt-induced hypertensive rat
kidneys. Thus, it could be deduced that ELA improves oxidative
stress during DKD by inhibiting this pathway and exerts a protective
effect on the kidneys (Chen et al., 2020a).

4.4 ELA and kidney cancer

As one of the most common malignant tumors worldwide, kidney
cancer has become a critical disease that threatens humanhealth and life
safety (Motzer et al., 1996; Curti, 2004). ELA promotes tumor cell
proliferation, reduces apoptosis, and is closely related to tumor growth
(Acik et al., 2019). A previous study examined ELA’s immunoreactivity
in different Fuhrman renal cell carcinoma grades. No immunoreactivity
to ELA was detected in Fuhrman grade 1 and 2 clear cell renal cell
carcinoma, while that in Fuhrman grade 3 and 4 clear cell renal cell
carcinomawas significantly lower than that in normal kidney tissue and
that in grade 4 clear cell renal cell carcinoma was significantly higher
than that in grade 1, 2, and 3 (Artas et al., 2019). Also, differences in
ELA immunoreactivity were observed while comparing benign
eosinophiloma and renal chromocytocarcinoma, and ELA expression
in renal chromocytoma was significantly higher than in benign
eosinophiloma of the kidney (Artas et al., 2019). This phenomenon
suggested that ELA is critical in the differential diagnosis of renal tumor
pathology.

The Cancer GenomeAtlas (TCGA) data showed that the expression
of ELA gene (APELA) was upregulated in the colon, lung, gastric, and
thymoma cancers; however, APELA was systematically downregulated
in all kidney cancer types, including renal chromocytocarcinoma,
papillary kidney cancer, and clear cell renal cell carcinoma.Moreover,
APELA is negatively correlated with the expression of the cell
proliferation marker Ki-67 in the above kidney cancer. These data
suggested the role of APELA in human kidney cancer and its
negative association with the development of kidney cancer (Artas
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et al., 2019; Linehan and Ricketts, 2019; Liu et al., 2021). In the in vivo
animal experiments, subcutaneous injection of ELA into kidney cancer
model mice decreased the tumor growth in mice bearing ELA tumors
(Soulet et al., 2020; Liet et al., 2021) ELA-11, ELA-32, and mut ELA-32
induced mTORC1 activation, inhibited ERK and AKT activation, and
promoted apoptosis of renal cancer cells to exert anti-tumor effects.
However, the combination of mut ELA and the angiogenesis inhibitor
sunitinib (Sutent) enhances the effect of ELA in inhibiting tumor growth
(Soulet et al., 2020). The replacement of arginine with serine residues in
the protopeptide ELA-32 blocked the conversion of ELA32 to ELA11,
allowing ELA-32 to mediate APJ endocytosis and recirculation rapidly,
providing it a high affinity for APJ, facilitating better antitumor effects
than the less stable protopeptide ELA (Soulet et al., 2020). Therefore,
ELA or its derivatives have potential applications in the treatment of
kidney cancer.

5 Discussion and outlook

Apelin and its receptor APJ are widely distributed in the body
and are involved in various physiological functions, including
cardiovascular function regulation, neuroendocrinology, glucose
metabolism, and angiogenesis. ELA is a novel endogenous
agonist of the Apelin receptor with a similar role. In addition to
its critical role in embryonic cardiovascular development, ELA is
highly expressed in the adult kidney, where it is involved in renal
excretory functions and maintains body fluid homeostasis. In
addition, ELA is closely associated with the development of
various renal diseases, including acute kidney injury, hypertensive
kidney damage, diabetic nephropathy, and renal tumors (Figure 4),
thereby deeming it a promising biomarker to identify different types
of renal tumors. The discovery and exploration of ELA has been
expanded in the pathogenesis of renal diseases, providing new
targets and directions for treating related diseases. Several studies
have found that the protective effects of ELA in kidney-related
diseases are independent of APJ occurrence. The other receptors
that bind to and act on ELA are yet to be identified, and the specific

signaling mechanisms are to be elucidated. The current studies on
ELA in kidney-related diseases are mainly focused on the cellular,
molecular level and animal models, lacking large-scale clinical trials
that need to be conducted in the future.
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FIGURE 4
Role of ELA in kidney-related diseases.Acute kidney injury. ELA improves kidney function and attenuates DNA damage, apoptosis, and renal fibrosis
in mice with kidney injury. Hypertensive kidney damage: ELA antagonizes the effect of RAS, reduces blood pressure, and attenuates glomerular, tubular
injury, and interstitial fibrosis. Diabetic nephropathy: upregulation of synaptopodin and podocin expression decreases the death of podocytes, reduces
LPS-induced ROS production in kidney and tubular epithelial cells, improves oxidative stress, and exerts renal protective effects. Renal tumors: ELA
was systematically downregulated in renal suspensory cell carcinoma, papillary renal carcinoma, and clear cell renal cell carcinoma, and ELA was
negatively correlated with the expression of Ki-67, a cell proliferation marker.
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