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Objective: Epithelial-mesenchymal transition (EMT) is a tightly regulated and
dynamic process occurring in both embryonic development and tumor
progression. Our study aimed to comprehensively explore the molecular
subtypes, immune landscape, and prognostic signature based on EMT-related
genes in low-grade gliomas (LGG) in order to facilitate treatment decision-making
and drug discovery.

Methods: We curated EMT-related genes and performed molecular subtyping
with consensus clustering algorithm to determine EMT expression patterns in
LGG. The infiltration level of diverse immune cell subsets was evaluated by
implementing the single-sample gene set enrichment analysis (ssGSEA) and
ESTIMATE algorithms. The distinctions in clinical characteristics, mutation
landscape, and immune tumor microenvironment (TME) among the subtypes
were subjected to further investigation. Gene Set Variation Analysis (GSVA) was
performed to explore the biological pathways that were involved in subtypes. The
chemo drug sensitivity and immunotherapy of subtypes were estimated through
GDSC database and NTP algorithm. To detect EMT subtype-related prognostic
gene modules, the analysis of weighted gene co-expression network (WGCNA)
was performed. The LASSO algorithm was utilized to construct a prognostic risk
model, and its efficacy was verified through an independent CGGA dataset. Finally,
the expression of the hub genes from the prognostic model was evaluated
through the single-cell dataset and in-vitro experiment.

Results: The TCGA-LGG dataset revealed the creation of two molecular subtypes
that presented different prognoses, clinical implications, TME, mutation
landscapes, chemotherapy, and immunotherapy. A three-gene signature
(SLC39A1, CTSA and CLIC1) based on EMT expression pattern were established
through WGCNA analysis. Low-risk patients showed a positive outlook, increased
immune cell presence, and higher expression of immune checkpoint proteins. In
addition, several promising drugs, including birinapant, fluvastatin, clofarabine,
dasatinib, tanespimycin, TAK−733, GDC−0152, AZD8330, trametinib and ingenol-
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mebutate had great potential to the treatment of high risk patients. Finally, CTSA
and CLIC1 were highly expressed in monocyte cell through single-cell RNA
sequencing analysis.

Conclusion:Our research revealed non-negligible role of EMT in the TME diversity
and complexity of LGG. A prognostic signature may contribute to the personalized
treatment and prognostic determination.

KEYWORDS

low-grade gliomas, Epithelial-mesenchymal transition (EMT), molecular subtypes, tumor
microenvironment, immunotherpapy, signature, single cell RNA analysis

1 Introduction

The efficacy of cancer chemotherapy and immunotherapy is
often impeded by inter-patient and intra-tumor heterogeneity, as
well as multifactorial drug resistance. Low-grade gliomas
(LGGs), being a form of malignant brain tumor, are also
confronted with the challenge of tumor heterogeneity and
resistance to treatment (Weller et al., 2015). Even after
undergoing standard surgical resection followed by
radiotherapy and chemotherapy, individuals diagnosed with
low-grade gliomas continue to have a bleak prognosis, with an
average survival rate ranging from 2 to 10 years (Golub et al.,
2019). Despite extensive efforts to improve clinical outcomes,
more than half of LGG cases progress and evolve into therapy-
resistant high-grade aggressive glioma over time (Claus et al.,
2015). One of the primary objectives of precision medicine is to
precisely identify patients who are likely to benefit from
personalized treatment and to prescribe treatments that are
tailored to the unique characteristics of their tumors, with the
aim of achieving optimal therapeutic outcomes. Hence, in the
realm of precision medicine, it is imperative to establish a more
precise categorization of tumors to eradicate the heterogeneity
and resistance to treatment associated with LGGs.

The process of epithelial-mesenchymal transition (EMT) is
an essential differentiation program that is necessary for the
development of tissues during embryogenesis. During this
process, cells lose their epithelial characteristics and acquire
mesenchymal migration properties (Yang et al., 2020).
Aberrant activation of the EMT process is frequently observed
in tumor proliferation, leading to the development of resistance
towards conventional therapeutic interventions (Lambert et al.,
2017; Shibue and Weinberg, 2017). EMT has the capability to
enhance the potential of tumor cells for invasion and metastasis
by facilitating their migration, disturbing cell-cell connections,
disintegrating the basement membrane, and restructuring the
extracellular matrix (ECM) (Miyoshi et al., 2004). Moreover, the
process of EMT is linked with a higher percentage of cancer stem
cells, reduced immune response against tumors and the
development of resistance towards treatment (Akalay et al.,
2013; Rhim et al., 2014), the study of therapeutic resistance
from the perspective of EMT is one of cancer research focus.
Thus, the presence of EMT, which is a hallmark of cancer, has
been shown to be intimately linked with tumor invasion,
metastasis, and the acquisition of chemotherapy resistance, all
of which are critical biological processes in cancer development
(van Staalduinen et al., 2018; Loret et al., 2019). Despite the

existence of variations among tumor subtypes, the EMT process
in LGG could potentially hold significant prognostic and
molecular typing value. As a result of the highly hostile and
intrusive characteristics of gliomas, it has been progressively
acknowledged that the occurrence of EMT in gliomas may
hold significant significance in the progression of glioma and
the restructuring of the glioma microenvironment (Lu et al.,
2012). Given the emergence of innovative immunotherapy
techniques that offer groundbreaking cancer treatment
alternatives, it is crucial to ascertain the immune profile of
distinct EMT expression patterns, and their responsiveness to
immunotherapy (Yamaguchi, 2016). In our study, while we have
primarily relied on computational analyses of existing datasets,
we have also performed experimental validation of the identified
key genes. This approach underscores the critical role of EMT-
related genes in the context of low-grade gliomas (LGG) and
further highlights their significance in future research. By
combining computational insights with experimental evidence,
we aim to provide a more comprehensive understanding of the
role of EMT in the expression, prognosis, immune tumor
microenvironment (TME), clinical implications, and
personalized treatment strategies for LGG.

2 Materials and methods

2.1 Data acquisition

Transcriptome data, mutation data and clinicopathologic
characteristics of LGG samples were retrieved from the Cancer
Genome Atlas (TCGA; https://www. cancer. gov/tcga/) through
the Genomic Data Commons data portal (GDC; https://portal.
gdc.cancer.gov/). In addition, the aforementioned information
were obtained from two cohorts (mRNAseq_693, Illumina HiSeq
Platform; mRNAseq_325, Illumina HiSeq (2000) and (2,500)
platforms) in Chinese Glioma Genome Atlas (CGGA; http://
www.cgga.org.cn), and serve as an external dataset. “SVA” (Leek
et al., 2012) package was then used to merged the two cohorts after
removing the batch effects (“ComBat” algorithm). After converting
the raw read count, the values were expressed as transcripts per
kilobase million (TPM). The Molecular signatures database
(MSigDB; http://www.broadinstitute.org/msigdb) (Liberzon et al.,
2015) provided a collection of 200 genes related to EMT, obtained
from the gene set named “HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION”. Figure 1 showed the
graphical abstract and analysis flow chart of present study.
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2.2 Unsupervised clustering analysis

To perform an unsupervised cluster analysis on mRNA
expression profiles of genes associated with EMT, the
“ConsensusClusterPlus” R package was created (Wilkerson and
Hayes, 2010). The optimal number of clusters was determined
using the cumulative distribution function (CDF) and consensus
matrix through resampling analysis to achieve the best performance.
To assess the disparity in survival among clusters, the Kaplan-Meier
(KM) analysis was employed. The results displayed the top
20 mutated genes in each cluster after visualizing single-
nucleotide polymorphisms (SNP) variations using the R package
“maftools” (Mayakonda et al., 2018). The GISTIC2.0 tool from
Genome Data Analysis Center (GDAC) Firehose (https://gdac.
broadinstitute.org) was used to analyze the copy number
alterations (CNA) data among subtypes.

2.3 Landscape of immune TME

To calculate the ratio of immune cells in LGG samples, the
Estimation of Stromal and Immune cells in Malignant Tumours
using Expression (ESTIMATE) data method was utilized to
compute the stromal and immune scores (Yoshihara et al., 2013).

The estimation of tumor purity was done by combining stromal and
immune scores. The violin plot displayed variations in immune
score, stromal score, and tumor purity across various subtypes.

The single-sample gene set enrichment analysis (ssGSEA)
algorithm was utilized to measure the proportion of immune cell
infiltration in the immune TME of LGG samples through the
computation of enrichment scores. To compute the abundance of
28 tumor infiltrating immune cells (TIICs), a sum of 782 marker
genes was collected from Bindea et al. (Bindea et al., 2013) and Broad
Institute (http://software.broadinstitute.org/gsea/msigdb/index.jsp).
Boxplots were used to present the results of ssGSEA analysis, which
compared the level and function of immune infiltration among
different subtypes using the gene set variation analysis (GSVA)
software “GSVA” R package.

2.4 GSVA and functional annotation

To evaluate dissimilarities in biological processes among various
clusters, the R software package “GSVA” was utilized for conducting
GSVA analysis. Based on transcriptome data, GSVA is an
unsupervised and nonparametric gene enrichment method that
estimates alterations in the activity of biological processes and
pathways in samples (Hänzelmann et al., 2013). To run GSVA

FIGURE 1
The graphical abstract and analysis flow chart of present study. (A) Construction of EMT-related consensus clusters. (B) Evaluation of
immunotherapy of EMT-related consensus clusters. (C) Construction of EMT-related signature. (D) Experimental validation of SLC39A1.
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analysis, the gene set of “C2. cp.kegg.v7.1″was downloaded from
MSigDB database. The “clusterProfiler” R software package was
utilized to conduct functional annotation of genes related to EMT.
Significantly enriched pathways were identified through screening
for those with an adjusted p-value < 0.05 and false discovery rate
(FDR) < 0.05.

2.5 Therapy response prediction of subtype

The tumor immune dysfunction and exclusion (TIDE)
algorithm (Jiang et al., 2018) was utilized to approximate the
efficacy of immunotherapy based on tumor immune dysfunction
and exclusion. According to the Genomics of Drug Sensitivity in
Cancer (GDSC) database (https://www.cancerrxgene.org/) (Yang
et al., 2012), we predict chemotherapy response of each LGG
sample. After performing simple processing of data (such as
elimination of low-variation genes and summarize duplicated
gene expression data into averages), we estimated the sensitivity
of eight chemotherapeutic agents (cisplatin, erlotinib, methotrexate,
vincristine, carmustine, temozolomide (TMZ), rapamycin, and
doxorubicin) currently under study or widely applied in gliomas
by SubMap analysis (Gene Pattern) of GDSC data (Hoshida et al.,
2007). The ridge regression was performed to estimate the half-
maximal inhibitory concentration (IC50) for LGG by “pRRophetic”
R software package (Geeleher et al., 2014a), and the quantitative
prediction accuracy was verified by 10-fold cross validation based on
the GDSC training set (Geeleher et al., 2014b).

2.6 Weighted correlation network analysis
(WGCNA) to identify hub genes from
subtypes

For the purpose of identifying subtype associated genes, we
adopted WGCNA algorithm through the “WGCNA” R package
(Version: 1.71) (Langfelder et al., 2009). At first, genes that exhibited
a variance value exceeding 25% were selected for the construction of
the coexpression network (Yang and Xu, 2021; Zhou et al., 2021;
Feng et al., 2022). Subsequently, the outlier samples were excluded
through the “goodSampleGenes” function, and the soft-
thresholding value β = 5 (scale free = 0.85) was applied to ensure
a scale-free network. Then, a gene clustering tree was generated
based on the computed adjacency among genes, followed by the
categorization of genes into distinct modules comprising no less
than 100 genes exhibiting similar characteristics within each
module. The modules that exhibited most correlation with
subtypes were selected to the downstream analysis, such as
KEGG analysis. Moreover, the hub genes were screened based on
the cutoff gene significance (GS) > 0.6 and module membership
(MM) > 0.8. Pathway enrichment analysis on the modules was
performed via the “clusterProfiler” R package (Wu et al., 2021).

2.7 Development of EMT-related signature

The “glmnet” package was employed to conduct a LASSO
regression analysis on genes associated with prognostic EMT

subtyping to evaluate their effect on prognosis. The analysis was
subjected to ten-fold cross-validation, and the genes were chosen
based on the point with the lowest error rate. Patients were
categorized into low or high EMT score subgroups using the
median score, which was calculated by merging gene expression
and coefficients to compute the EMT risk score. KM survival
curves were generated by performing survival analysis with the
aid of the “survival” and “survminer” packages. To generate
receiver operating characteristic (ROC) curves the “timeROC”
package was employed. Prognostic variables were subjected to
uni- and multivariate-cox regression analyses. A nomogram was
constructed using the “rms” package to estimate survival
probability, and calibration curves were used to evaluate the
accuracy of the predictions.

2.8 Drug discovery of EMT-related signature

The response of human cancer cell lines to small molecule
compounds was estimated using drug sensitivity profiles
obtained from either the Cancer Therapeutics Response Portal
(CTRP) (Basu et al., 2013) or the PRISM project (Corsello et al.,
2020).

2.9 Single cell RNA-sequencing (scRNA-seq)
revealed the expression level of genes

The GSE202096 dataset provided scRNA-seq data for one LGG
samples (GSM6094425) (Chen et al., 2022). After conducting quality
control, cells that had more than 20% mitochondrial UMI counts
were eliminated using the “Seurat” package (Cao et al., 2022). The
selection process involved choosing the top 1,500 genes with high
variability, followed by clustering cell populations via the
FindClusters function and then mapping them into t-distributed
stochastic neighbor embedding (t-SNE). Using the FindAllMarkers
function, the markers for each cell cluster were determined. Then,
the CellMarker database was utilized to annotate cells based on their
cell markers (Hu et al., 2022).

2.10 Cell culture and transfection

The cultivation of HMC3, GOS-3, T98G, and LN-18 cells
(ATCC) was carried out in DMEM supplemented with 10% fetal
bovine serum (Sigma Aldrich) under an atmosphere of 5% CO2 at
37°C. After cloning siRNA targeting SLC39A1 into lentiviral vectors,
the vectors were transfected into GOS-3 and T98G cells for 3 days
and then exposed to 4 μg/mL puromycin for 1 week.

2.11 Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted using TRIzol (Beyotime) and cDNA
was synthesized with the PrimeScript RT reagent kit after gDNA
Eraser (Takara) treatment. SYBR Green II Mixture (TaKaRa) was
used for RT-qPCR, and GAPDHwas used as an internal reference to
calculate the expression using the 2−ΔΔCT method.
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2.12 Flow cytometry

Cell apoptosis was detected through flow cytometry and the Cell
Apoptosis Detection Kit (KTA0002; Abbkine) was utilized. To
summarize, a group of cells was exposed to 5 μL of Annexin
V-AbFluor™ 488 binding and 2 μL of PI for 15 min at room
temperature while being shielded from light. After adding 400 μL
of 1 x Annexin V buffer, the level of apoptosis was assessed using a
Beckman Flow cytometer.

2.13 Statistical analysis

The R language (R-project.org) platform and software
package from the Bioconductor project (www.bioconductor.
org) (R Core Team, Version 4.0.2) were used for statistical
analysis and visualization of results in the current study. To
compare the two groups and more groups, the Wilcoxon and
Kruskal–Wallis tests were utilized, respectively (Hazra and
Gogtay, 2016). To detect the differentially expressed genes
(DEGs) between the two subtypes, the one-way ANOVA and
Tukey’s test were conducted with a q-value of less than 0.05 and
an absolute value of log2FC greater than 2. The KM curve,
analyzed by log-rank test, exhibited the variations in operating
systems among different groups. Bilateral p values were used,
with a statistically significant difference defined as p < 0.05.

3 Results

3.1 Clinicopathological characteristics of
two LGG molecular subtypes based on EMT
related genes

Based on the prognostic EMT gene expression profile, LGG
samples was divided into two molecular subtypes by unsupervised
clustering analysis (Figures 2A–C). The EMT gene expression were
presented a significant divergence between two subtypes
(Figure 2D). Figure 2E showed that the principal components
analysis (PCA) distribution patterns were mostly in agreement
with the two subtypes designations. Figure 2F suggested the
overall prognosis of C2 is worse than that of C1 (p < 0.0001).
Moreover, we further explore the relationship between subtypes and
clinical traits.

As Figures 3A–G showed, the patients survival status (Figure
3A), age (Figure 3B), grade (Figure 3D), IDH status (Figure 3E),
1p19q status (Figure 3F) and methylation status (Figure 3G) were
showed a significant difference (p < 0.05) between C1 and C2, while
no difference was observed in gender (Figure 3C). Subtype
C2 corresponding to more deaths, elderly patients, higher grade,
1p19q non-codel, IDH wild type, and unmethylated cases.

We assessed the function of each subtype through GSVA
analysis (Supplementary Figure S1) to delve deeper into the
potential biological process of the two clusters. Results suggested

FIGURE 2
EMT-related genes could distinguish LGG in TCGAwith different clinical andmolecular features. (A) Relative change in area under CDF curve for k =
2 to k = 9. (B) Delta curve analysis from k = 2 to k = 9. (C) Consensus clustering matrix heatmap plots of 506 samples from TCGA datasets for k = 2. (D)
Expression of EMT-related genes in molecular subtypes. (E) PCA analysis of the EMT-related genes expression when k = 2. (F) Kaplan-Meier analysis of
patients between two subtypes. CDF, cumulative distribution function; PCA, principal components analysis.
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that C1 mainly enriched metabolism-related signaling pathways,
such as butanoate metabolism and propanoate metabolism
pathways. The primary routes of C2 that were enriched consist
of cell adhesion molecules (CAMs), interaction with ECM receptors,
the p53 signaling pathway, interaction between cytokines and
cytokine receptors, focal adhesion, the JAK-stat signaling
pathway, and apoptosis. These pathways were significantly
correlated with tumor cell genesis, proliferation, invasion and
migration. Furthermore, the GSVA outcomes indicated that
C2 was linked to pathways related to DNA damage repair (such
as Nucleotide excision repair, DNA replication, and Mismatch_
repair) as well as immune functions (including Natural killer cell
mediated cytotoxicity, Toll like receptor signaling pathway, and
Antigen processing and presentation). In conclusion, C2 showed
more malignant biological behaviors and enrichment signaling
pathways than C1.In addition, SNP analysis of the two clusters in
TCGA uncovered that C1 had a higher mutation proportion than
C2 of IDH1, TP53, ATRX, CIC, FUBP1, NOTCH1 (Rotin et al.,
2015) and IDH2 (Supplementary Figure S1A). However, EGFR,
PTEN and NF1 (Verhaak et al., 2010; Marques et al., 2019; Koptyra

et al., 2023), the mutations that were common in glioblastoma
(GBM), were more frequent in C2 than C1 (Supplementary
Figure S2B). Therefore, EMT related genes are important
references for LGG molecular subtype. Our cluster-specific CNAs
analysis presented chromosome deletions and amplifications, for
example, deletion of 9p21.3 were significantly enriched in the C2.
The 9p21.3 deletions is associated with the poor survival outcome in
LGG (Xia et al., 2021). In addition, gene duplication/amplification at
7p11.2 activates EGFR expression through the formation of new
topological associating domain (TAD) and the emergence of new
enhancer-promoter interactions between LINC01446 and EGFR,
and EGFR amplification and/or mutations are directly associated
with poor prognosis of gliomas (Yang et al., 2022).

3.2 Disparity in immune tumor
microenvironment between subtypes

We delved deeper into the dissimilarities in the immune
tumor microenvironment between the two LGG EMT

FIGURE 3
The relationship between two molecular subtypes, survival status (A), age (B), gender (C), grade (D), IDH mutation status (E), 1p19q status (F) and
methylation status (G).
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subtypes, given their notable clinicopathologic distinctions.
According to Figure 4A, C2 had a higher degree of immune
cell infiltration than C1, which included various types of immune
cells such as Activated CD8+ T cells, effector memory CD4+

T cells, Regulatory T cells, CD56bright natural Killer cells,
Type-1 T-helper 1 cells, Central memory CD4+ T cells,
Activated Dendritic cells, Activated CD4+ T cells, CD56dim
natural killer cells, myeloid-derived suppressor cells, Immature
Dendritic cells, Central memory CD8+ T cells, Effector memory
CD8+ T cells, immature B cells, macrophages, mast cells, memory
B cells, natural killer cells, natural killer T cells, neutrophils,
plasmacytoid dendritic cells, follicular helper T cells, Gamma
delta T cells, Type-17 T helper cells, Type-2 T helper cells,
activated B cells, eosinophils and monocytes. The findings
from analyzing various cluster immune TME in TCGA and
CGGA datasets indicated a strong correlation between the
EMT molecular subtype and immune TME. It was noticed
that C2 had higher stromal and immune scores compared to
C1 (both p < 0.0001) as shown in Figures 4B,C. On the other
hand, the tumor purity in C2 was lower than that in C1 (p <
0.0001) as depicted in Figure 4D. Figure 4E showed that C2 had

significantly higher expression levels of most checkpoints
compared to C1.

3.3 Sensitivity prediction of different clusters
to chemotherapy and immunotherapy

Immunotherapy has shown a potential application prospect in
the treatment of glioma.We evaluated the response of two clusters to
immunotherapy through TIDE analysis. The findings revealed that
patients belonging to C1 exhibit a higher number of responders in
comparison to C2 (p < 0.05) (Figure 5A), and individuals with a
lower TIDE score are more likely to experience benefits from
immunotherapy. The TIDE, Dysfunction, and Exclusion scores in
the C1 group were lower, which implies that they could benefit more
from immunotherapy (Figures 5B–D). Immune checkpoint
blockade (ICB) is one of the most promising therapeutic
approaches to change the current pessimistic situation in the
treatment of glioma. Therefore, SubMap module analysis was
used to compare the expression profile of LGG cluster with other
published ICB-therapy datasets. As showed in Figure 5E, Subtype

FIGURE 4
Immune landscape of subtypes in LGG. (A) Comparisons of 28 immune cells infiltration level in two molecular subtypes. Evaluation of the immune
score (B), stromal score (C) and tumor purity (D) in two molecular subtypes. (E) Comparisons of key immune checkpoints expression level in two
molecular subtypes.
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C2 is similar to the melanoma patients who reacted positively to
anti-PD-1 therapy.

We then evaluated the different responses of two clusters to drug
chemotherapy. The regimen of combined treatment for gliomas
includes maximum safe surgical resection and postoperative
chemotherapy with radiotherapy. Glioma can be treated with
chemotherapy, which is considered a fundamental therapy. The
GDSC database was utilized to predict the efficacy of 8 frequently
used drugs in LGG chemotherapy, including cisplatin, erlotinib,
methotrexate, camptothecin, etoposide, rapamycin, and
doxorubicin. According to the findings, camptothecin (Figure 5F)
and methotrexate (Figure 5K) were found to be more effective on
C1, whereas cisplatin (Figure 5G), rapamycin (Figure 5H), erlotinib
(Figure 5I), and etoposide (Figure 5J) were more effective on C2.

Genomic instability is a hallmark of cancer, particularly LGG,
which facilitates its growth and the ability to withstand treatments
(Dionellis et al., 2021). In our result, we found that Aneuploidy
score, fraction altered, number of segments, tumor mutation burden
(TMB) were elevated in C2, while Cancer Testicular Antigens (CTA)

score were lower in C2, which consistent with previously reports
(Nie et al., 2020) (Figure 6).

3.4 Identification of EMT-related genes
through WGCNA analysis

We utilized WGCNA to build correlation networks in order to
identify genes associated with EMT. The optimal soft threshold was
set to 5, based on a chosen R2 of 0.90 (Figures 7A,B). Elevenmodules
were identified based on their connectivity in Figure 7C, each
containing at least 100 genes. The “module-trait” relationship
heatmap revealed that brown module have the highest
correlation associated with molecular subtypes (R = 0.70)
(Figure 7D). In addition, six hub genes were identified, namely,
SLC39A1, CTSA, TMSB4X, CAST, S100A11, and Chloride
Intracellular Channel 1 (CLIC1), based on their GS being greater
than 0.6 and their MM being greater than 0.8, as shown in Figure 7E.
Further function enrichment of the brown module indicated that

FIGURE 5
(A–D) The immune response, TIDE score, dysfunction score and exclusion score of the C1 and C2 subtype. (E) Submap analysis revealing that
C2would bemore sensitive to immunotherapy, especially checkpoints PD-1 immunotherapy (Bonferroni-corrected p < 0.05). Drug sensitivity evaluation
of the Camptothecin (F), Cisplatin (G), Rapamycin (H), Erlotinib (I), Etoposide (J), Methotrexate (K) in C1 and C2 subtypes.
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FIGURE 6
The mutation profile in subtypes, including Aneuploidy score, CTA score, Fraction altered, HRD score, Number of segments, and TMB.

FIGURE 7
Identification of EMT-related genes throughWGCNA analysis. (A, B) soft threshold determination through scale-free network analysis. (C)Clustering
dendrograms were used to classify genes with similar expression patterns in LGG into co-expression modules. (D) module-traits heatmap showed the
correlation between Cluster and gene modules. (E) hub genes were characterized by brown module with module membership >0.8 and gene
significance >0.6. (F) Pathway enrichment analysis.
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genes may involve in focal adhesion, Th17 cell differentiation,
necroptosis, etc (Figure 7F).

To identify prognostic genes related to EMT from six hub
genes, we performed lasso analysis and found three genes, namely,
CLIC1, CTSA, and SLC39A1, based on the optimal lambda value
(Figures 8A,B). The CGGA dataset was used as an external
validation cohort to guarantee its reliability. The score for the
risk model was computed utilizing the risk equation Risk score =
(SLC39A1exp * −1.559) + (CTSAexp* −1.139) + (CLIC1exp *
1.474). After analyzing the TCGA and CGGA datasets, patients
were divided into two groups: high-risk and low-risk, with the
median score serving as the differentiating factor for each
group. Figure 8C and Figure 8E demonstrated that patients who
had a high-risk score in both TCGA and CGGA datasets had a
poor survival outcome, whereas those with a low risk score had a
favorable survival. Furthermore, the precision of the risk model
was assessed using ROC curve analysis, yielding a score of 0.86,
0.76, and 0.69 for 1-, 3-, and 5-year periods in the TCGA and
CGGA datasets, as shown in Figure 8D and 0.71, 0.74, and 0.76 in
Figure 8F, respectively. The independent prognostic factors were

identified through the results of both univariate and multivariate
Cox regression analyses, demonstrating that the risk score can
function in this manner, as depicted in Figures 8G,H. Then, the
independent factors including risk score, grade were including to
construct nomogram to predict patients overall survival (OS)
(Figure 8I). According to Figure 8J, the calibration curves
indicated that the estimated OS values were consistent with the
real values, particularly for the 3-year OS.

3.5 Immune infiltration landscape and drug
discovery of EMT-related model

Though the immune cell infiltration analysis, we evaluated the
divergence of immune cells between risk groups. The result of
Figure 9A revealed that most of immune cells infiltration level in
high risk group were elevated compared to low risk group, such as
Activated CD8+ T cells (CD8+ Ta), effector memory CD4+ T cells,
Regulatory T cells, CD56bright natural Killer cells, Type-1
T-helper 1 cells, Central memory CD4+ T cells, Activated

FIGURE 8
Development of EMT-related signature. (A, B) LASSO analysis to determine the EMT-related signature. (C) K-M curve survival analysis between high-
and low-risk group in TCGA-LGG dataset. (D) ROC curve analysis of the EMT-related signature in TCGA-LGG dataset. (E) K-M curve survival analysis
between high- and low-risk group in CGGA dataset. (F) ROC curve analysis of the of EMT-related signature in CGGA dataset. Determination of the
independence of Univariate cox regression (G) and multivariate cox regression (H) analysis of the EMT-related signature. (I) Construction of
nomogram on the basis of independent prognostic factors. (J) Calibration plot for the nomogram in 1-year, 3-year and 5-year OS.
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Dendritic cells, Activated CD4+ T cells, CD56dim natural killer
cells, myeloid-derived suppressor cells, Immature Dendritic cells,
Central memory CD8+ T cells, Effector memory CD8+ T cells,
immature B cells, macrophages, mast cells, memory B cells, natural
killer cells, natural killer T cells, neutrophils, plasmacytoid
dendritic cells, follicular helper T cells, Gamma delta T cells,
Type-17 T helper cells, Type-2 T helper cells, activated B cells,
eosinophils and monocytes. We further checked the expression of
immune checkpoint between groups and found that the genes
showed a high expression level in high risk group (Figure 9B).
Accumulative evidence have demonstrated that anti-tumor effects
of a high T cell infiltration are counteracted by the
immunosuppressive pathways that are triggered by the over-
expression of immune checkpoint proteins (Vuong et al., 2019;
Dionellis et al., 2021). The GSEA analysis was performed between
groups, and found cell cycle, chemokine signaling pathway,
cytokine-cytokine receptor interaction, ECM receptor
interaction, p53 signaling pathway were significantly enriched
in high risk group (Figure 9C).

To explore potential molecular drugs to the treatment of LGG
in high risk group, we integrated CTRP and PRISM drug
database. As showed in Figure 9D, the top panel of CTRP
result revealed five drugs including birinapant, fluvastatin,

clofarabine, dasatinib and tanespimycin may have the
potential value to the treatment of high risk LGG patients,
and the bottom panel of PRISM results indicated five drugs
including TAK−733, GDC−0152, AZD8330, trametinib and
ingenol−mebutate were identified.

3.6 Evaluation of gene expression level
through single cell analysis

In order to estimate the gene expression level of hub genes, we
retrieved LGG single cell sample from GSE202096 dataset (Figures
10A–E). Following data filtering and standardization, 1,500 genes
exhibiting the most variance were selected for cell classification
(Figures 10F,G). Dimensionality reduction of the expression levels of
1,500 genes was done by PCA analysis, resulting in PC1 to PC20.
T-SNE was then applied to the PC1-20 to classify all cells into
9 clusters (Figure 10H). Afterwards, we annotated the cells in each
cluster. The main cell types identified were astrocyte, monocyte, and
endothelial cells (Figure 10I). The expression level of hub genes
(CTSA, CLIC1) in cell clusters were showed in Figures 10J,K, of
which CTSA was highly expressed in monocyte, and CLIC1 highly
expressed in monocyte and endothelial cells.

FIGURE 9
Characterization of immune infiltration and drug discovery of EMT-related signature. (A) Evaluation of 28 immune cells infiltration in high- and low-
risk group. (B) The expression level of immune checkpoints in high- and low-risk group. (C)GSEA enrichment analysis of EMT signature. (D) Identification
of molecular compounds in the high-risk groups based on CTRP and PRISM drug database.
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3.7 Experiment validation of the hub genes

As depicted in the previously result, we obtained six hub genes
(CAST, CLIC1, CTSA, S100A1, SLC39A1 and TMSB4X) associated
with EMT from WGCNA result. Next, we investigated the level of
expression of the six genes in four LGG cell lines, namely, HMC3,
GOS-3, T98G, and LN-18. Figure 11A demonstrates that the
majority of genes were expressed at high levels in both COS-3
and T98G cell lines, as indicated by the RT-PCR results. Using the
gene expression profiling interactive analysis (GEPIA) database, we
delved deeper into the expression levels of normal and tumor tissue.
Our findings revealed that CLIC1, S100A1, and SLC39A1 were
significantly highly expressed in tumor tissue compared to normal
tissue. However, CAST, CTSA, and TMSB4X showed no significant
difference (Supplementary Figure S3). Prior research indicated that
CLIC1 and S100A1 are involved in the advancement of LGG, thus
our focus shifted to examining the function of SLC39A1 in LGG.
Firstly, we examined the expression level through the RT-PCR

experiment. Two LGG cell lines, GOS-3 and T98G, were treated
with si-SLC39A1 #one to three, resulting in a notable reduction in
SLC39A1 expression as determined by RT-qPCR analysis
(Figure 11B). Meanwhile, we screened the stably transfected cell
lines with puromycin after transfection of si-SLC39A1 #one to three,
and the construction of stably transfected cell lines was observed by
light microscopy 1 week after screening. The results showed that the
stable-transformed cell line of si-SLC39A1 was successfully
constructed by puromycin screening (Figure 11C). Flow
cytometry was conducted to assess the apoptosis of GOS-3 and
T98G cells, by comparing the number of cells distributed in early
apoptosis and late apoptosis, the results showed that the apoptotic
cell number in Q2 and Q3 regions of the si-SLC39A1 group was
much higher than that of the si-NC group in both GOS-3 and
T98G cell lines, revealing that the apoptosis rate was greater in cells
with SLC39A1 knockout, indicating that the reduction of
SLC39A1 significantly induced apoptosis of LGG cells (Figures
11D,E).

FIGURE 10
Single cell RNA analysis of LGG samples. (A) Evaluation of relationship between percentage of mitochondrial genes and mRNA readings. (B)
Evaluation of relationship between percentage of mRNA quantity and mRNA readings. (C–E) A scatter plot illustrates the quantity of genes, UMI, and the
percentage of mitochondrial genes in each cell type from the single LGG sample before quality control. (F–G) The red dots show the 1,500 genes that
have the highest variability. (H) tSNE plot showed the cell population of LGG samples. (I) Cell annotation using cell markers for each cell. Expression
level of prognostic genes in each cell type through dot plot (J) and violine plot (K).
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4 Discussion

In the present study, a comprehensive analysis of LGG in TCGA
and CGGA datasets was conducted based on EMT-related genes. By
data mining analysis, we identified two clusters with markedly
different prognosis and clinical phenotype in LGG. Further
analysis showed that the two clusters were significantly different

in TME immune cell infiltration and functional pathways, and
presented inconsistent sensitivity to chemotherapy and
immunotherapy. Finally, we developed a EMT-related signature
and screen small molecule compounds with potential therapeutic
effect targeting EMT. Additionally, we have undertaken further
experimental validation of the identified EMT-related genes and
their role in LGG. To some extent, our research contributed to

FIGURE 11
Validation of hub gene through in-vitro experiment. (A) Six hub genes expression level in HMC3,GOS-3, T98G, LN-18 cell lines. (B) SLC39A1 expression level
in GOS-3 and T98G cell lines with SLC39A1 silence. (C) Transfection of si-SLC39A1 was filtered with puromycin for 1 week, and the expression of si-NC and si-
SLC39A1 was observed by light microscopy. (D, E) Apoptotic level of SLC39A1-knockout GOS-3 and T98G cells.
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improving the current LGG treatment dilemma in precision therapy
such as molecular classification, drug development, chemotherapy
and immunotherapy.

The ESTIMATE and ssGSEA algorithms were used to measure
the number of immune cells and stromal cells in every LGG sample
from the TCGA and CGGA datasets. According to our data,
immune and stromal scores as well as tumor purity vary among
various LGG-EMT subtypes. Furthermore, our findings indicate
that C2, which represents the LGG-EMT subtype with unfavorable
prognosis, is associated with a greater level of infiltration of various
immune cells such as CD56bright and CD56dim natural killer cells,
eosinophils, monocytes, plasmacytoid dendritic cells, and others.
Monocytes, which are believed to have tumor-promoting and
immunosuppressive effects, are the primary infiltrating immune
cells (Filipazzi et al., 2012; Marvel and Gabrilovich, 2015). It is
anticipated that directing attention towards monocytes or other
stromal components will alter the gliomas “cold” TME to a more
“hot” TME phenotype. The efficiency of conventional first-line
immunotherapy for glioma may be enhanced by this alteration
(Tomaszewski et al., 2019). It may be possible to develop more
effective therapeutic strategies if we understand the interaction
between LGG and immune cells. Our findings using the TIDE
algorithm supported the conclusion that C2 exhibited greater
responsiveness to immunotherapy compared to C1. Furthermore,
the SubMap method was employed to juxtapose the expression
patterns of the LGG group with other previously published immune
checkpoint datasets, which additionally validates the heightened
susceptibility of C2 to immunotherapy, particularly PD-1.

The EMT-related survival prognosis model constructed by
WGCNA and LASSO algorithm contains a series of hub genes, such
as CLIC1, CTSA and SLC39A1. Multiple studies underscored the
tumor-driver roles of the hub genes identified in present study.
These hub genes were potential to be novel therapeutic targets and
prognostic predictors in LGG. CLIC1, extensively studied within the
CLIC family concerning tumors, has potential as a diagnostic indicator
and therapeutic target. It has been linked to various cancers, influencing
cell processes, including cell viability and mitochondrial function
(Dehghan-Nayeri et al., 2017; Singha et al., 2018). In breast cancer,
elevated CLIC1 expression correlates with tumor characteristics like
size, TNM classification, grade, lymph node metastasis, and Ki67, while
lower expression associates with extended OS and progression-free
survival, suggesting its diagnostic potential (Xia et al., 2022). In
esophageal squamous cell carcinoma (ESCC), CLIC1 is linked to
clinical TNM classifications (Geng et al., 2022). CLIC1 knockdown
in ESCC cell lines inhibits mTOR signaling, affecting cell proliferation
and protein expression (Geng et al., 2022). High CLIC1 expression in
lung adenocarcinoma predicts shorter overall survival and functions as
an independent prognostic factor (Yasuda et al., 2022). In gastric cancer,
CLIC1 absence impedes invasion and migration by affecting AMOT-
p130 expression, possibly contributing to metastasis (Qiu et al., 2020).
In hepatocellular carcinoma (HCC), upregulated CLIC1 is associated
with aggressiveness, metastasis, and poor prognosis (Peng et al., 2020).
GBM exhibits high CLIC1 expression (Setti et al., 2013). Reducing
CLIC1 expression impairs cell proliferation and self-renewal in GBM,
while CLIC1-mediated channel activity correlates with tumor
aggressiveness (Setti et al., 2013). CLIC1 modulates reactive oxygen
species and pH in human GBM stem cells, impacting motility and
proliferation, making it a potential therapeutic target (Peretti et al.,

2018). The study by Biasiotta et al. identified CLIC1 among nine genes
with significant alterations in ion channels in solid tumors and vascular
malformations, particularly in GBM and bladder cancers (Biasiotta
et al., 2016). CLIC1 expression is correlated with the drug-resistant
protein MRP1. Knockdown of CLIC1 in human choriocarcinoma cell
lines reduces MRP1 expression (Wu and Wang, 2016). Additionally,
CLIC1 has been found to transfer from GBM cells to microvascular
epithelial cells through extracellular vesicles, potentially impacting
metastasis (Thuringer et al., 2018). In summary, CLIC1 plays a
crucial role in various cancers, including breast cancer, ESCC, lung
adenocarcinoma, gastric cancer, and HCC, making it a potential target
for cancer treatment due to its influence on cell proliferation, migration,
invasion, and metastasis. Research into CLIC1’s role in cancer and
glioma progression and patient survival is promising, but further studies
are needed to fully understand the mechanisms of action and develop
targeted therapies.

Research on HCC has shown that SLC39A1 overexpression is
linked to immune infiltration and promotes tumor progression (Zhang
et al., 2021). Yuan et al. (2022) conducted a study to explore SLC39A1’s
potential as a tumor suppressor in renal cell carcinoma (RCC) using
integrated omics analyses. They found that SLC39A1 significantly
impacts various metabolic pathways and triggers communication
among multiple signaling pathways. This research provides valuable
insights into RCC development and the molecular changes induced by
SLC39A1 (Yuan et al., 2022). Furthermore, glioma tissues exhibit
increased SLC39A1 expression, strongly associated with clinical
features like grade, IDH mutation status, and 1p19q co-deletion
status. Elevated SLC39A1 levels are linked to reduced survival
chances and contribute to glioma malignancy by promoting cell
growth, inhibiting cell death, and influencing immune cell
infiltration in the tumor microenvironment (Wang et al., 2020).
SLC39A1 shows promise as a novel prognostic biomarker and
therapeutic target for gliomas.

CTSA, a lysosomal protease, is upregulated in various cancers,
including HCC and prostate cancer (Park et al., 2020; Wang et al.,
2021; Luo et al., 2022). Its role as a potential diagnostic and
prognostic biomarker has been explored. Petrera et al. (2016)
demonstrated that inhibiting CTSA in a mouse model improved
cardiac functionality in heart failure (Petrera et al., 2016). High
CTSA levels can differentiate HCC from healthy liver tissue and are
linked to poorer survival rates (Wang et al., 2021). Luo et al. (2022)
found high CTSA expression correlated with poor HCC patient
outcomes, reinforcing its prognostic value (Luo et al., 2022). In
prostate cancer, Park et al. (2020) showed that suppressing CTSA
gene expression reduced proliferation, migration, and tumorigenesis
(Park et al., 2020). CTSA is a potential therapeutic target and
prognostic biomarker in various cancers. Hu et al., Zhang et al.,
Toss et al., and Kim et al. explored CTSA’s role in lung
adenocarcinoma (Hu et al., 2020), glioma (Zhang et al., 2022),
breast ductal carcinoma in situ (Toss et al., 2019), and canine
inflammatory mammary adenocarcinoma (Kim et al., 2020),
respectively. Hu et al. found that CTSA promotes lung
adenocarcinoma progression and may be a promising target for
treatment (Hu et al., 2020). Zhang et al. linked CTSA to poor
prognosis in glioma (Zhang et al., 2022). Toss et al. associated CTSA
with unfavorable outcomes in breast ductal carcinoma in situ (Toss
et al., 2019). Kim et al. demonstrated the impact of leptin on
inflammatory mammary adenocarcinoma in dogs by modulating
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CTSA expression (Kim et al., 2020). In summary, CTSA is
significant in different cancers as a potential treatment target and
predictor. Further research is needed to elucidate its precise
molecular mechanisms and develop tailored treatments.

5 Conclusion

In conclusion, the present study comprehensively demonstrated
the difference in molecular subtype of LGG based on EMT-related
genes, thus revealing the tumor heterogeneity of LGG. We identified
two distinct subtypes of LGG-EMT with varying clinical prognoses,
clinicopathological characteristics, mutation statuses, immune cell
infiltration, tumor microenvironment, and signaling pathway
activities. The heterogeneity among LGG-EMT subtypes leads to
divergent responses to immunotherapy and chemotherapy, guiding
the precision treatment of LGG. Moreover, we developed and
validated a reliable EMT-signature for LGG prognosis, and
speculated about several small molecule compounds that could
enhance the clinical practical value of LGG. Further experimental
studies can help us understand the underlying mechanisms of EMT
in LGG, thereby providing additional support for the clinical utility
of the prognostic signature.
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Glossary

CAMs cell adhesion molecules

CDF cumulative distribution function

CGGA the Chinese Glioma Genome Atlas

CLIC1 Chloride Intracellular Channel 1

CNA copy number alterations

CTA Cancer Testicular Antigens

CTRP Cancer Therapeutics Response Portal

DCIS ductal carcinoma in situ

DEGs differentially expressed genes

DSS disease-specific survival

ECM extracellular matrix

EMT epithelial-mesenchymal transition

ESCC esophageal squamous cell carcinoma

ESTIMATE Estimation of Stromal and Immune cells in MAlignant Tumours using Expression

FDR false discovery rate

GBM glioblastoma

GDAC Genome Data Analysis Center

GDSC Genomics of Drug Sensitivity in Cancer

GEPIA gene expression profiling interactive analysis

GS gene significance

GSVA gene set variation analysis

HCC hepatocellular carcinoma

IC50 half-maximal inhibitory concentration

ICB immune checkpoint blockade

KM Kaplan-Meier

LGG low-grade glioma

MM module membership

MSigDB Molecular signatures database

OS overall survival

PCA principal components analysis

RCC renal cell carcinoma

ROC receiver operating characteristic

RT-qPCR Real-time quantitative PCR

scRNA-seq single cell RNA-sequencing

SNP single-nucleotide polymorphisms

ssGSEA single-sample gene set enrichment analysis

TAD topological associating domain

TCGA the Cancer Genome Atlas

TIDE tumor immune dysfunction and exclusion
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TIICs tumor infiltrating immune cells

TME tumor microenvironment

TMZ temozolomide

TNM tumor node metastasis

TPM transcripts per kilobase million

t-SNE T-distributed stochastic neighbor embedding

WGCNA weighted correlation network analysis
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