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Virtual small molecule libraries are valuable resources for identifying bioactive
compounds in virtual screening campaigns and improving the quality of libraries in
terms of physicochemical properties, complexity, and structural diversity. In this
context, the computational-aided design of libraries focused against antidiabetic
targets can provide novel alternatives for treating type II diabetes mellitus (T2DM).
In this work, we integrated the information generated to date on compounds with
antidiabetic activity, advances in computational methods, and knowledge of
chemical transformations available in the literature to design multi-target
compound libraries focused on T2DM. We evaluated the novelty and diversity
of the newly generated library by comparing it with antidiabetic compounds
approved for clinical use, natural products, and multi-target compounds tested in
vivo in experimental antidiabetic models. The designed libraries are freely available
and are a valuable starting point for drug design, chemical synthesis, and biological
evaluation or further computational filtering. Also, the compendium of
280 transformation rules identified in a medicinal chemistry context is made
available in the linear notation SMIRKS for use in other chemical library
enumeration or hit optimization approaches.
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Abbreviations: ADME, absorption, distribution, metabolism, and excretion; AR, aldose reductase; DM,
diabetes mellitus; FFA1, Free fatty acid receptor 1; GPR40, G-protein-coupled receptor 40; MetS,
metabolic syndrome; MOE, Molecular Operating Environment; MW, molecular weight; PCA, principal
component analysis; PMI, principal moments of inertia; PPARs, peroxisome proliferator-activated
receptors; PTP1B, protein tyrosine phosphatase 1B; QED, quantitative estimate of drug-likeness; RB,
rotatable bonds; T2DM, Type II diabetes mellitus; TMAP, tree map; TPSA, topological polar surface area;
t-SNE, t-distributed stochastic neighbor embedding; SMILES, Simplified Molecular Input Line Entry
Specification, SMIRKS: line notation for specifying reaction transforms; SUR, Sulfonylurea receptor.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder
characterized by hyperglycemia caused by defects in insulin
secretion and/or action due to a complex network of pathological
conditions (Galicia-Garcia et al., 2020). Currently, T2DM is one of
the diseases with the highest socio-health impact and prevalence
worldwide. Although pharmacotherapeutic options include
different mechanisms of action, they are limited by side effects
and lack of blood glucose control in the diabetic population (Shah
et al., 2021). Another problem is that patients with this disease are
prone to polypharmacy, which increases the risk of adverse effects
and makes it difficult for patients to adhere to their treatment and
receive proper follow-up from healthcare professionals (Dobrică
et al., 2019). For this reason, new biological targets have been
explored in multi-target approaches (Makhoba et al., 2020).
Similarly, virtual libraries focused on single therapeutic targets
have been developed using various computational approaches
and their application in multi-target approaches is emerging.

Recent advances in computational methods and the
incorporation of synthetic expert knowledge have inspired
research groups to develop de novo and “make-on-demand”
chemical libraries (Walters, 2019). Several companies use the so-
called “novel molecular matter” in early-phase drug discovery (Korn
et al., 2023). Specifically in the design of antidiabetic compounds,
Otava released the chemical structures of ten libraries focused on
DM-related targets designed under ligand- and structure-based

approaches or combinations of both (OTAVAchemicals, Ltd. -
synthetic organic compounds for research and drug discovery,
n.d.). ChemDiv developed methods for screening diverse and
highly specialized focused compounds. Recently, ChemDiv
released an “Annotated space library” with more than
18,000 chemical compounds covering 38 validated targets
(including targets for T2DM) across 900 drugs launched in the
last 10 years. Academic groups have also generated virtual libraries
focused on T2DM. For example, Chen et al. used a generative
method to design compounds targeted for GPR40 (Chen et al.,
2021). To our knowledge, no in silicomulti-target libraries have been
disclosed for T2DM. However, there is published information on
active compounds and pharmacophore models that can guide the
design of multi-target compounds for T2DM (Artasensi et al., 2020;
Lillich et al., 2020; Tassopoulou et al., 2022).

Figure 1 shows the structures of pharmacophores and multi-
target compounds studied in vivo models for T2DM and metabolic
syndrome (MetS). For example, dual peroxisome proliferator-
activated receptor (PPAR) α/γ agonists can improve insulin
sensitivity and reduce triglyceride and blood glucose levels
without the PPARγ-related weight gain since the latter effect is
balanced by PPARα agonistic activity (Balakumar et al., 2019).
Attempts towards developing dual agonists for PPAR α/γ yielded
promising molecules that have reached clinical trials. However,
many of these compounds have failed due to significant side
effects. Compounds such as 1 (MHY908) and 2 (LT175)
continue to be explored, as they have been shown to have

FIGURE 1
Pharmacophores and chemical structures of multi-target compounds studied in vivomodels for T2DM and MEtS. (A) PPARα/γ agonists, (B) PPARα,
PPARγ, GPR40, AR and PTP1B (C) PPARγ/SUR agonists (D) PPARγ/FFA1 agonists.
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beneficial effects on blood glucose and insulin resistance in animal
models of T2DM (Gilardi et al., 2014; Park et al., 2016).

The development of multi-target compounds for GPR40,
PTP1B, AR, PPARα, and PPARγ may provide additional
therapeutic benefits in preventing or delaying the development of
diabetic complications (Domínguez-Mendoza et al., 2021).
Navarrete’s group designed compounds 3 and 4 (Figure 1) that
showed robust in vivo antihyperglycemic activity (Domínguez-
Mendoza et al., 2021). Dual PPARγ/SUR agonists, such as
compound 5 (Ibrahim et al., 2017a), can improve insulin
sensitivity and stimulate insulin secretion simultaneously, making
them an attractive therapeutic option for patients with T2DM who
have insulin resistance and decreased insulin secretion. Another

combination that has been explored is that of PPARy and FFA1, also
known as GPR40. Dual PPARγ/FFA1 agonists (compounds 6 and 7,
Darwish et al., 2018) can improve insulin sensitivity, stimulate
insulin secretion, and lower blood glucose levels.

Table 1 shows multi-target compounds for T2DM based on
pharmacophores and virtual screening approaches that have been
reported and tested in vivo and can guide the design of new chemical
libraries. The table includes information on the combination of
targets, the number of lead compounds that hit all targets, and the
implications or outcome in T2DM and MEtS. The table indicated
that there are ninety-one multi-target compounds with in vivo
antidiabetic activity. These have been tested in a total of twenty
target combinations. Themost studied biological target inmulti-target

TABLE 1 Multi-target ligands studied in vivo models for type II diabetes mellitus.

Targets Lead
compounds

Implications in T2DM and MEtS/Outcome Reference

GLUT4, PPAR-α, PPAR-
γ, adiponectin

1 Antihyperglycemic, antidiabetic, and antidyslipidemic effects Estrada-Soto et al. (2022)

PPARα, PPARγ, GPR40*,
AR, PTP1B

2 Antihyperglycemic and antidiabetic effects. Attractive to prevent
or delay the development of diabetic complications

Colín-Lozano et al. (2018), Domínguez-Mendoza et al.
(2021)

PPARγ, GLUT-4 3 Antihyperglycemic and antidiabetic effects Gutierréz-Hernández et al. (2019)

PPARα, PPARγ, FATP-1,
GLUT-4, PTP1B

4 Antihyperglycemic and antidiabetic effects Herrera-Rueda et al. (2018)

sEH,PPARγ 2 Antidiabetic, cardioprotective, renoprotective, hypotensive
effects

Blöcher et al. (2016), Hye Khan et al. (2018)

DPP-4,GPR119 2 Antidiabetic, glucose homeostasis effects Huan et al. (2017), Fang et al. (2020)

PPAR-α,γ 21 Antidiabetic and antidyslipidemic effects (13 PPARα/γ dual
agonist compounds have reached clinical trials or the market)

Balakumar et al., 2007 (2019), Ammazzalorso et al.
(2019)

PPAR-α,d 3 Antidiabetic, antidyslipidemic and anti-fatty liver effects Hanf et al. (2014), Ren et al. (2020), Liu et al. (2021)

PPAR-d,γ 1 Antihyperglycemic and anti-fatty liver effects Li et al. (2021)

PPAR-α,d,γ 6 Antidiabetic and antidyslipidemic effcts. Therapeutic potential
for nonalcoholic steatohepatitis patients

Mahindroo et al. (2005), He et al. (2012), Boubia et al.
(2018)

PPARγ, AT1 6 Antidiabetic and antihypertensive effects Benson et al. (2004), Casimiro-Garcia et al. (2011), 2013;
Lamotte et al. (2014), Choung et al. (2018)

PPARγ, GK 7 Antihyperglycemic, antidiabetic, improves insulin resistance and
sensitize muscle cells to insulin response

Song et al. (2011), Li et al. (2014), Lei et al. (2015)

PPARγ, SUR 10 Improve insulin sensitivity and stimulate insulin secretion at the
same time

Ibrahim et al., 2017a, 2017b

FFA1a, PPARd 5 Antidiabetic and anti-fatty liver effects Li et al., 2019a, 2019b (2020), Hu et al. (2020), Zhou et al.
(2022)

FFA1, PPARγ 4 Antidiabetic and antihyperlipidemic effects Darwish et al. (2018), Hidalgo-Figueroa et al. (2021)

FFA1, PPARγ, PPARd 1 Antidiabetic and antihyperglycemic effects Li et al. (2018)

PPARγ, PTP1B 4 Antihyperglycemic and antiobesity effects Bhattarai et al., 2009 (2010), Otake et al., 2012 (2015)

PPARα/γ/PTP1B 2 Antidiabetic, antidyslipidemic and antiobesity effects Otake et al. (2011)

PARP-1 - AR 2 Nephroprotective effect and antioxidant potential Chadha and Silakari (2017), Kumar et al. (2022)

SGLT1-SGLT2 5 Antihyperglycemic and antiobesity effects Lapuerta et al. (2015), Kuo et al. (2018), Xu et al., 2018
(2020), He et al. (2019)

AT1, angiotensin II type 1 receptor; AR, aldose reductase; DPP-4, dipeptidyl peptidase-4; FATP-1, fatty acid transport protein 1; FFAR1, free fatty acid receptor 1; GK:glucokinase; GLUT4,

glucose transporter type 4; GPR119, G protein-coupled receptor 119; GPR-40, G-protein-coupled receptor 40; PARP-1, poly (ADP-ribose)polymerase-1; PPARs, peroxisome proliferator-

activated receptors; PTP1B, protein tyrosine phosphatase 1B; SGLTs: ; sEH, soluble epoxide hydrolase; SUR, sulfonylurea receptor.
aGPR40 is also known as FFAR1.
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approaches is PPARγ. The most successful target combination is
PPARα/γ as several compounds directed to these two targets are in
clinical studies such as ragaglitazar, imiglitazar, muraglitazar,
tesaglitazar, naveglitazar, aleglitazar, saroglitazar, netoglitazone and
lobeglitazone. In particular, PPARs have demonstrated clinical
efficacy in metabolic diseases such as T2DM and those related to
lipid metabolism, which has led to testing and optimization of
different compounds such as fibrates and TZDs to simultaneously
modulate multiple targets, with a synergistic effect on T2DM and
MetS (Ammazzalorso et al., 2019). Other compounds under
investigation or in any of the experimental phases by the FDA
include elafibranor for PPARα/δ (Schattenberg et al., 2021),
telmisartan and fimasartan for PPARγ/AT1 (Seo et al., 2022),
lanifibranor and sodelglitazar for PPARα/δ/γ (Kamata et al., 2023)
and licogliflozin and sotagliflozin for SGLT1-2, the latter already
approved by the FDA in 2023 to reduce the risk of cardiovascular
death and heart failure in adults with heart failure, T2DM, chronic
kidney disease, and other cardiovascular risk factors (Packer, 2023).

An attractive approach to exploring and expanding the chemical
space around the first hit compounds of single and multi-target
compounds is the computational generation of chemical libraries
that can be used in virtual screening campaigns (Walters, 2019).

Through chemical library enumeration, it is possible to find new
bioactive compounds and generate therapeutic options for emerging
and challenging molecular targets and complex diseases. It is also
possible to control features such as library size, complexity,
physicochemical properties, and structural diversity (Ruddigkeit
et al., 2012). The goal is to help design high-quality analog series
overcoming issues such as low potency, off-target activities,
metabolic stability, or poor physicochemical properties for oral
administration. One approach that can aid rigorous exploration
of the chemistry around first hit compounds is using approaches
based on transformation rules from empirical observation and
systematic identification using chemoinformatics methods. A
recent application of transformation rules was presented with
DrugSpaceX, a database with more than 100 million compounds
transformed from approved drug molecules (Yang et al., 2021).
Although transformation rules are useful for generating in silico
libraries, the list of rules currently available in the public domain is
limited, in many cases due to the difficulty in collecting, curating,
and annotating such information (Rarey et al., 2022). To address this
problem, we compiled, organized, and made freely available an
extensive list of transformation rules for generating compound
libraries, as part of this work.

FIGURE 2
Overview of the methodology implemented in this study to design a multi-target focused library for T2DM using a comprehensive set of chemical
transformation rules. First, multi-target compounds evaluated for in vivo antidiabetic activity and transformation rules were retrieved from the literature.
The latter were encoded into SMIRKS linear notation. Using MOE, the new chemical library was enumerated and compared to reference libraries of
antidiabetic compounds to assess their chemical diversity. The compounds in the enumerated library were filtered using criteria as follows: QED >
0.67, SAScore ≤ 6, rsynth > 0.5 and zero structural alerts included in the RDKit molecule catalog filter node in KNIME. These compounds were further
filtered in docking-based virtual screening with protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR). Finally, the ADME-T properties of the
best-scoring compounds in both targets were calculated.
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TABLE 2 Examples of transformation rules retrieved from the literature.

Group Transformation Transformation
type

SMIRKS Note Reference

Aminophenyl Aminophenyl_to_aminobicyclo[1.1.1]pentyl Ring substitution [*:3]-[#7:2](-[*:1])-
[c:4]1[c; D2][c; D2]
[c; D2][c; D2][c; D2]
1>>[*:3]-[#7:2](-
[*:1])[C:4]12[#6]-
[#6](-[#6]1)-[#6]2

-Metabolic
stability

Sodano et al. (2020)

-Isosteric
replacement

1,4-
diaminophenyl

1,4-diaminophenyl_to_3,6-diaminopyridazinyl Ring modification [#7H2:1]-[c; D3:2]1
[c; D2:6][c; D2:5][c;
D3:4][c; D2:3][c; D2]
1>>[#7H2:1]-[c; D3:
2]1[c; D2:6][c; D2:5]
[c; D3:4]nn1

-Metabolic
stability

Zhang et al. (2020)

Carboxyl Carboxyl_to_2,4-dioxo-1,3-thiazolidin-5-yl (ionized) Ring addition [#8; D1][#6; A; !R:
2]([*:1]) = O>>[*:1]-

[#6:2]-1-[#16]-
[#6](=O)-[#7-]-[#6]-

1 = O |s:0:1|

-Similar
acidic pKa

Hidalgo-Figueroa et al.
(2013),

Domínguez-Mendoza
et al. (2021)-Increased

sterics

Benzoylphenyl benzoylphenyl _to_(3-phenyloxetan-3-yl)phenyl] Linker modification [#6; a:1][C; $([#6:2] =
O),$([#6; A; @:2]1
[#6]-[#6]-[#6]
1),$([#6; H2])][#6; a:
3] >>[#6; a:3][#6;
A@:2]1([#6; a:1])
[#6]-[#8:4]-[#6]1

-Isosteric
replacement

Dubois et al. (2021)

*Also apply to 1,1-
diphenylmethyl and
1.1′-cyclobutane-1,1-
diyldiphenyl

-Metabolic
stability

-Reduce
phototoxicity in
benzofenones

Phenyl Phenyl_to_cyclohexyl Ring substitution [c; x2:2]1[c; x2:3][c;
x2:4][c; x2:5][c; x2:6]
[c; x2:1]1>>[#6:5]-1-
[#6:6]-[#6:1]-[#6:2]-
[#6:3]-[#6:4]-1

-Bioisosteric
remplacement

Press et al., 2012; Press
et al., 2015; Huang et al.,

2019; Subbaiah and
Meanwell, 2021-Increase

lipophilicity

-Improved
aqueous
solubility

-Enhanced oral
bioavailability

-Reproducible
PK profiles

Phenyl Phenyl_to_(propoxyimino)methyl Functional group
change

[*:3]-[c; x2D3:1]1[c;
x2D2][c; x2D2][c;
x2D2][c; x2D2][c;
x2D2]1>>[#6]-[#6]-
[#6]-[#8]\[#7] = [#6:
1]\[*:3] |rb:1:2.2:2.3:
2.4:2.5:2.6:2,s:1:3|

-Bioisostere
replacement

Piemontese et al. (2015),
Subbaiah and Meanwell

(2021)
-Modulation of
selectivity

(Continued on following page)
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This study aimed to design a multi-target focused library for
T2DM using a comprehensive set of chemical transformation rules
herein collected, curated, and annotated. As shown in Figure 2, we
evaluated the novelty and diversity of the focused library by
comparing it with antidiabetic compounds approved for clinical
use, natural products, and multi-target compounds reported with in
vivo activity. To focus the library on attractive and synthetically
feasible compounds, computational filters based on medicinal
chemistry criteria were applied. Finally, virtual screening using
molecular docking for PTP1B and AR was performed at
Molecular Operating Environment (MOE) version 2022.02
(Chemical Computing Group (CCG), 2023) and the ADME-Tox
properties of compounds with potential multi-target activity were
calculated using ADMElab 2.0 (Xiong et al., 2021). Here, we selected
PTP1B and AR considering the reference compounds used for
enumeration and the currently available hypotheses and
information from molecular dynamics models (Domínguez-
Mendoza et al., 2021). In particular, this combination could be
attractive to modulate insulin signaling, reducing insulin resistance
and preventing or delaying diabetic complications such as
nephropathies, neuropathies, and cardiomyopathies (Maccari and
Ottanà, 2015). The significance of this work is twofold: making
available a focused multi-targeted library for T2DM with full details
of the methodology used to construct the compounds and making
publicly available a general and extensive list of transformation rules
to explore the chemical space of targets of therapeutic relevance.

2 Methods

2.1 Encoding chemical transformations in
linear notation (SMIRKS format)

Transformation rules associated with hit optimization were
retrieved from the literature. These transformation rules included
modifications associated with molecular, physicochemical,
pharmacological, ADME, safety, and toxicity parameters. Other
rules are associated with structural diversity and bioisosteric
changes. Most of the transformation rules found in the literature
come from the addition, substitution or removal of a functional
group. There are also rules that include cyclization and ring
substitution by other rings or intramolecular hydrogen bonding

groups. In total, 280 transformation rules were collected and
converted into SMIRKS notation (Daylight theory: SMIRKS - A
reaction transform language, 2023) using MarvinSketck
(Chemaxon, 2023). The transformation rules were considered in
a protonation state of 7.4. Table 2 summarizes examples of the rules
identified and their SMIRKS. The Supplementary material includes
the complete list of transformation rules and the literature reference.

2.2 Enumeration of a new multi-target
focused library

Compounds 3 and 4 (Figure 1) were selected as reference
compounds to enumerate the new library focused on multi-target
compounds. These compounds have robust antihyperglycemic
activity in vivo and molecular dynamics studies with PTP1B and
AR provide relevant structure ligand-protein interaction
information for structure-based optimization studies
(Domínguez-Mendoza et al., 2021). The best predicted scoring
conformations of these compounds docked with a
crystallographic structure of the PTP1B protein obtained from
the Protein Data Bank (Berman et al., 2000) (PDB ID: 4Y14
(Krishnan et al., 2015)) and that maintained protein-ligand
interactions reported in literature were used as the basis for the
enumeration of the new library. To compare the effect on the
number of compounds and the molecular diversity generated, we
used the 175 transformation rules integrated into the MedChem
module of MOE version 2022.02 and added 273 transformation
rules that we constructed as part of this study. Two iterations were
used. Compounds that had a molecular weight (MW) < 630 and
topological surface area (TPSA) between 40 and 150 Å were kept.
The threshold values were established based on the minimum and
maximum values of the multi-target compounds designed
for T2DM.

2.3 Evaluation of the chemical diversity of
the multi-target focused library

The compounds generated in Section 2.2 were compared in
terms of physicochemical properties with antidiabetic compounds
approved for clinical use retrieved from DrugBank (Wishart et al.,

TABLE 2 (Continued) Examples of transformation rules retrieved from the literature.

Group Transformation Transformation
type

SMIRKS Note Reference

Phenyl Phenyl_to_(2-oxopyridin-1(2H)-yl) Ring modification [c; D2:2]1[c; x2:3][c;
x2:4][c; x2:5][c; x2:6]
[c; D3:1]1>>O = [#6;
x2:2]-1-[#7:1]-[#6:
6] = [#6:5]-[#6:4] =
[#6:3]-1

-Improved
potency

Subbaiah and Meanwell
(2021)

-Reduce off-
target

-Metabolic
stability

-Enhanced
solubility

-Reduced
lipophilicity
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2018); antidiabetic compounds frommedicinal plants obtained from
DiaNat-DB (Madariaga-Mazón et al., 2021), and multi-target
compounds for T2DM studied in vivo assays. Compounds in
SMILES format can be found in the Supplementary material.
Prior to analysis, each molecule was prepared using the open-
source cheminformatics toolkits RDKit (Landrum, n.d.) and
MolVS (MolVS: Molecule Validation and
Standardization—MolVS 0.1.1 documentation, n.d.). Compounds
were standardized and those containing multiple components were
split, keeping the largest component. Compounds with valence
errors or chemical elements other than H, B, C, N, O, F, Si, P, S,
Cl, Se, Br, and I were removed. The remaining compounds were
neutralized and reionized to subsequently generate a canonical
tautomer. Finally, duplicated compounds were deleted and
canonical simplified molecular-input line-entry system (SMILES)
(ignoring stereochemistry information) were generated as molecular
representation (Weininger, 1988). Table 3 summarizes the number
and source of compounds used in the comparison.

2.3.1 Property rules and synthetic accessibility
To profile the generated molecules based on common property

rules and synthetic accessibility, we calculated seven descriptors for
each molecular entity with the RDKit library: molecular weight
(MW), octanol–water partition coefficient (logP), number of
hydrogen bond acceptors (HBA), number of hydrogen bond
donors (HBD), topological polar surface area (TPSA), the
number of rotatable bonds (RotB) and the distribution of
quantitative estimate of drug-likeness (QED) (Bickerton et al.,
2012).

Among the several computational scores available to estimate
the synthetic accessibility of generated compounds, and based on
previous comparisons of scores. (Skoraczyński et al., 2023), in this
work, we calculated rsynth (a ligand-based score implemented in
MOE, version 2022.02) and SASscore (Ertl and Schuffenhauer,
2009) as a structure-based approach.

2.3.2 Chemical multiverse: visual representation
and analysis

To have a comprehensive analysis of the chemical space, we used
three well-established visualization methods and different types of
descriptors Noteworthy, analyzing the chemical space with distinct
and complementary descriptors is crucial because each one provides
a different and complementary perspective of the chemical space
(aka, a “chemical multiverse” as discussed elsewhere (Medina-
Franco et al., 2022). In this study, we used principal component

analysis (PCA) and t-distributed stochastic neighbor embedding
t-SNE based on six molecular properties of pharmacological interest,
namely,; HBD, HBA, logP, MW, RB, TPSA. As a third method to
characterize the chemical space, we used was the TreeMAP (TMAP)
algorithm (Probst and Reymond, 2020) based on ECFP4 as a
structural fingerprint. Additionally, the molecular shape of the
compounds in the newly generated library was evaluated using
the principal moments of inertia (PMI) graph, which was carried
out by calculating the lowest energy conformation of each
compound using MMFF94x as a force field in MOE, version
2022.22. Once the lowest energy conformer was calculated, values
of normalized PMI ratios, npr1 (I1/I3) and npr2 (I1/I3), were
determined in MOE. Then, npr1 and npr2 were plotted on a
triangular graph with the vertices (0,1), (0.5,0.5), and (1,1)
representing a perfect rod, disc, and sphere, respectively.

2.4 Filtering of compounds with relevance in
pharmaceutical chemistry

Various filters (e.g., calculated descriptors) can be used to
improve the selection of enumerated compounds, including the
removal of compounds with undesirable pharmaceutical properties
and molecules very difficult to synthesize. In this work, we chose to
filter by SAScore, rsynth, QED, and the filters included in the RDKit
molecule catalog filter node in KNIME. This node removes
compounds with Pan-assay interference compounds (PAINS)
(Baell and Holloway, 2010), unwanted functionality due to
potential toxicity or unfavorable pharmacokinetic properties, and
problematic functional groups. The compounds in the enumerated
library were filtered using criteria as follows: QED > 0.67, SAScore ≤
6, rsynth >0.5 and zero structural alerts. It should be noted that other
cutoff values could be used for other applications.

2.5 Structure-based filtering

Although enumeration of compounds can be performed using
the protein structure to obtain a score value in MOE, this can be
computationally expensive considering the number of compounds
that can potentially be generated. In addition, although the search
algorithm can be selected, neither an algorithm to perform the
rescoring nor a specific number of conformations to be obtained can
be selected. For this reason, we followed a structure-based filtering to
select the most promising compound subset as a multi-target library.

TABLE 3 Reference compound datasets to assess the novelty and properties of the newly designed libraries.

Database Size Note Reference

Approved antidiabetic
drugs

42 36 approved drugs and 6 under investigation. Obtained from DrugBank. Only compounds for a single
target.

Wishart et al. (2018)

DiaNat -DB 329 Antidiabetic compounds from medicinal plants Madariaga-Mazón et al.
(2021)

Multi-target compounds 91 From literature. This set includes 16 multi-target compounds under investigation or in experimental
phase by FDA.

This study. See Section 2.1

Multi-target
compMedChem

84,778 Compounds generated in MOE using 455 transformations rules This study. See Section 2.3
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In this study, compounds that showed a docking score better than
the reference compounds for PTP1B (PDB ID: 4Y14 (Krishnan et al.,
2015)), were further filtered considering docking with another
therapeutic target relevant to T2DM: AR (PDB ID: 4XZH (Ruiz
et al., 2015)). Of note, other relevant targets in T2DM can be
considered during the design of the reference compounds. Here,
we selected PTP1B and AR considering the current available
hypothesis and model information based on molecular dynamics
(Domínguez-Mendoza et al., 2021). Also, we want to point out that
several other docking programs could be used (including post
consensus scoring analysis). However, testing different docking
programs and exploring multiple consensus analysis schemes is
out of the scope of this study that is focused on proposing a general
approach to design multi-target focused libraries.

The protein preparation of PDB ID: 4Y14 and 4XZH was made
with default settings of the QuickPrep module of MOE v. 2022.02.
This module carries out the following processes: calibration of the
structure by protonation, addition of all the lacking hydrogen atoms,
elimination of water molecules 4.5 Å farther from the protein,
addition of missing amino acids residues, neutralization of the
endpoints adjoining empty residues and energy minimization.
We used AMBER14:EHT forcefield (ff14SB (Maier et al., 2015)
as parameter for the energy minimization stage for the protein. The
ligands were also prepared in MOE, we used MFF94x as forcefield.
For docking, the receptor was considered rigid and the ligands
flexible.We used the default settings for placement (method: triangle
matcher, score function: London dG) and refinement (method: rigid
receptor, score function: GBVI/WSA dG) (Vilar et al., 2008).

2.6 Prediction of ADME-Tox properties

The ADME-tox properties of the compounds that had successfully
passed the filters described in Section 2.6 and Section 2.7 were evaluated
using ADMETlab 2.0 platform (Xiong et al., 2021). This platform has
been compared with other free online ADMET tools and has significant
advantages (Dulsat et al., 2023). Based on these comparisons we used
this tool because ADMETlab is a complete platform in terms of the large
number of relevant parameters that can be predicted including
elimination parameters such as clearance and half-life (t1/2). The
latter two descriptors are particularly relevant in chronic diseases
such as T2DM, where ideally compounds with a long half-life are
sought to reduce the dose. Finally, ADMETlab 2.0 allows evaluating up
to 500 compounds at the same time.

3 Results and discussion

3.1 Encoding chemical transformations in
SMIRKS format

Based on the structures exploited in the multi-target
pharmacophores for DMT2, 280 transformation rules were
collected from the literature, of which 113 were bioisosteric
modifications of the phenyl group (Subbaiah and Meanwell,
2021), 25 for the amide bond (Kumari et al., 2020), 36 for the
carboxyl group (Bredael et al., 2022), 57 for the phosphate group,
and 49 for other moieties including ester, alcohol, alkyl,

aminophenyl, and nitro to name a few examples. Compared to
the preloaded MOE transformations (version 2022.22), these
included only 10 for the phenyl group, 7 for the amide bond
and 4 for the carboxyl group. The remaining transformations in
MOEmainly concern cyclization and substitution of rings by other
rings or intramolecular hydrogen bonding groups. It is important
to mention that some examples of the rule transformations present
in Table 2 have been applied in the optimization of antidiabetic
compounds. For example, Huang et al. reported the effect of
bioisosteric replacement of a phenyl ring in the biphenyl moiety
with cyclohexyl motif in a GPR40 agonist (Huang et al., 2019).
Another bioisosteric replacement of the phenyl ring in an
antidiabetic compound was reported by (Piemontese et al.,
2015). In that work, the authors replaced a terminal phenyl
ring in a dual PPAR α/γ agonist with the n-propyl oxime
moiety. For its part, Dr. Navarrete-Vázquez’s group has
proposed various series of thiazolidine-2,4-dione and barbituric
acid derivatives with robust antihyperglycemic activity in vivo as
acid bioisosteres (Hidalgo-Figueroa et al., 2013; Domínguez-
Mendoza et al., 2021).

3.2 Enumeration of new compounds

Using the transformation rules preloaded in MOE and
performing two iterations, 6,838 molecules were obtained from
compound 3 and 1834 from compound 4. After adding the
transformation rules collected from the literature and keeping
two iterations, the number of compounds increased to 52,185
(from compound 3) and to 32,593 (from compound 4), after
curation of the enumerated library. This large increase in the
number of compounds was expected, as it followed an iterative
process, and the transformations considered in this work are focused
on moieties that contain the reference compounds.

3.3 Evaluation of the chemical diversity of
the multi-target focused library

3.3.1 Property rules and synthetic accessibility
Figure 3 shows the distributions of each descriptor for the

compounds of the generated library and the reference libraries
using rain cloud plots (Allen et al., 2019). These plots allow
visualization of the probability density and typical boxplot
statistics such as median, mean, and confidence intervals.
According to these plots, DiaNat-DB (329 antidiabetic
compounds from medicinal plants) has a wider distribution in
terms of properties of pharmaceutical importance. Since MW
and TPSA values were used as filters to generate the new
compounds, the distributions of these values for generated
compounds are skewed and resemble the distribution of multi-
target compounds and approved drugs. Comparing the plots of the
other descriptors, we can see that the transformations used increased
the range of properties such as LogP and HBD, HBA and chirality
(Supplementary Table S1 in the Supplementary Material).

Figure 4 shows the distributions of the calculated descriptors to
quantity synthetic accessibility and drug-likeness through QED. As
can be seen in Figure 4, most of the generated compounds have a
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SAScore value of less than 6, indicating that they are, in principle,
synthesizable (Ertl and Schuffenhauer, 2009). Regarding the QED
value, which is a measure of drug-likeness based on the concept of
desirability, a value greater than or equal to 0.67 represents attractive
compounds, and the lower this value, the compounds are considered
unattractive (QED 0.49~0.67) and too complex (QED < 0.49). These
reference values were established based on the calculated
physicochemical properties of marketed oral drugs and published
human data (Bickerton et al., 2012). When we compare the QED
distribution of all antidiabetic compounds, we find that the
compounds generated by transformation rules have a higher
mean value (0.49) than the multi-target compounds obtained
from the literature (0.46). The summary statistics of these plots
can be found in the Supplementary material.

3.3.2 Chemical multiverse of generated
compounds

The concept of chemical multiverse (e.g., for the same
compound datasets, different chemical spaces, each based on a
different set of descriptors) was used to compare
comprehensively the visual representation of the chemical space
of the generated compounds with collections of reference
compounds (Figure 5). The PCA of six physicochemical
properties: MW, HBD, HBA, logP, TPSA and RB shows DiaNat-
DB is the most diverse database in terms of physicochemical
properties (Figure 5A). Using a non-linear method such as t-SNE
and the same descriptors, we obtain a different visualization that
allows us to visualize clusters or groups of data points and their
relative proximities (5b). In terms of molecular fingerprints (ECFP4)

FIGURE 3
Rain cloud plots of the six physicochemical properties of pharmaceutical relevance: (A) molecular weight (MW), (B) topological polar surface area
(TPSA), (C) partition coefficient octanol/water (log P), (D) number of rotatable bonds (RB), (E) hydrogen bond acceptors (HBA) and (F) hydrogen bond
donors (HBD).
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(5c) and molecular shapes (5d), the library generated with
transformation rules exhibited the largest structural and shape
diversity, which is even larger than that of the DiaNat-DB database.

3.4 Filtering of compounds with relevance in
pharmaceutical chemistry

To focus the library on attractive and synthetically feasible
compounds, computational filters were applied as indicated in
Section 2.6 of the Methods section. Table 4 summarizes the criteria
used and the number of compounds remaining after applying the
filters. As can be seen, the filter that considerably reduced the
number of compounds was the QED value. The filtered
compounds are characterized by not having chiral centers. If
this is an important feature, you will need to consider it when
applying the filters. Filtered compounds are listed in the
Supplementary material.

3.5 Structure-based filtering

The compounds selected from the filtering described in Section
3.6 were subjected to a docking-based virtual screening with
PTP1B and AR. The docking protocols are described in Section
2.6. The docking scores calculated with MOE for compounds 3
(PTP1B score: −7.04 kcal/mol and AR score = −8.84 kcal/mol) and
4 (PTP1B score: −7.91 kcal/mol and AR score = −8.98 kcal/mol)
were used as cut-offs to select potential multi-target compounds. It

was also checked whether the docking of these compounds
reproduced the interactions previously reported in molecular
dynamics studies (Domínguez-Mendoza et al., 2021).
Supplementary Table S2 shows the score values and interaction
plots of compounds 3 and 4 with PTP1B and AR. The first virtual
screening with PTP1B yielded 1,655 compounds with a lower score
value than the reference compounds: 1,543 from compound 3 and
112 from compound 4. The virtual screening hit compounds were
docked with AR yielding 816 hit compounds: 792 were from
compound 3 and 24 from compound 4. Figure 6 shows
examples of designed compounds that have the potential to be
used in multi-target approaches. The figure shows the parent
structure (3 and 4), the transformation rules and the
compounds designed with their corresponding calculated
docking scores with PTP1B and AR. We also include the 3D
docking models for the proposed compounds, and their overlap
with the reference compounds. The docking results for PTP1B and
AR of the 816 compounds can be found in the Supplementary
material.

3.6 Prediction of ADME-Tox properties

Table 5 shows the average and standard deviation for different
ADME-Tox properties of approved DMT2 drugs, multi-target
compounds with reported in vivo activity and the
816 compounds that showed the potential to interact with
PTP1B and AR. The values described to make an empirical
decision are taken directly from the ADMElab 2.0 documentation

FIGURE 4
Distribution of (A) quantitative estimate of drug likeness (QED) and (B) SAscore of all the antidiabetic compounds contained in approved drugs (red)
DiaNat database (green), multi-target compounds (orange) andmulti-target compounds generated bymedicinal chemistry transformation rules (purple).
Vertical dashed lines represent the mean of the distributions.
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(https://admetmesh.scbdd.com/explanatthat overlapion/index). As
can be seen, the subset of compounds selected from the multi-target
library generated in this work exhibit optimal adsorption and
distribution properties. It is also noteworthy that in terms of
metabolism, ADMETlab 2.0 predicts that the compounds
generated in this work have a lower probability of being
inhibitors of various CYPs compared to approved drugs and
multi-target compounds that have a moderate to high probability
of being inhibitors of CYP2C9, CYP2C19, and CYP3A4. Knowing
this information is important because the inhibition of some CYPs is
associated with the risk of hypoglycemia. Knowing this information

is important because the inhibition of some CYPs is associated with
the risk of hypoglycemia. For example, CYP2C9 metabolizes
nateglinide, repaglinida, rosiglitazone, and most sulfonylureas,
such as glibenclamide, glimepiride and glipizide (Holstein et al.,
2012). Other examples are pioglitazone and repaginate metabolized
with CYP3A4. ADMETlab 2.0 also predicts the probability of being
substrates of various CYPs. This data and other properties calculated
with ADMETlab 2.0 for each compound can be found in the
Supplementary material. It is important to mention that the
prediction of inhibitory activity in ADMETlab 2.0 is based on a
dataset containing information on inhibitory activity of compounds

FIGURE 5
Visual representation of the chemical multiverse of antidiabetic compounds contained in approved drugs (red) DiaNat-DB (green), multi-target
compounds (orange) and multi-target compounds generated by medicinal chemistry transformation rules (purple). (A) PCA of six physicochemical
properties: MW, HBD, HBA, logP, TPSA and RB (B) t-SNE of six physicochemical properties (vide supra), (C) TMAP based on molecular ECFP4 fingerprint.
(D) PMI space. Each corner on the triangular PMI plot indicates compounds with certain shape characteristics. The top left corner of the PMI
represents compounds with rodlike shape, the top right corner represents compounds with spherical shape, and the bottom corner represents
compounds with disc-like shape.
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obtained by high-throughput quantitative screening with an in vitro
bioluminescence assay (Veith et al., 2009). However, in the
description of these data, it is mentioned that the inhibitory

activity in the assay may be due to compounds acting as
substrates and that some weakly binding substrates may be
classified as “inactive,” so that the predictions may need further
confirmation.

In terms of excretion, clearance (CL) and half-life (T1/2) are
important pharmacokinetic parameters that allow defining a drug´s
dosing frequency. In the case of ADMETlab 2.0, the half-life is not
measured in units of time. The output value is the probability of
falling into category 1 (T1/2 ≤ 3). That is, the greater the probability
of falling into category 1, the more likely the substance is to be
classified as “poor” because its T1/2 would be lower (T1/2 ≤ 3). For
antidiabetic drugs, the average CL is 4.4716 mL/min/kg (poor) and
the T1/2 is 0.4080 (medium). The discrepancy in predictions could be
due to the difference in models or datasets. In the case of the
generated multi-target compounds, they may not be optimal for
reducing the frequency of administration. Finally, although the
probability of compounds being hERG blockers is reduced, the

TABLE 4 Filters applied and the number of compounds remaining for virtual
screening.

Filters Compound 3 Compound 4

Initial (ComMedChem rules) 72,349 33,661

Curateda 52,185 32,593

SAScore ≤ 6 52,185 32,552

Rsynth > 0.5 43,625 29,166

QED > 0.67 2,276 3,226

RDKit Molecule Catalog Filter = 0 1,543 451

aFor diversity studies, the set of curated structures was used.

FIGURE 6
Examples of compounds selected from the multi-target virtual library, transformation rules used, and the calculated docking scores. 3D docking
models for the proposed compounds (green) that overlap with the reference compounds (orange) for PTP1B and AR are included.
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likelihood of drug-induced liver injury (DILI) would remain a
challenge to optimize.

4 Conclusion

Designing multi-target compounds is an attractive approach to
develop therapeutic treatments for complex diseases such as T2DM
and MetS. Herein, we collected from the literature and analyzed ninety-
one multi-target compounds for which in vivo antidiabetic activity has
been reported, with a total of twenty target combinations. Following an
enumeration based on transformation rules, we expanded the relevant
chemical space of two of these multi-target hit compounds. More than
450 transformation rules were applied, of which 280 are made openly
available to the scientific community.We concluded that the compounds
generated with transformation rules have similar physicochemical
properties to antidiabetic drugs and multi-target compounds reported
in literature. Of the 84,778 generated compounds with valid structures,
85% are predicted to be synthetically feasible. The enumerated
compounds are also attractive considering structural and shape diversity.

To focus on attractive and synthetically feasible compounds to
perform virtual screening, various drug-likeness and quality filters were
applied, yielding a multi-target virtual library with 2037 compounds.
After a docking-based virtual screening with PTP1B and AR, 816 multi-

target compounds were selected. Compounds in this library have
favorable ADME properties, making the library an attractive source
of promising candidates for further research and development.

In line with open and democratization of science, the newly
designed multi-target focused library is freely available as a valuable
source of starting points for chemical synthesis, biological evaluation, or
further computational analysis such as virtual screening or reference
libraries in library design.
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TABLE 5 Estimation of selected ADME-Tox properties of 816 compounds with ADMETlab 2.0a,b.

ADME-tox properties Empirical decision Approved
drugs

Multi-target from
literature

Multi-target
CompMedChemc

% Lipinski MW ≤ 500; logP≤5; Hacc≤10; Hdon≤5 <
2 violations: Accepted; ≥2 violations: Rejected

92.85% 83.51% 100%

LogD at pH = 7.4 Compounds in the range from 1 to 3 log mol/L
will be considered proper

1.5807 ±1.9413 3.4817 ± 1.1394 2.3117 ± 1.257

Caco-2 Permeability > −5.15: excellent; otherwise: poor −5.3635 ± 0.5697 −5.0198 ± 0.3816 −5.1287 ± 0.282

Volume Distribution (VD) 0.04–20: excellent; otherwise: poor 0.7733 ± 0.6735 0.6091 ± 0.4483 0.3805 ± 0.1896

CYP1A2-inhibitor The output value is the probability of being
inhibitor, within the range of 0–1

0.1543 ± 0.2344 0.4157 ± 0.2926 0.1384 ± 0.1618

CYP2C9 inhibitor 0.3849 ± 0.3621 0.7215 ± 0.2534 0.287 ± 0.2952

CYP2C19 inhibitor 0.2601 ± 0.3034 0.5659 ± 0.3208 0.2154 ± 0.2288

CYP2D6-inhibitor 0–0.3: excellent; 0.3–0.7: medium; 0.7–1: poor 0.1736 ± 0.2457 0.2659 ± 0.2953 0.1115 ± 0.1707

CYP3A4-inhibitor 0.3034 ± 0.3448 0.3790 ± 0.3219 0.0992 ± 0.1289

Clearance (CL) >15: excellent 4.4716 ± 3.9932 4.0985 ± 3.3766 6.2131 ± 3.2198

5–15: medium

<5: poor

Half-life time (T1/2) 0–0.3: excellent; 0.3–0.7: medium; 0.7–1: poor 0.4080 ± 0.2759 0.3083 ± 0.2511 0.7309 ± 0.1447

hERG Blockers 0–0.3: excellent; 0.3–0.7: medium; 0.7–1.0: poor 0.2179 ± 0.2446 0.2705 ± 0.2587 0.1631 ± 0.1621

Human
hepatotoxicity (H-HT)

0–0.3: excellent; 0.3–0.7: medium; 0.7–1.0: poor 0.5874 ± 0.3218 0.6796 ± 0.2888 0.6023 ± 0.2631

Drug - Induced liver Injury
(DILI)

0–0.3: excellent; 0.3–0.7: medium; 0.7–1.0: poor 0.6480 ± 0.3965 0.9073 ± 0.195 0.7124 + 0.3434

aCompounds that showed the potential to interact with PTP1B and AR, selected in Section 3.5.
bThe color coding represents if the criteria in the empirical decision column are met (green), partially met (yellow), and not (red). The color coding in the table is the same as the one used in

ADMETlab 2.0.
cCompounds that showed the potential to interact with PTP1B and AR, selected in Section 3.5
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