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Insulin resistance presents a formidable public health challenge that is intricately
linked to the onset and progression of various chronic ailments, including
diabetes, cardiovascular disease, hypertension, metabolic syndrome,
nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin
resistance is paramount in preventing and managing these metabolic disorders.
Natural herbal remedies show promise in combating insulin resistance, with
anthraquinone extracts garnering attention for their role in enhancing insulin
sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin
resistance through diverse pathways, encompassing activation of the AMP-
activated protein kinase (AMPK) signaling pathway, restoration of insulin signal
transduction, attenuation of inflammatory pathways, and modulation of gut
microbiota. This comprehensive review aims to consolidate the potential
anthraquinone compounds that exert beneficial effects on insulin resistance,
elucidating the underlying mechanisms responsible for their therapeutic
impact. The evidence discussed in this review points toward the potential
utilization of anthraquinones as a promising therapeutic strategy to combat
insulin resistance and its associated metabolic diseases.
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1 Introduction

Insulin resistance is characterized by a persistent loss of insulin sensitivity and is a prevalent
risk factor contributing to obesity, hypertension, cardiovascular diseases, and type 2 diabetes
(James et al., 2021; Wang et al., 2022; Sasaki et al., 2022). Additionally, insulin resistance
increases the susceptibility to heart failure and fuels tumor growth, posing a substantial threat
to human health and imposing a considerable economic burden on society and families.
Notably, its prevalence is on the rise, reaching 20%–40% among young populations in
developing countries (Artunc et al., 2016). Consequently, the implementation of effective
strategies to ameliorate insulin resistance has become indispensable.

While no medication specifically targets insulin resistance, several antidiabetic drugs,
including insulin sensitizers, insulin secretagogues, and alpha-glucosidase inhibitors, have been
utilized to improve insulin resistance. However, these treatments often have some adverse
effects and limitations. For instance, insulin sensitizers may lead to heart failure (Arnold et al.,
2019) and weight gain (Dutta et al., 2023), insulin secretagogues may cause excessive insulin
secretion and damage to pancreatic beta cells (Rustenbeck et al., 2004), and alpha-glucosidase
inhibitors may result in diarrhea and gastrointestinal discomfort (Taylor et al., 2019).
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Recently, a plethora of studies have indicated that natural products
possessing mild pharmaceutical properties can significantly augment
insulin sensitivity, suggesting that natural products may be a new
strategy for the treatment of insulin resistance (Zhang et al., 2020;
Zhang et al., 2020; Wang et al., 2022; Zhou et al., 2022). These findings
underscore the considerable potential of natural products as promising
alternatives to conventional treatments for metabolic disorders.
Notably, a substantial proportion of these natural products known
for their efficacy in combating obesity and ameliorating insulin
resistance are rich in anthraquinones (Kumar et al., 2019). For
instance, Cassiae semen (Ko et al., 2020), Rheum palmatum L. (Cui
et al., 2019) and Aloe vera (Deora et al., 2021), all of which boast
anthraquinones, are prominent examples of natural products that
are widely employed for the amelioration of metabolic diseases.
Anthraquinones, distinguished by their tricyclic diketone
pharmacophoric structure (Alam et al., 2019) (Figure 1), constitute a
class of plant secondary metabolites. Several studies have substantiated
the capacity of anthraquinones to enhance insulin resistance, thereby
signifying their promising candidacy as pharmacological agents for
mitigating insulin resistance and associated metabolic disorders.

To date, no comprehensive review has been conducted to
explore the mechanisms by which anthraquinones ameliorate
insulin resistance. This review endeavors to bridge this
knowledge gap by providing a systematic assessment of identified
anthraquinones and elucidating their respective mechanisms for
improving insulin resistance.

2 Characteristics of anthraquinones

Anthraquinones (9,10-dioxoanthracenes) are plant secondary
metabolites containing a tricyclic dione pharmacophore structure.
The anthraquinone ring is the fundamental parent structure of
anthraquinones. Anthraquinone monomer refers to chemical
compounds containing a single anthraquinone ring, whereas two

monomeric anthraquinone units can undergo dehydration and
condensation reactions via two distinct pathways to form dimeric
anthraquinones (Malik and Müller, 2016). Some studies have
revealed that anthraquinones can be substituted with various
functional groups, including hydroxyl, alkyl, alkoxy, and sugar
units. The specific type, number, and position of substituents on
the parent nucleus are critical determinants of natural product
bioactivity in this chemical class. For instance, rhein, which has a
carboxylic acid group at the sixth substitution position, exhibits
significantly greater lipid-lowering activity than aloe-emodin, which
has a hydroxyl substitution at the same position (Fang et al., 2022).

Anthraquinones are commonly found in higher plants, such as
Polygonaceae, Fabaceae, Rhamnaceae, Rubiaceae, and Liliaceae,
either in the form of free anthraquinones or anthraquinone
glycosides. Additionally, they are also found in the metabolites of
lichens and fungi (Li and Jiang, 2018). It is now well established that
anthraquinones exhibit a wide range of biological activities, such as
anticancer (Zhang et al., 2021), anti-inflammatory (Xie et al., 2022),
antibacterial (Qi et al., 2022), anti-oxidant (Yin et al., 2022), and

FIGURE 1
Overview diagram of anthraquinones.

GRAPHICAL ABSTRACT

Frontiers in Pharmacology frontiersin.org02

Xia et al. 10.3389/fphar.2023.1275430

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1275430


antiviral effects (Dai et al., 2017). They have also been shown to have
great potential in the prevention and treatment of various diseases,
including cancer and diabetes.

Emodin, rhein, chrysophanol, aloe-emodin, and physcion are
among the most common and representative anthraquinones found
in traditional Chinese medicine. These compounds have been
identified as the major bioactive components of R. palmatum L.,
Polygonum multiflorum, Cassiae semen, Aloe vera, and Senna
(Khurm et al., 2020; Ma et al., 2022). Research has demonstrated
the potential of these natural products to improve insulin resistance,
making them promising agents for obesity prevention and treatment.
Rumex dentatus L. is a natural medicinal plant rich in anthraquinones,
including emodin. The study demonstrated its significant potential in
reducing homeostatic model assessment of insulin resistance (HOMA-
IR) and improving insulin resistance in diabetic rats (Elsayed et al.,
2020). Aloe vera is rich in anthraquinones, including aloe-emodin and
aloin. Some studies indicate that these bioactive molecules possess the
potential to regulate pancreatic β cell function, suppress fat
accumulation, and lower fasting blood glucose (FBG) levels, thus
offering an effective therapeutic approach for alleviating obesity
(Deora et al., 2021; Fu et al., 2022). Administration of Aloe vera
extract in obese mice significantly reduced fasting blood glucose levels,
improved glucose tolerance, mitigated adipose tissue inflammation,
and subsequently ameliorated insulin resistance (Shin et al., 2011; An
et al., 2021). A randomized controlled trial with obese individuals
demonstrated thatAloe vera extracts significantly reduced body weight
and HOMA-IR (Zhang et al., 2016). Anthraquinones are also widely
distributed among other traditional herbals. Rheum palmatum L. is an
herbal medicine rich in anthraquinones, including emodin, rhein, and
chrysophanol, that has exhibited significant potential in attenuating
adipose tissue inflammation and hepatic accumulation of triglycerides
in mice. These findings suggest that R. palmatum L.may be a potential
preventive and therapeutic strategy for obesity (Régnier et al., 2020).
Oral administration of R. palmatum L. extracts significantly inhibited
ectopic fat accumulation and was shown to improve insulin resistance
in obese rats (Yang et al., 2016). Senna, a natural medicine rich in the
anthraquinone-derived natural product sennoside A, has been
shown to improve the oxidative stress response and alleviate the
inflammatory reaction of adipose tissue, resulting in weight loss in
rats (Nayan et al., 2021). Additionally, Cassiae semen, a natural
medicine rich in anthraquinone-derived natural products such as
aurantio-obtusin and alaternin, has been shown to lower FBG and
insulin levels and enhance glucose uptake in skeletal muscle in
obese mice, thus restoring insulin sensitivity (Wang et al., 2019).
Additionally, we have summarized more than ten anthraquinones
that can improve insulin resistance through various mechanisms
(Table 1).

3 Mechanism of insulin resistance
improvement by anthraquinones

3.1 Anthraquinones improve insulin
resistance by attenuating impaired insulin
signaling pathways

Upon engagement with its receptor, insulin sets in motion a
myriad of intricate signaling cascades. Insulin resistance manifests

when this finely tuned pathway falters, impeding the profound
physiological effects of insulin. Remarkably, anthraquinones have
demonstrated the ability to alleviate insulin resistance through
diverse mechanisms. These include the inhibition of protein
tyrosine phosphatase 1B (PTP1B) activity and facilitation of
glucose transporter type 4 (GLUT4) expression and translocation,
thereby potentially restoring the proper conduction of the insulin
signaling pathway (Figure 2).

Insulin binding to its receptor initiates a wide range of signaling
cascades that ultimately lead to the uptake and utilization of glucose
in insulin target tissues, including skeletal muscles, adipose tissue,
and liver. PTP-1B, as a downstream regulatory factor, is a crucial
negative regulator of insulin signal transduction. Overexpression of
PTP-1B in adipose tissue can lead to dephosphorylation of insulin
receptors and inhibit insulin signaling (Venable et al., 2000).
Conversely, PTP-1B−/- mice show enhanced glucose tolerance and
increased systemic insulin sensitivity (Elchebly et al., 1999; Behl
et al., 2022), indicating that PTP-1B may serve as a potential
therapeutic target for improving insulin resistance. Several studies
indicate that anthraquinone compounds could inhibit the activity of
PTP1B. Studies have demonstrated that (trans)-emodin-physcion
bianthrone and (cis)-emodin-physcion bianthrone isolated from
Polygonum cuspidatum show potent inhibitory effects against
PTP-1B, with corresponding IC50 values of 2.77 and 7.29 μM,
respectively (Zhao et al., 2017). Furthermore, enzyme kinetic
analysis revealed that alaternin extracted from Cassiae semen
could competitively inhibit PTP-1B activity, with a corresponding
inhibition constant (Ki) value of 1.70 μM (Jung et al., 2016).
Additionally, molecular docking simulations indicated that the
interaction between alaternin and PTP-1B was primarily driven
by hydrogen bonding and hydrophobic interactions. A study
unveiled the steadfast binding of chrysophanol and emodin to
the allosteric site of PTP-1B, shedding light on their intricate
association. This site acts as a metastable inhibitor and
inactivates the enzyme by blocking the mobility of the catalytic
ring of the enzyme (Martínez-Aldino et al., 2021). Anthraquinones
have been widely studied, and many of these natural products
exhibit inhibitory effects against PTP-1B. Currently, most
relevant studies have employed enzyme kinetic analysis or
molecular docking simulations to explore their underlying
mechanisms. Nevertheless, the cellular and animal realms remain
relatively uncharted territories in this domain. Consequently,
additional endeavors are imperative to unravel the labyrinthine
interplay between anthraquinones and PTP-1B, unmasking their
manifold effects across diverse model systems.

GLUT4 is a protein that facilitates the translocation of glucose
across cell membranes and is primarily expressed in adipose and
muscle tissues. In these tissues, insulin resistance is associated with
impaired insulin-dependent translocation of GLUT4, resulting in
decreased glucose uptake (Leto and Saltiel, 2012; Zumbaugh et al.,
2022). Aloe-emodin-8-O-β-D-glucoside, derived from Cassiae
semen, exerts its influence by fostering the cellular uptake of
glucose through the activation of the phosphatidylinositol
pathway and the upregulation of GLUT4 expression (Anand
et al., 2010). Upon subjecting insulin-resistant 3T3-L1 cells to the
therapeutic influence of emodin, a marked enhancement in cellular
glucose uptake was observed. Notably, this effect was found
to be partially attenuated by wortmannin, an inhibitor of
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TABLE 1 The Characteristics of Anthraquinones with Improved Insulin Resistance Activity.

Compound Chemical structure formula Plant Overall effect References

Emodin Rheum palmatum L., Polygonum
cuspidatum, Cassiae semen, Senna,

Aloe vera

Reduced fat storage and promoted
cellular glucose uptake

Yang et al. (2007), Tzeng
et al. (2012a)

Rhein Rheum palmatum L, Polygonum
cuspidatum, Cassiae semen, Senna,

Aloe vera

Reduced inflammatory response Ji and Gu (2021)

Aloe-emodin Rheum palmatum L, Polygonum
cuspidatum, Cassiae semen, Senna,

Aloe vera

Reduced inflammatory response Dou et al. (2019), Quan et al.
(2019)

Chrysophanol Rheum palmatum L, Polygonum
cuspidatum, Cassiae semen, Aloe

vera

Enhanced cellular glucose uptake and
adipose tissue thermogenesis

Liu et al. (2020),
Martínez-Aldino et al. (2021)

Physcion Rheum palmatum L Reduced fat accumulation Zhao et al. (2017)

Aurantio-obtusin Cassiae semen Reduced adipogenesis; promoted
cellular glucose uptake; regulated

intestinal flora

Guo et al. (2021), Huo et al.
(2022), Li et al. (2022)

Alaternin Cassiae semen, Rhamnus davurica Promoted cellular glucose uptake Jung et al. (2016)

Danthron Rheum palmatum L Reduced adipogenesis (Ma et al., 2021, 2)

(Continued on following page)
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TABLE 1 (Continued) The Characteristics of Anthraquinones with Improved Insulin Resistance Activity.

Compound Chemical structure formula Plant Overall effect References

Quinalizarin Rubia cordifolia L Reduced adipogenesis Yang et al. (2016)

Alizarin Rubia cordifolia L Promoted cellular glucose uptake Xu et al. (2019)

Hypericin Hypericum perforatum Improved oxidative stress Liang et al. (2019)

Aloe-emodin-8-O-β-
D-glucoside

Cassiae semen Promoted cellular glucose uptake Deora et al. (2021), Fu et al.
(2022)

Aloin Aloe vera Reduced free fatty acids Anand et al. (2010)

Sennoside A Senna Regulated intestinal flora Wei et al. (2020)
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phosphatidylinositol 3-kinase (PI3K), thereby implicating the PI3K
pathway as a crucial route through which emodin stimulates the
facilitation of glucose uptake (Yang et al., 2007). The anthraquinone
extracts derived from Cassiae semen elicited a substantial elevation
in the phosphorylation states of Akt substrate of 160 kDa (AS160),
Akt, and PI3K within the skeletal muscle of diabetic rats. This
intricate cascade of events fosters the activation of the PI3K-AKT-
AS160 signaling pathway, facilitating the translocation of
GLUT4 and concomitantly resulting in a commendable reduction
in FBG levels as well as fasting serum insulin (FSI) concentrations
(Zhang et al., 2018). Aurantio-obtusin propels the activation of the
important PI3K-AKT signaling pathway in both hepatic and adipose
tissues. This remarkable orchestration induces a discernible
reduction in fasting blood glucose levels while elevating glucose
tolerance (Guo et al., 2021). Alizarin exerts a profound influence,
effectively lowering fasting and postprandial blood glucose levels
in diabetic mice. This versatile compound orchestrates a cascade
of molecular events, stimulating the phosphorylation of
insulin receptor substrate-1 (IRS-1) and Akt proteins while
simultaneously enhancing the expression levels of GLUT4.
Collectively, these molecular phenomena synergistically
contribute to the amelioration of insulin resistance in mice
afflicted with diabetes (Xu et al., 2019).

3.2 Anthraquinones improve insulin
resistance by activating the AMPK signaling
pathway

The AMPK signaling pathway plays a pivotal role in governing
energy metabolism and upholding metabolic equilibrium. Robust
evidence supports that AMPK activation enhances insulin
sensitivity, promotes glucose uptake, and augments fatty acid
oxidation across adipocytes, hepatocytes, and myocytes.
Consequently, harnessing the power of AMPK activation has
emerged as a potent therapeutic strategy for combating insulin
resistance and type 2 diabetes. Notably, several investigations
have revealed the ability of anthraquinones, including emodin,
aloe emodin, and rhein, to activate the AMPK pathway. These
compounds achieve this by increasing the expression and
phosphorylation of vital upstream kinases of AMPK, such as
protein kinase A (PKA), Ca2+/calmodulin-dependent protein
kinase kinases (CaMKKs), and adiponectin. Furthermore, these
remarkable agents demonstrate the capacity to ameliorate insulin
resistance by orchestrating the AMPK pathway, thereby impeding
lipid and cholesterol synthesis, enhancing fatty acid oxidation, and
fostering glucose uptake (Figure 3).

The AMPK signaling pathway has emerged as a captivating
avenue for the prevention and amelioration of insulin resistance
(Towler and Hardie, 2007; Lin and Hardie, 2018; Zhang et al., 2022).FIGURE 2

Anthraquinones exert a positive influence on insulin resistance by
facilitating the transduction of insulin signaling. These bioactive
compounds possess the capability to inhibit the activity of PTP-1B and
enhance the expression of PI3K, thereby reinstating the effective
conduction of the proximal insulin signaling pathway. Moreover, they
elevate the levels of AKT phosphorylation, suppress the expression of
FOXO1, and attenuate gluconeogenesis. Furthermore, they promote
the expression and translocation of GLUT4, consequently augmenting
cellular glucose uptake and fortifying the distal signaling pathways
associated with insulin signaling.

FIGURE 3
Anthraquinones activate the AMPK signaling pathway through
various intricate pathways and mechanisms. This activation
subsequently enhances lipidmetabolism, culminating in a reduction in
lipid synthesis and an increase in fatty acid oxidation. Ultimately,
these profound effects contribute to the amelioration of insulin
resistance.
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Positioned as a pivotal kinase regulating energy homeostasis (Diniz
et al., 2021), AMPK receives activation signals from an array of
influential upstream regulators, including liver kinase B1 (LKB1)
(Zhang et al., 2013), CaMKKs (Mungai et al., 2011), transforming
growth factor beta-activated kinase1 (TAK1) (Momcilovic et al.,
2006), PKA (Hurtado de Llera et al., 2014), and adiponectin (Iwabu
et al., 2010; Li et al., 2020). Anthraquinones, including hypericin,
danthrone, rhein, and emodin, exhibit the remarkable capacity to
augment the expression of key kinases situated upstream of the
AMPK signaling pathway, thereby promoting its activation.
Through this activation, anthraquinones effectively curtail lipid
synthesis, amplify fatty acid oxidation, enhance glucose uptake,
and consequently alleviate insulin resistance. Hypericin has
garnered attention as a potent agonist of PKA catalytic subunit
alpha (PKACα), manifesting its capability to directly bind to
PKACα. This direct engagement, in turn, sets forth a cascade of
events that activate the PKA/AMPK signaling pathway, thereby
effectively impeding the detrimental accumulation of ectopic lipids
within the hepatic milieu (Liang et al., 2020). Danthron stimulates
the AMPK signaling pathway by augmenting the heterodimerization
of retinoid X receptor-alpha (RXRα) and peroxisome proliferator-
activated receptor alpha (PPARα) with the adipoR2 promoter (Ma
et al., 2021). Rhein exhibits the capacity to increase both the
expression and phosphorylation of AMPK protein, thereby
effectively activating the AMPK pathway (Lu et al., 2022). Within
the composition of R. palmatum L., emodin has been validated as an
activator of the AMPK signaling pathway. Its mode of action
involves the facilitation of adiponectin expression and the
mitigation of oxygen consumption in insulin-resistant
C2C12 and 3T3-L1 cells (Chen et al., 2012; Zhang et al., 2015).
Moreover, emodin elicits the activation of CaMKK2, a crucial
upstream kinase, through the augmentation of intracellular Ca2+

concentration within L6 myotubular cells. This consequential event
subsequently triggers the activation of the AMPK signaling pathway
(Song et al., 2013).

Excessive energy availability promotes heightened flux of free
fatty acids (FFAs) and aberrant lipid deposition, thereby
contributing to insulin resistance (Nguyen et al., 2005; Jiao et al.,
2011). The AMPK signaling pathway assumes a pivotal role in
governing lipid metabolism and preventing undue lipid
accumulation. Activation of AMPK effectively curtails the activity
of acetyl-CoA carboxylase (ACC), alleviating its inhibitory influence
on carnitine palmitoyltransferase 1 (CPT-1) and potentiating fatty
acid oxidation (Monsénégo et al., 2012; Sheng et al., 2019).
Moreover, AMPK activation downregulates the expression of
sterol regulatory element-binding protein-1c (SREBP-1c) (Li
et al., 2011) and CCAAT enhancer-binding protein alpha (C/
EBPα) (Kawaguchi et al., 2002), transcription factors that
orchestrate lipogenic gene expression, thereby diminishing lipid
synthesis. Therefore, harnessing the AMPK signaling pathway
represents an efficacious strategy to counter insulin resistance, as
it heightens fat oxidation, suppresses lipogenesis, and fosters lipid
homeostasis. Emodin, a naturally occurring compound found in
medicinal plants, has demonstrated the capacity to augment fatty
acid oxidation through the activation of the AMPK pathway in rats
subjected to a high-fat diet (HFD). Its activation of AMPK leads to
the upregulation of CPT-1 expression, concomitant with the
downregulation of SREBP-1c and fatty acid synthase (FAS)

expression, effectively inhibiting lipogenesis and curtailing lipid
accumulation. As a result, emodin exerts a beneficial effect on
insulin resistance (Tzeng et al., 2012b). Furthermore, intravenous
administration of emodin has been observed to stimulate AMPK
and ACC phosphorylation in skeletal muscle and liver tissue of
HFD-fed mice, leading to reduced fasting blood glucose and fasting
insulin levels, as well as improved insulin sensitivity (Song et al.,
2013). Chrysophanic acid effectively attenuated weight gain in mice
with diet-induced obesity. It also mitigated lipid accumulation and
downregulated the expression of adipogenesis-associated factors,
such as peroxisome proliferator-activated receptor gamma (PPARγ)
and C/EBPα, in 3T3-L1 adipocytes (Lim et al., 2016). In a dose-
dependent manner, danthrone exhibited a remarkable capacity to
induce the phosphorylation of AMPK and ACC in both HepG2 and
C2C12 cells. Furthermore, danthron treatment demonstrated
significant efficacy in suppressing lipid synthesis by
downregulating the expression of SREBP1c and FAS, thereby
leading to reduced levels of total cholesterol (TC) and triglycerides
(TGs). Intriguingly, the effects of danthrone on lipid and glucose
metabolism were attenuated or reversed when coadministered with
the AMPK inhibitor compound C (Zhou et al., 2013). Furthermore,
aurantio-obtusin has been shown to induce the phosphorylation of
transcription factor EB (TFEB) and bolster autophagic flux within
hepatocytes by eliciting AMPK activation. This consequential
activation subsequently upregulates the expression of PPARα and
acyl-CoA oxidase 1 (ACOX1), thereby stimulating the oxidation of
fatty acids. Concurrently, it inhibits the expression of SREBP-1 and
FAS, thus culminating in a reduction in lipid synthesis and a decline in
the accumulation of lipids in nonadipose tissues (Zhou et al., 2021).
TFEB serves as a crucial regulator of autophagy and lysosomal
function. Remarkably, TFEB overexpression has been
demonstrated to effectively impede weight gain, curtail lipid
accumulation, and ameliorate insulin resistance in mouse models
of diet-induced obesity (Settembre et al., 2013). The addition of the
Physcion supplement increased energy expenditure, contributing to
improvements in plasma lipids, adipokines, cytokines, and fecal lipids.
Notably, there was a reduction in hepatic FFA synthesis and an
increase in FFA oxidation. A significant decrease in lipid synthesis was
observed, while lipolysis and oxidation were enhanced.

Activation of the AMPK signaling pathway upholds energy
homeostasis by efficiently dissipating surplus energy as heat (Yang
et al., 2021). White adipose tissue (WAT) assumes the role of an energy
reservoir, storing excess energy in the form of fat. Its accumulation has
been closely associated with metabolic disorders (Maqdasy et al., 2022).
Conversely, brown adipose tissue (BAT) expends energy through
thermogenesis, exerting an inverse relationship with blood glucose
levels, insulin resistance, and obesity (Anhê et al., 2019; Xu et al.,
2020; Sugimoto et al., 2022; Villarroya and Gavaldà-Navarro, 2022).
Certain stimuli, such as cold exposure, exercise, or specific hormonal
cues, can instigate a process known as “browning” in WAT (Liu et al.,
2022). The process of WAT browning entails the activation of
uncoupling protein 1 (UCP-1), a pivotal factor associated with
prompt and adaptive thermogenesis (Fedorenko et al., 2012). This
process is governed by the transcriptional coactivator peroxisome
proliferator-activated receptor-γ co-activator-1α (PGC-1α), which
exerts crucial regulatory control over UCP-1 expression and
thermogenesis in BAT (Boström et al., 2012). Using primary
cultured brown adipocytes as in vitro models and HFD-induced
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obese mice as in vivo models, the administration of chrysophanol
yielded a notable reduction in weight gain among obese mice.
Furthermore, chrysophanol treatment substantially upregulated the
expression of UCP1 and PGC1α. Interestingly, in brown adipocytes,
the coadministration of Compound C, an inhibitor of AMPK,
effectively nullified the impact of chrysophanol on AMPKα, thereby
indicating the partial involvement of the AMPKα pathway in
chrysophanol efficacy (Lim et al., 2016). Sirtuin 6 (SIRT6) is a
multifunctional enzyme with ADP-ribosyltransferase and histone
deacetylase activities that orchestrates the recruitment of
phosphorylated transcription factor 2 (ATF2), leading to enhanced
expression of PGC-1α (Yao et al., 2017). The upregulated expression of
SIRT6 increases the phosphorylation of AMPK, thereby ameliorating
insulin resistance (Luo et al., 2018; Fan et al., 2019). Chrysophanol
administration inmice with HFD-induced obesity substantially elevates
SIRT6 and UCP-1 expression within WAT. This finding was further
supported by metabolic cage data, elucidating the augmentation of
thermogenesis. Importantly, these effects were not observed in Sirt6-
deficient mice (Sirt6−/−), underscoring the pivotal role of SIRT6 in
mediating the impact of chrysophanol. Collectively, these discoveries
highlight the therapeutic potential of chrysophanol in combating
obesity and related metabolic disorders by virtue of its ability to
upregulate SIRT6, subsequently promoting the upregulation of PGC-
1α and UCP-1 in BAT (Liu et al., 2020). Aurantio-obtusin (AO) is a
bioactive compound found in Cassiae semen that is a Chinese
traditional medicinal herb. It demonstrated remarkable efficacy in
enhancing hepatic lipid metabolism in a mouse model of hepatic
steatosis. The administration of AO significantly increased
mitochondrial metabolism and upregulated UCP1 expression. This
effect was achieved through the activation of PPARα signaling, both in
vivo and in primary brown adipocytes (Yi-Jie et al., 2023).

3.3 Anthraquinones ameliorate insulin
resistance by inhibiting inflammatory
pathways

Emerging research has illuminated the pivotal contribution of
low-grade chronic inflammation in the development and
advancement of insulin resistance. Notably, anthraquinones have
demonstrated their potential in mitigating insulin resistance linked
to inflammation. These compounds exhibit the ability to ameliorate
adipocyte inflammatory infiltration, suppress the secretion of
diverse inflammatory factors by adipocytes, induce macrophage
M2 polarization, and enhance overall systemic inflammation
regulation (Figure 4).

A growing body of evidence highlights the intimate association
between low-grade chronic systemic inflammation and insulin
resistance (Ahmed et al., 2021). The elevation of FFA triggers the
activation of Toll-like receptor 4 (TLR4), initiating a cascade of
signaling events involving key regulators such as nuclear factor
kappaB (NF-κB) and c-Jun N-terminal kinase (JNK) (Wang et al.,
2017; Li et al., 2020; Zhang et al., 2023). Activation of the NF-κB and
JNK pathways increases the secretion of various inflammatory
mediators, including tumor necrosis factor-alpha (TNF-α),
interleukin-1beta (IL-1β), and interleukin-6 (IL-6) (Glass and
Olefsky, 2012; Jiang et al., 2022; Park et al., 2022). These pro-
inflammatory factors perpetuate systemic inflammation, thus

contributing to the persistence of insulin resistance. Several
anthraquinones have emerged as potential therapeutics for
reducing pro-inflammatory mediators and improving insulin
resistance. For instance, chrysophanol demonstrated efficacy by
downregulating the expression of TNF-α, IL-1β, IL-6, and IL-8 in
mice subjected to a HFD (Lian et al., 2017). Similarly, rhein
showcased its beneficial effects by attenuating weight gain, lipid
accumulation, and IL-6, IL-1β, and TNF-α levels in adipose tissue
and serum of rats with HFD-induced obesity (Ji and Gu, 2021).
Molecular docking studies further revealed that rhein effectively
bound to TNF-α, IL-6, and NF-κB, with binding energies
of −8.9, −7.1, and −7.6 kcal/mol, respectively, suggesting its
potential as a modulator of the TNF signaling pathway (Jiang
et al., 2022). Additionally, rhein exhibited inhibitory effects on
mitogen-activated protein kinase (MAPK) signaling in
macrophages, leading to reduced transcription of the
proinflammatory mediators TNF-α and IL-1β (Chang et al.,
2019). Aloe-emodin demonstrated its capability to diminish
TNF-α and IL-6 production while suppressing the NF-κB
pathway, thereby restoring insulin signaling and ameliorating
insulin resistance (Dou et al., 2019; Quan et al., 2019).
Furthermore, emodin was shown to inhibit the expression of
adipokines, including TNF-α, IL-1β, and IL-6, in adipocytes,
potentially through the inhibition of p38, extracellular-signal-

FIGURE 4
Low-grade chronic systemic inflammation is intricately linked to
insulin resistance. Anthraquinones exert a direct inhibitory effect on
the MAPK and NF-κB pathways, resulting in the suppression of pro-
inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-8.
Moreover, anthraquinones effectively reduce ROS levels and foster
the polarization of M2 macrophages. By mitigating low-grade chronic
systemic inflammation through these mechanisms, anthraquinones
contribute to the improvement of insulin resistance.
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regulated kinase (ERK), and JNK phosphorylation (Fang et al.,
2022). In a dose-dependent manner, physcion exhibited the
capacity to attenuate the gene expression levels of TNF-α, IL-6,
and IL-1β in a hepatocellular carcinoma cell line (HepG2) upon
induction of inflammation by lipopolysaccharide (LPS) (Selim et al.,
2019). Aloe-emodin significantly attenuated the production of nitric
oxide (NO), IL-6, and IL-1β in LPS-stimulated RAW264.7 cells.
Western blot analysis revealed that aloe-emodin suppressed the
LPS-induced expression of iNOS protein, degradation of IκBα, and
phosphorylation of ERK, p38, JNK, and Akt. These findings
elucidate the anti-inflammatory properties of aloe-emodin, which
likely involve the attenuation of proinflammatory cytokine
production in LPS-induced RAW264.7 macrophages through the
inhibition of the NF-κB, MAPK, and PI3K signaling pathways (Hu
et al., 2014). Furthermore, the nitrogen-containing derivatives of
aloe-emodin demonstrated superior efficacy in inhibiting nitric
oxide, with an IC50 value of 3.15 μM. Furthermore, these
derivatives exhibited a significant reduction in the levels of the
pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as iNOS
and COX-2 enzymes (Shang et al., 2022).

Macrophages can be classified into two distinct subtypes based
on their activation state: M1-polarized macrophages and M2-
polarized macrophages. In the context of obesity, macrophages
tend to favor the M1 phenotype, exacerbating adipose tissue
inflammation and contributing to systemic insulin resistance (Li
et al., 2018). Conversely, M2 polarization is associated with anti-
inflammatory effects, lower body weight, and enhanced insulin
sensitivity (Chen et al., 2019). In vitro and in vivo experiments
have demonstrated the inhibitory effects of emodin on the p65-NF-
κB complex, along with its ability to enhance the prevalence of M2
(anti-inflammatory)-like phenotype macrophages (Chen et al.,
2022). Rhein possesses the ability to shift macrophages toward
the M2 phenotype. This was achieved through the
downregulation of the M1 marker inducible nitric oxide synthase
(iNOS) in mouse colon tissue and the upregulation of CD206, Arg1,
IL-10, and ChIL3, which are indicative of M2macrophage activation
(Zhou et al., 2022). The triggering receptor expressed onmyeloid cell
2 (TREM2), a member of the immunoglobulin receptor superfamily,
has been found to enhance the production of anti-inflammatory
cytokines and the expression of M2 marker genes when overexpressed
(Korvatska et al., 2020). Upregulation of TREM2 has been
demonstrated to mitigate insulin resistance induced by obesity
(Carrasco et al., 2019). In mice with HFD-induced obesity, emodin
effectively induced the polarization of M2 macrophages through the
upregulation of TREM2 expression. This intervention notably alleviated
local and systemic inflammation, curbed weight gain and lipid
accumulation, reduced fasting glucose and fasting insulin levels, and
improved insulin sensitivity (Yu et al., 2021). Rhein exhibited notable
efficacy in reducing tissue inflammation and facilitating the transition of
macrophages toward an M2 polarization state in an LPS-induced
model. In vitro experiments demonstrated that rhein effectively
mitigated intracellular ROS levels, suppressed the activation of P65,
and thereby hindered macrophage polarization toward an
M1 phenotype. Mechanistically, the protective effects of rhein were
attributed to its modulation of the nuclear factor of activated T cells c1
(NFATc1)/TREM2 axis, as evidenced by the substantial attenuation
observed in blocking experiments targeting both TREM2 and NFATc1
(Li et al., 2023).

The interplay between oxidative stress and inflammation can
mutually aggravate insulin resistance. Reactive oxygen species
(ROS), such as superoxide dismutase (SOD) and
malondialdehyde (MDA), can stimulate the production of
inflammatory factors, while cellular inflammatory factors, in turn,
promote the generation of free radicals (Kwak et al., 2017). Oxidative
stress poses detrimental effects on pancreatic beta cell function,
leading to apoptosis and exacerbating insulin resistance (Costes
et al., 2006). Notably, aloe-emodin has demonstrated the ability to
reduce ROS levels in RIN-5F cells exposed to high glucose
conditions, thus safeguarding these cells (Alshatwi and Subash-
Babu, 2016). Physcion, a bioactive compound derived from
rhubarb, exhibits notable properties, such as antihypertensive,
antibacterial, and antitumor activities. Remarkably, physcion
demonstrated the capacity to reduce body weight and plasma TG
levels in rats subjected to a HFD. Palmitic acid increased the levels of
ROS and MDA and reduced the levels of NO, SOD and GSH-Px.
These trends were reversed by physcion. In addition, physcion
reversed PA-induced activation of the NF-κB/TNF-α pathway in
HUVECs (Wang et al., 2023). The pancreatic and duodenal
homeobox-1 (PDX1) protein plays a pivotal role in pancreatic
development, maturation, and the functioning of β cells
(McKinnon and Docherty, 2001). In the context of glycotoxicity
and lipotoxicity, oxidative stress further hinders PDX1 expression,
resulting in β cell dysfunction and apoptosis (Hong et al., 2012).
Conversely, hypericin enhances PDX1 expression through ERK
activation in mice subjected to high-fat and high-glucose diets,
thereby ameliorating glucose intolerance and insulin resistance.
This intervention also leads to reduced fasting blood glucose
levels, attenuation of islet-β cell apoptosis, and inhibition of
nitric oxide (NO) production induced by glucotoxicity and
lipotoxicity (Liang et al., 2019). Furthermore, in vivo
experimentation revealed that emodin impeded the manifestation
of TNF-α, IL-6, and MDA within both the circulating serum and
tissues while concurrently augmenting the concentrations of SOD
and GSH (Shang et al., 2021). Rhein exhibited a potent inhibitory
effect on LPS-induced intestinal inflammation and oxidative stress.
This was evidenced by a significant reduction in serum and intestinal
levels of TNF-α, IL-1β, IL-6, and nitric oxide. Additionally, it
downregulated MDA levels in the small intestine. Remarkably,
rhein also inhibited the phosphorylation of JNK and p38 MAPK
while activating the nuclear factor E2-related factor 2 (Nrf2)
pathway (Zhuang et al., 2019).

3.4 Anthraquinones mitigate insulin
resistance by regulating the intestinal
microbiota

Emerging studies have unveiled the close interconnection
between metabolic disorders and the perturbations observed in
the composition and functionality of the intestinal microbiota
(Ussar et al., 2015; Zeng et al., 2020). Manipulating the gut
microbiota has emerged as a promising therapeutic strategy to
enhance insulin sensitivity in the host (Chambers et al., 2019;
Naderpoor et al., 2019). Anthraquinones have been demonstrated
to effectively modulate gut dysbiosis by promoting the proliferation
of beneficial bacteria while concurrently suppressing the abundance
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of potentially pathogenic counterparts. Notably, these compounds
have been shown to enhance insulin resistance through the
preservation of gut mucosal integrity and the reduction in
metabolic endotoxemia. As such, anthraquinones present a
promising approach for restoring the gut microbiota (Figure 5).

LPS, also referred to as endotoxins, is a sizable compound
present in the outer membrane of Gram-negative bacteria
(Simpson and Trent, 2019). Following the destruction of Gram-
negative bacteria, the breakdown of their cell walls results in the
release of LPS into the surrounding milieu (Tulkens et al., 2020).
High-energy diets have been demonstrated to elicit heightened
plasma LPS levels in murine experiments, as well as in a
substantial cohort of healthy men drawn from a population-
based sample (Amar et al., 2008). The translocation of LPS
across the gut lining serves as a hallmark associated with insulin
resistance, obesity, and diabetes. The leakage of LPS into the
bloodstream initiates a state of low-grade inflammation, exerting
profound effects on the liver, adipose tissue, and muscle metabolism
(Cani et al., 2008). Long-term subcutaneous infusion of LPS in mice
results in various alterations, including elevated weight gain, insulin
resistance, WAT inflammation, heightened systemic LPS levels, and
increased intestinal permeability (Cani et al., 2007). The regulation
of tight junction permeability plays a pivotal role in maintaining the
integrity of the intestinal barrier. Disruption of these tight junctions
results in compromised barrier function, leading to “leakage” and
subsequently causing an elevation in intestinal permeability (Ma
et al., 2004). Additionally, an increase in LPS leads to its binding with
TLR4, consequently activating the TLR4 signaling pathway. This
signaling cascade involves downstream regulators such as NF-κB

and JNK (Płóciennikowska et al., 2015). Rhein demonstrated a
salutary influence by promoting body weight reduction and
enhancing glucose tolerance in mice with diet-induced obesity.
Moreover, it efficiently attenuated the surge in plasma LPS levels
induced by a HFD while concurrently mitigating the accumulation
of proinflammatory macrophages within the colon (Wang et al.,
2016). Another investigation demonstrated the ameliorative effects
of rhein on LPS-induced intestinal barrier injury, achieved through
the modulation of Nrf2 and MAPK signaling pathways (Zhuang
et al., 2019). Rhein restores the expression of claudin-1, E-cadherin,
and mucus secretion to reduce intestinal permeability in chronic
mouse colitis model induced by dextran sulfate sodium (Wu et al.,
2020). Emodin demonstrated the capacity to suppress LPS-induced
inflammatory responses in intestinal epithelial cells while
simultaneously enhancing intestinal barrier function through the
upregulation of ZO-1 and occludin expression (Zhang et al., 2020).
Aurantio-obtusin exerts a favorable influence on intestinal barrier
function by upregulating the expression of occludin and ZO-1 in
HFD-fedmice. Moreover, it reduces serum LPS levels and attenuates
the production of inflammatory mediators (Luo et al., 2021).
Sennoside A was observed to safeguard the continuity and
integrity of colonic enterocytes in mice with diet-induced obesity
by upregulating the expression of tight junction proteins, namely,
occludin, claudin-2, and ZO-1. This mechanism effectively restores
colonic barrier function (Ma et al., 2020).

In murine models, it has been demonstrated that the
consumption of a HFD induces notable modifications in the
composition of the gut microbiota (Rabot et al., 2016; Tan et al.,
2021). This perturbation is characterized by a decline in the

FIGURE 5
Anthraquinones efficiently attenuated the elevation in plasma LPS levels induced by a HFD while simultaneously dampening LPS-induced
inflammatory responses in intestinal epithelial cells. Furthermore, these compounds demonstrated the ability to safeguard the continuity and integrity of
colonic enterocytes through the upregulation of crucial tight junction proteins, including occludin, claudin, and ZO-1.
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abundance of beneficial bacteria, such as Bifidobacterium (Yang
et al., 2022) and Lactobacillus (Lee et al., 2021), coupled with an
elevation in the prevalence of potentially pathogenic microbes,
including Bilophila wadsworthia (Natividad et al., 2018) and
Ruminococcus gnavus (Grahnemo et al., 2022). The intervention
of anthraquinones of Cassiae semen effectively increased
Bacteroides, Lactobacillus, and Parabacteroides in HFD-fed rats
(Mei et al., 2015). Another investigation demonstrated a
significant abundance of Lactobacillus after rhein treatment (Wu
et al., 2020). The modulation of gut microbiota contributed to the
amelioration of metabolic syndrome inmice subjected to a HFD (Shi
et al., 2019; Wang et al., 2020). In a double-blind randomized
placebo-controlled pilot trial utilizing oral fecal microbiota
transplantation (FMT) capsules, patients receiving FMT exhibited
enduring alterations in their microbiomes linked to obesity,
converging toward those characteristic of the lean donor (p <
0.001) (Allegretti et al., 2020). An increase in the abundance of
potentially advantageous bacteria may ameliorate insulin resistance.
Akkermansia muciniphila has been identified as a key regulator of
energy metabolism, glucose tolerance, and the maturation and
functionality of the immune system in human individuals (Yoon
et al., 2021). Furthermore, the absence of A. muciniphila has been
implicated in the disruption of gut barrier integrity, exerting
consequential effects on other bacterial populations, ultimately
precipitating the development of insulin resistance (Yang et al.,
2019). A study demonstrated that aurantio-obtusin significantly
augments the abundance of Akkermansia winderi in mice
fed a HFD (Luo et al., 2021). Rhein effectively restrained the
elevated plasma LPS levels induced by a HFD and modulated the
gut microbiota by reducing Bacteroides-Prevotella spp. and
Desulfovibrio spp. DNA while simultaneously increasing
Bifidobacterium spp. and Lactobacillus spp. DNA (Wang et al.,
2016).

4 Conclusion and future perspectives

In recent years, metabolic disorders have emerged as a pressing
global health concern. Projections suggest that obesity will affect
approximately one billion individuals by 2030, and diabetes cases
will escalate to 783 million by 2045, posing significant challenges to
healthcare systems worldwide. Numerous studies have indicated
that anthraquinones hold promise in improving insulin resistance, a
pivotal factor in preventing and treating various diseases, including
diabetes, obesity, and other metabolic syndromes. Thus, this systematic
review aims to comprehensively elucidate the mechanisms underlying
the potential of anthraquinones in ameliorating insulin resistance,
thereby fostering a deeper understanding of their therapeutic
applications.

While numerous anthraquinones exhibit potential in
ameliorating insulin resistance, the current research
predominantly focuses on key compounds such as emodin,
chrysophanol, rhein, and aloe-emodin. The precise mechanisms

by which these compounds improve insulin resistance warrant
further investigation. Moreover, existing studies primarily utilize
animal models, cell culture models, or enzymatic methods to explore
the potential of anthraquinone natural products in insulin resistance
improvement. Therefore, well-designed, multicenter trials with large
sample sizes are imperative to evaluate the effects of anthraquinones
in human subjects with insulin resistance. It is hoped that upon
integrating anthraquinones as treatment options for insulin
resistance, they will prove to be both safer and more efficacious,
offering innovative approaches to addressing metabolic disorders.

Overall, the potential of anthraquinones to improve insulin
resistance through multiple pathways makes them a promising
candidate for the treatment of insulin resistance and related
metabolic disorders.
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Glossary

ACC Acetyl-CoA carboxylase

ACOX1 Acyl-CoA oxidase 1

AMPK AMP-activated protein kinase

AS160 Akt substrate of 160 kDa

ATF2 Activating transcription factor 2

BAT Brown adipose tissue

CaMKKs Ca2+/calmodulin-dependent protein kinase kinases

C/EBPα CCAAT enhancer-binding protein alpha

CPT-1 Carnitine palmitoyltransferase 1

ERK Extracellular-signal-regulated kinase

FAS Fatty acid synthase

FBG Fasting blood glucose

FFA Free fatty acids

FSI Fasting serum insulin

GLUT4 Glucose transporter type 4

HFD High-fat diet

HOMA-IR Homeostatic model assessment of insulin resistance

IL-1β Interleukin-1beta

IL-6 Interleukin-6

iNOS Inducible nitric oxide synthase

IR Insulin resistance

IRS-1 Insulin receptor substrate-1

JNK C-Jun N-terminal kinase

LKB1 Liver kinase B1

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinases

MDA Malondialdehyde

Mn-SOD Manganese superoxide dismutase

NF-κB Nuclear factor kappaB

NO Nitric oxide

PDX1 Pancreatic and duodenal homeobox 1

PGC-1α Peroxisome proliferator-activated receptor-γ co-activator-1α

PI3K Phosphatidylinositol 3-kinase

PKA Protein kinase A

PPARα Peroxisome proliferator-activated receptor alpha

PTP1B Protein tyrosine phosphatase 1B

ROS Reactive oxygen species

RXRα Retinoid X receptor-alpha

SIRT6 Sirtuin 6

SOD Superoxide dismutase

SREBP-1c Sterol regulatory element-binding protein-1c

TAK1 Transforming growth factor beta-activated kinase1

TFEB Transcription factor EB

TLR4 Toll-like receptor 4

TNF-α Tumor necrosis factor-alpha

TREM2 Triggering receptor expressed on myeloid cell 2

UCP-1 Uncoupling protein 1

WAT White adipose tissue

ZO-1 Zona occludens-1
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