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Traumatic brain injury (TBI) affects more than 2.5 million people in the U.S. each
year and is the leading cause of death and disability in children and adults ages 1 to
44. Approximately 90% of TBI cases are classified asmild butmay still lead to acute
detrimental effects such as impaired cerebral blood flow (CBF) that result in
prolonged impacts on brain function and quality of life in up to 15% of
patients. We previously reported that nociceptin/orphanin FQ (N/OFQ) peptide
(NOP) receptor antagonism reversed mild blast TBI-induced vestibulomotor
deficits and prevented hypoxia. To explore mechanisms by which the NOP
receptor-N/OFQ pathway modulates hypoxia and other TBI sequelae, the
ability of the NOP antagonist, SB-612111 (SB), to reverse TBI-induced CBF and
associated injury marker changes were tested in this study. Male Wistar rats
randomly received sham craniotomy or craniotomy + TBI via controlled
cortical impact. Injury severity was assessed after 1 h (modified neurological
severity score (mNSS). Changes in CBF were assessed 2 h post-injury above
the exposed cortex using laser speckle contrast imaging in response to the
direct application of increasing concentrations of vehicle or SB (1, 10, and
100 µM) to the brain surface. TBI increased mNSS scores compared to baseline
and confirmed mild TBI (mTBI) severity. CBF was significantly impaired on the
ipsilateral side of the brain following mTBI, compared to contralateral side and to
sham rats. SB dose-dependently improved CBF on the ipsilateral side after mTBI
compared to SB effects on the respective ipsilateral side of sham rats but had no
effect on contralateral CBF or in uninjured rats. N/OFQ levels increased in the
cerebral spinal fluid (CSF) following mTBI, which correlated with the percent
decrease in ipsilateral CBF. TBI also activated ERK and cofilin within 3 h post-TBI;
ERK activation correlated with increased CSF N/OFQ. In conclusion, this study
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reveals a significant contribution of the N/OFQ-NOP receptor system to TBI-
induced dysregulation of cerebral vasculature and suggests that the NOP receptor
should be considered as a potential therapeutic target for TBI.
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Introduction

TBI is caused by an external force that causes alteration in brain
physiology or pathology (Menon et al., 2010). TBI affects more than
50 million people each year (Maas et al., 2017), yet the FDA has not
approved any therapeutic agents to treat TBI consequences
(Vanderploeg et al., 2005; Dean and Sterr, 2013). The
complicated pathophysiological consequences of TBI lead to
significant disruption of delivery and increased consumption of
oxygen in the brain which often results in cerebral ischemia
(Algattas and Huang, 2013). According to the Mild TBI
Committee of the American Congress of Rehabilitation Medicine
(ACRM), mTBI severity is identified based on the Glasgow Coma
Scale score of 13–15 and the severity and number of symptoms
suffered by patients (Lefevre-Dognin et al., 2021). The primary
tissue damage following TBI, and the subsequent events, impair the
physiologic control of cerebral circulation and lead to cerebral
vasospasms (Lewelt et al., 1980; Algattas and Huang, 2013), and
disruption of the blood brain barrier (BBB) that contributes to
vasogenic edema. Other TBI consequences that also contribute to
impaired CBF include cerebral ischemia, cytotoxic edema, and
increased intracranial pressure (ICP) (Lewelt et al., 1980; Algattas
and Huang, 2013; Hinson et al., 2015). Both clinical and preclinical
studies demonstrated that secondary pathophysiological
consequences of TBI including anxiety, hyperthermia, and
seizures may increase metabolic demand following brain injury
(Awwad et al., 2015; Hinson et al., 2015; Stocchetti et al., 2015).
Continued hemodynamic dysregulation following TBI may produce
further apoptosis and necrosis in affected brain tissue. However,
acute interventions to restore decreased CBF following TBI may
protect brain tissue from further damage (Salehi et al., 2017).

The FDA approved the use of TBI blood biomarkers, glial fibrillary
acidic protein (GFAP), and ubiquitin C-terminal hydrolase (UCH-L1),
to evaluate the utility of imaging tests in adult mTBI patients (FDA,
2018). Other biochemical changes related to TBI pathology include
upregulation of the axonal damage protein, neurofilament light chain
(NF-L) (Liliang et al., 2010; Pandey et al., 2017; Kochanek et al., 2018;
Iverson et al., 2022; Castaño-Leon et al., 2023), and upregulation and
activation of the cytoskeleton-associated protein, Cofilin-1 (Campbell
et al., 2012; Bahader et al., 2023) that is involved in actin filament
dynamics and depolymerization.

Several animal models have been utilized experimentally to
examine the biomechanical aspects of brain injury and to
understand the detrimental, complex molecular cascades that are
initiated by head trauma. The controlled cortical impact injury
(CCI) is a mechanical model of TBI that uses a pneumatic or
electromagnetic impact device to drive a rigid impactor onto the
surgically exposed intact cortical dura. The CCI model produces
morphologic and cerebrovascular injury responses that mirror

aspects of human focal TBI. CCI impairs cerebral hemodynamic
autoregulation relative to the severity of the impact and causes acute
and prolonged reductions in CBF in the pericontusional cortex
(Kroppenstedt et al., 2000; Liu et al., 2002; Zhang et al., 2002;
Cherian and Robertson, 2003; Kroppenstedt et al., 2003; Cherian
et al., 2004; Cherian et al., 2007; Liu et al., 2018).

The NOP receptor, the fourth member of the opioid receptor
superfamily (Bunzow et al., 1994; Chen et al., 1994; Fukuda et al.,
1994; Mollereau et al., 1994; Wang et al., 1994; Wick et al., 1994; Pan
et al., 1995), and its endogenous neuropeptide, N/OFQ, are
expressed in astrocytes, microglia, and neurons in the central and
peripheral nervous and immune systems (Mollereau et al., 1996; Al
Yacoub et al., 2022). Numerous studies demonstrated that N/OFQ
levels in CSF (Armstead, 2000b; c) and brain tissue increase
following injury (Witta et al., 2003; Awwad et al., 2018). These
changes start early and last for a few days after the injury. Armstead’s
group was the first to establish a link between N/OFQ levels
upregulation and vasoconstriction of cortical cerebral arteries
following cerebral ischemia, hypoxia, and TBI (Armstead, 2002;
Al Yacoub et al., 2022). Administration of N/OFQ onto the exposed
healthy cortex of newborn piglets induced pial artery dilation
(Armstead, 1999), However, this process was reversed post-TBI.
Topical N/OFQ to the injured cortex following TBI produced
vasoconstriction (Armstead, 2000c), and pre-administration of a
single dose of NOP receptor partial agonist attenuated the impaired
cerebral vasoconstriction caused by TBI (Armstead, 2000c). We
previously reported hypoxia in rat brains 8 days post-blast TBI, that
was prevented by a single dose of the NOP antagonist, SB-612111
injected 30 min following blast (Awwad et al., 2018). Armstead’s
work also indicated that several Mitogen-activated protein kinases
(MAPKs) were involved in N/OFQ-induced vasoconstrictive actions
following TBI. The studies herein investigated the effect of acute
NOP receptor antagonist administration on CBF following mTBI in
rats, and the effect of TBI on the N/OFQ-NOP receptor system and
injury markers, cofilin-1, and MAPKs.

Methods

Animals

Male Wistar Han wildtype rats (N = 14) were purchased from
Charles River Labs (Wilmington, MA) and allowed to acclimate for
at least 7 days after arrival. Rats (200–300 g; 12–14 weeks of age)
were housed in the animal facility under a 12-h light:12-h dark cycle
(lights on at 0600) with free access to food and water. Experimental
protocols were approved by the institutional animal care and use
committee (IACUC) of the University of Oklahoma Health Sciences
Center (OUHSC), and studies were conducted in compliance with
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animal welfare act (AWA) regulations, Animal Research: Reporting
of In Vivo Experiments (ARRIVE) guidelines 2.0 (Percie du Sert
et al., 2020), and other federal statutes relating to animals and
experiments involving animals. Rats were randomly assigned to
receive either sham or mTBI surgery.

Controlled cortical impact (CCI)

CCI was performed as previously described (Brody et al., 2007;
Osier et al., 2015; Osier and Dixon, 2016) withmodifications to enable
CBF measurements on the uninjured contralateral side at the same
time as the ipsilateral side as illustrated in Figure 1. Anesthetized rats
(4% isoflurane with medical air induction; 2.5%–3% maintenance)
underwent stereotaxic surgery with a midline incision, exposure of the
skull using a retractor, and assignment of bregma as a reference using
the stereotaxic manipulator (Stoelting Co., Wood Dale, IL). Control
(sham) injury animals received a 9–11 mm craniotomy (Figure 1C)
that spanned from the left parietal cortex to the right parietal cortex
using a hand-held drill without impact, and durotomy to expose the
brain cortex.

TBI rats received a craniotomy followed by amild controlled cortical
impact (Figure 1C) with stereotaxic coordinates (1.8 mm posterior,
3.0 mm lateral to the left of the bregma) using the Impact One
device (Leica Biosystems, IL) and the following actuator settings:

Impactor flat tip diameter (2 mm), velocity (3 m/s), dwell time
(100m) and impact depth (4 mm). Because the animals needed to be
transported to a different building to assess CBF, the bone flapwas sealed
in place with sterile bone wax, wounds were sutured with staples and
tissue adhesive, and topical antibiotic ointment applied after each
surgery. Rats remained under anesthesia sham or TBI impact until
the craniotomy wound was sutured. Righting reflex time was recorded
for each rat and defined as the time it took to stand on all 4 paws once
anesthesia was discontinued. Body temperature and vital functions were
monitored throughout surgery. Temperature was monitored using a
rectal probe connected to a monitor and heating pad that adjusted
temperature based on rat’s body temperature. Respirationwasmonitored
by changes in breathing pattern (e.g., gasping, labored breathing) and/or
cyanotic ears, tail, or feet. If present, isoflurane was reduced to increase
oxygen delivery. Previous studies reported no changes in mean arterial
blood pressure or arterial blood gasses at 30 min to 48 h following mild
CCI in rats (Bryan et al., 1995; Smith andHall, 1996; Kroppenstedt et al.,
1999; Thomale et al., 2002a; Thomale et al., 2002b; Thomale et al., 2006;
Muller et al., 2021).

Modified neurological severity score (mNSS)

The mNSS (Chen et al., 2001) was used to validate the severity of
the injury as a measure of overall neurological function at baseline

FIGURE 1
Experimental timeline and protocol diagrams. (A) indicates the times different data points and surgeries were performed. (B) illustrates tissue sample
dissection of sham andmTBI brains for biochemical assays, while the size and location of the craniotomy performed for sham andmTBI surgeries and the
location of the impact for mTBI is shown in (C). (D) illustrates CSF collection from the direct insertion of a 26-gauge needle into the cisterna magna (D).
The dissection protocol in (B) was employed to combine tissue from parts of the somatosensory and motor cortex, corpus callosum, and
hippocampus immediately below the area of impact (pericontusional area) and the comparable area in sham animals, to compare biochemical changes in
tissues from the two groups. It observes anatomical borders of brain regions and specified dimensions to collect tissue from the ipsilateral and
contralateral sides of the injury. This figure was created in BioRender.com.
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and at 1 h following surgery. The evaluation indices included a
battery of motor (raising rat by the tail (0–3); walking on floor
(0–3)), sensory (proprioceptive test (0–1); visual and tactile test
(0–1)), Reflex: Pinna reflex (0–1); Corneal reflex (0–1); Startle reflex
(0–1), resting movement (seizures, myoclonus, myodystony (0–1)),
and beam balance (0–6) tests, where normal function received a
value of 0. Neurological deficit severity was categorized based on
cumulative score: Severe = 13–18, moderate = 6–12, mild = 1–6
(Chen et al., 2001). Rats lacking neurological deficits scored less
than 1.

Laser speckle contrast imaging to measure
CBF responses

Laser Speckle Contrast Imaging (LSCI) technology was used to
measure CBF in rats following TBI. Rats were placed in the
isoflurane induction chamber for 5 min (isoflurane 4%), and
anesthesia was then maintained with isoflurane (2%–3%) through
the nose mask while the rats were in the stereotaxic frame. The
temperature was controlled using a homeothermic controller. Once
rats were in the stereotaxic frame and deep anesthesia was confirmed
(no toe pinch or eye blinking reflexes), the incision was opened using
a sterile blade on a scalpel. Bone wax and the skull bone flap from the
craniotomy were removed to expose the cranial window for LSCI.
The LSCI device (Perimed, Järfälla, Sweden) was positioned above
the cranial window surface (the exposed dura mater). Drops of
sterile saline were applied periodically over the exposed dura mater
to keep it and cortical tissue moist during imaging. After initial CBF
readings were obtained, the direct effect of vehicle (5%
dimethylsulfoxide and 0.9% sodium chloride) on CBF was
assessed before and after the topical application of sterile SB-
612111 onto the exposed cortex with sterile pipettes for 5–10 min
or until each measurement returned to baseline. To evaluate changes
in CBF, an elliptic shape, with dimensions of ~4 mm (height) and
2 mm (width), was drawn over each side of the brain in live images
of each rat using the PIMsoft software (Perimed, Järfälla, Sweden).
The inner borders of the shapes over each side were ~1 mm from the
midline between the two hemispheres. To identify reductions in CBF
on the ipsilateral side after TBI or sham surgery, the relative percent
change of CBF in the ipsilateral side to the contralateral side was
generated by the software. To identify changes in CBF following the
application of sequential doses of SB-612111, times of interest (TOI)
in the CBF graph of each side were identified after each dose, and
percent change relative to the baseline at each TOI after injury was
generated and used for statistical analysis. Three rats were excluded:
one died during anesthesia; excessive bleeding prevented CBF
assessment for two others. The total number of rats with CBF
assessments per group was 5 sham and 6 mTBI.

NOP antagonist (SB-612111) preparation and
treatment

[(−)-cis-1-Methyl-7-[[4-(2,6-dichlorophenyl) piperidin-1-yl]
methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol], SB-612111
(SB; Tocris Bioscience, Bristol, United Kingdom) was dissolved in
sterile 5% dimethylsulfoxide and 0.9% sodium chloride vehicle to

improve solubility and absorption of the drug. Three final
concentrations (1 μM, 10 μM, and 100 µM) of the SB were
applied sequentially to the exposed cortex following assessment
with vehicle 2 h following CCI. SB concentrations were selected
based on results from previous studies (Spagnolo et al., 2007; Liao
et al., 2011; Vazquez-DeRose et al., 2013).

Processing and collection of biofluid and
brain tissue samples

Rats were euthanized via intracardiac exsanguination under
isoflurane anesthesia, wherein brain, CSF, and blood were
collected. After whole blood cardiac exsanguination, whole blood
was stored at room temperature for 30 min, the supernatant (serum)
was collected after centrifugation at 5,000 × g, 4°C for 5 min (Shear
et al., 2016) and flash frozen in 250 µL aliquots. CSF (~100–200 µL)
was collected from the direct insertion of a 26-gauge needle into the
cisterna magna (Figure 1D). Brains were extracted and dissected
using a matrix brain slicer (Zivic Instruments) to include separate
5 mm sections of ipsilateral (left) and contralateral (right) tissue
(cortex, corpus callosum, and hippocampus) as illustrated in
Figure 1B. Brain tissue was then homogenized and divided for
radioimmunoassay, qPCR, and immunoblotting then were
processed and stored in −80°C as described previously (Al
Yacoub et al., 2023). We considered the general effect of topical
SB on the dissected tissue to be negligible since it was present for
only a short time and was washed away such that CBF returned to
pre-SB treatment levels before rats were euthanized.

Radioimmunoassay (RIA)

Peptide extraction to assess N/OFQ content from tissue
homogenates, CSF and serum was performed in duplicate
samples using an RIA kit (Phoenix Pharmaceuticals, Belmont,
CA) as described in the manufacturer’s protocol. The
concentration of soluble protein present in the brain tissue
extract was determined by the BCA method. The total amount of
N/OFQ immunoreactivity (IR) was calculated and expressed as pg/
mL in CSF and serum samples, and as pg/mg for tissue samples.
Samples were excluded if they fell outside of the range of the
standard curve or if contaminated with blood.

Immunoblotting

Frozen tissue homogenates were thawed and treated with cell
lysis buffer (50 mM Tris pH 7.5, 0.5 M NaCl, 50 mM NaF, 10 mM
EDTA, 2 mM EGTA, 1% Triton X-100, 2 mM Na3VO4, 10 µM
Na4P2O7, 250 µM PMSF) with freshly added protease and
phosphatase inhibitor cocktail (Santa Cruz Biotechnology, Dallas,
TX). The protein concentration in supernatants (14,000 x g at 4°C
for 20 min) was measured using a BCA protein assay kit (Pierce™,
ThermoFisher Scientific Inc.), then samples were solubilized in 4X
sample loading buffer (LI-COR Biosciences, Lincoln, NE) and
heated to 65°C for 20 min. Samples (20 µg of total protein) were
resolved by Novex™ WedgeWell™ 8%–16% gradient Tris-Glycine
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gels (Thermo Fisher Scientific Inc.), transferred to nitrocellulose
membranes and probed for the following proteins: GFAP (GPCA-
GFAP, 1:4000; EnCor Biotechnology, Gainesville, FL), UCH-L1 (sc-
271639, 1:200; Santa Cruz Biotechnology), NF-L (sc-20012, 1:200;
Santa Cruz Biotechnology), and actin (A3853, 1:2000; Sigma-
Aldrich). MAPK antibodies were purchased from Cell Signaling
Technology, Beverly, MA, and were diluted as follows: ERK1/2
(4696S, 1:2000), phospho-ERK1/2 (4370S, 1:500), p-38 MAPK
(9228S, 1:1000), SAPK/JNK (9252S, 1:1000). Blots were incubated
in primary antibody overnight at 4°C and secondary antibody for 1 h
at room temperature. IRDye® 800CW goat anti-rabbit (1:10000),
IRDye® 680CW donkey anti-rabbit (1:10000), IRDye® 680CW
donkey anti-mouse (1:10000), IRDye® 800CW donkey anti-mouse
(1:10000), IRDye® 800CW donkey anti-goat (1:10000), IRDye®
680CW goat anti-mouse (1:10000), were purchased from LI-COR
Biosciences (Lincoln, NE). Blots were processed, images captured,
and band density analyzed using the Odyssey® CLx Infrared Imaging
System (LI-COR Biosciences, Lincoln, NE). Band density was
normalized to the loading control actin in the corresponding lane
using Image Studio™ Lite image processing software Ver 5.2 (LI-
COR Biosciences, Lincoln, NE). Quantification of the GFAP bands
included the GFAP breakdown product bands.

Real-time quantitative PCR (qPCR)

TriPure reagent (Sigma-Aldrich, MO) was immediately added
to brain tissue homogenate collected for mRNA extraction and
stored at −80°C. cDNA was synthesized using Super-Script III
Reverse Transcriptase (Sigma-Aldrich, MO). Real-time PCR was
performed using PowerUp™ SYBR™ Green Master Mix (Applied
Biosystems, Foster City, CA) and 125 nM forward and reverse
primers of target genes (rat GAPDH Fwd: 5′-ACC CAG AAG
ACT GTG GAT GG-3′, Rev: 5′-CAC ATT GGG GGT AGG
AAC AC-3′; rat NOP Fwd: 5′-GTT CAA GGA CTG GGT GTT
CAG CCA GGT AGT-3′; rat NOP Rev: 5′-TGC TGG CCG TGG
TAC TGT CTC AGA ACT CTT-3′; rat preproN/OFQ Fwd: 5′-TGC
ACC AGA ATG GTA ATG TG-3′, Rev: 5′-TAG CAA CAG GAT
TGT GGT GA-3′, all from Sigma-Aldrich) in an ABI 7000 Sequence
Detection System (Applied Biosystems, CA). GAPDH gene was used
as an internal standard to which expression of other genes was
normalized. Data were analyzed using the comparative Ct method
and compared to control values from sham rats (Schmittgen and
Livak, 2008).

Data Analysis

Data Analysis and graph preparation were performed using
GraphPad Prism 9.5.1 software (GraphPad Software, La Jolla, CA,
United States). Data are expressed as mean ± SD unless indicated
otherwise. Statistical comparisons were performed by two-way
ANOVA with Tukey’s post-hoc analyses as automatically
recommended by the software, or a two-tailed, unpaired student’s
t-test as appropriate. Results were considered statistically significant
if p < 0.05. All data were subjected to Shapiro-Wilk (N < 8)
normality tests before analysis. Those groups that failed the
normality test (p < 0.05) were subjected to an outlier test

(ROUT; Q = 1%) as recommended, to determine if the outlier
was responsible for the failed normality test. Pearson’s Correlation
Analysis was performed with the following data aligned from each
rat: tissue N/OFQ in the ipsilateral side of the brain and in CSF,
differences in CBF in the ipsilateral side relative to contralateral after
injury, and injury markers. Correlations were made with data from
sham and mTBI groups.

Results

CCI TBI produces mild severity injury with prolonged righting
reflex time 1 h post-impact. To assess overall neurological function
and to validate the severity of the impact produced, mNSS scores
were determined before surgery (baseline) and at 1 hour following
sham or TBI injury. No rats were excluded prior to TBI as all scored
less than 1 (in the normal range). Two-way ANOVA analysis
showed a significant interaction between injury and time [F (1,
20) = 58.58, p= <0.0001], the effect of injury [F (1, 20) = 58.58,
p= <0.0001], and time [F (1, 20) = 63.13, p= <0.0001]. All rats that
received mTBI yielded mNSS scores within the mild severity range
(mNSS = 1–6) 1-h following injury (Figure 2A). TBI also prolonged
righting reflex time compared to sham rats (p = 0.017; Figure 2B).

mTBI reduces CBF. Baseline CBF assessments could not be
made due to instrumental limitations inherent to LSCI and the fact
that the impactor and LSCI devices were located in two different
buildings. Therefore, to assess the effect of mTBI on CBF, a
reduction in CBF on the ipsilateral side was calculated in sham
and CCI surgery animals relative to the same animal’s contralateral
side using the PIMsoft software as described in the methods section.
TBI reduced CBF to a greater extent 2 h post-surgery than rats that
received sham surgery (p = 0.0032; Figure 3A). Representative CBF
images of ipsilateral and contralateral sides of sham and CCI surgery
rats are shown in Figure 3B. Areas of highest blood flow appear as
bright red, while dark blue indicates the lowest levels of blood flow.

NOP receptor antagonist treatment improved CBF following
mTBI but not after sham surgery. The vehicle and three
concentrations of SB were applied topically, stepwise, to the dura
once initial CBF measurements were completed. After each
application, CBF was recorded until it stabilized (5–10 min)
before the next application was made. CBF improved in the
ipsilateral hemisphere following topical application of 10 µM (p =
0.0380) and 100 µM (p = 0.0011) SB to the exposed cortex of mTBI
rats compared to vehicle application; 100 uM SB increased CBF
significantly more than 1 uM SB (p = 0.0037; Figure 4A). CBF
increased on the contralateral hemisphere in mTBI rats only with
100 µM SB compared to vehicle (p = 0.0146) and to 1 uM (p =
0.0154; Figure 4A). Two-way ANOVA analysis showed a significant
effect of SB concentration on CBF [F (3, 28) = 12.31, p= <0.0001].
None of the SB concentrations altered CBF in either hemisphere
following sham injury (Figure 4B). Representative images of CBF in
sham and mTBI rats following surgery and each successive topical
addition are shown in Figure 4C.

Increased N/OFQ levels in CSF following mTBI correlated with
CBF decrease on the ipsilateral side. N/OFQ levels were measured in
CSF, serum and tissue dissected from ipsilateral and contralateral
hemispheres as illustrated in Figure 1B. Mild TBI increased N/OFQ
levels 3 h post-TBI in CSF compared to sham (p = 0.0487;
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Figure 5A), but not in tissue (Figure 5B) or serum (Figure 5C).
Figure 5D shows the results of the correlation analysis between
percent change in CBF in the ipsilateral hemisphere relative to the
contralateral hemisphere and levels of N/OFQ in CSF. N/OFQ levels
in CSF negatively correlated with a percent decrease in CBF in the
ipsilateral hemisphere relative to the contralateral hemisphere. No
correlations between N/OFQ levels in ipsilateral tissue, or in serum
and the decrease in CBF were found.

The effect of mTBI on N/OFQ peptide and NOP receptor
mRNA was also examined. Ipsilateral hemisphere tissue mRNA
was prepared and subjected to real-time PCR analysis as described
above. No differences in mRNA levels between sham and mTBI rats
were found (Figures 6A, B).

mTBI increased ERK and cofilin-1 activation in ipsilateral brain
tissue compared to sham. Phospho-ERK expression increased
following mTBI in tissue from the ipsilateral hemisphere

compared to ipsilateral tissue in sham (p = 0.0253; Figures 7A,B).
Pearson correlation analysis between ipsilateral N/OFQ and
phospho-ERK expression was performed and ipsilateral N/OFQ
levels positively correlated with phospho-ERK expression (r =
0.8115, p = 0.0024). No differences between mTBI and sham
groups in expression of total ERK, p38, and JNK in ipsilateral
brain tissue 3 h post-mTBI were noted (Figures 7C–E
respectively). Unlike ERK, which is activated by phosphorylation,
cofilin-1 is activated by dephosphorylation (Meberg et al., 1998;
Wang et al., 2005). Phospho-cofilin-1 expression decreased in
ipsilateral TBI tissue compared to sham (p = 0.0270;
Figures 8A,B), as determined by two-tailed, unpaired Student’s
t-test, consistent with the presence of ischemia. No significant
differences between mTBI and sham groups in expression of
cofilin-1, UCH-L1, NF-L, and GFAP in ipsilateral brain tissue at
3 h post-mTBI were found (Figures 8C–F, respectively).

FIGURE 2
CCI produced mild TBI and prolonged the righting reflex time. TBI severity was determined by mNSS assessment; mNSS scores 1 h post-TBI and
sham surgery are shown in (A); righting reflex time is found in (B). Both are presented as a scatter plot with mean ± SD (n = 5-6 per group). Dotted lines in
panel (A) at 6 and 12 represent the upper limit of mild and moderate severity, respectively. Severe injury scores range from 13–18. Significant differences
are represented as *p < 0.05 and ****p < 0.0001. Analysis of (A)was performedwith two-way ANOVAwith Tukey’s multiple comparisons tests, while
results in (B) were analyzed using a student’s two-tailed unpaired t-test.

FIGURE 3
mTBI reduces CBF. (A) Values are presented as a scatter plot including mean ± SD (n = 5-6 per group). (B) Perfusion maps of the rat brain are
visualized using LSCI and were pseudocolored using an arbitrary color map. Significant differences are represented as **p < 0.01 according to analysis
with two-tailed, unpaired student’s t-test.
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Discussion

This study generated several important and novel findings to
advance our understanding of the role of the N/OFQ-NOP receptor
system in cerebrovascular dysregulation following focal mTBI with
CCI. First, topical application of a NOP receptor antagonist onto the
exposed cortex of rats within 1–2 h following mild CCI TBI
improved CBF. Second, N/OFQ levels in CSF increased acutely
(within 3 h of impact) following mTBI. Third, mTBI CCI increased
activation of ERK MAPK and cofilin-1 within 3 h post-impact.

It is well established that CCI impairs cerebral hemodynamic
autoregulation relative to the severity of the impact and causes acute
and severe reductions in CBF in the pericontusional cortex
(Kroppenstedt et al., 2000; Liu et al., 2002; Zhang et al., 2002;
Cherian and Robertson, 2003; Kroppenstedt et al., 2003; Cherian
et al., 2004; Cherian et al., 2007). The precise mechanism(s)
underlying disruptions in the neurovascular unit and
vasoconstriction that occur within hours following TBI remain
poorly understood. However, previous findings hypothesized that
vasospasm, including vasoconstriction of large and small cerebral
vessels, is induced by increased blood pressure and subarachnoid
hemorrhage after TBI (Izzy and Muehlschlegel, 2014), accompanied

by increased transportation of endothelin receptors to the cellular
membrane in the neurovascular unit (Kallakuri et al., 2007), and
pericyte migration from the vascular wall (Dore-Duffy et al., 2000).
Work by Armstead’s lab suggests that the N/OFQ-NOP receptor
system may mediate this process by several potential mechanisms,
including activation of ERK (Armstead, 2003; 2006). This is the first
time that CCI-induced changes in CBF were shown to be correlated
with N/OFQ levels and modulated by a NOP receptor antagonist.
CCI causes acute reductions in CBF in pericontusional cortex
(Kroppenstedt et al., 2000; Liu et al., 2002; Zhang et al., 2002;
Cherian and Robertson, 2003; Kroppenstedt et al., 2003; Cherian
et al., 2004; Cherian et al., 2007). A recent study in mice reported
both acute and prolonged reductions (from 6 h to 21 days post-TBI)
in cortical CBF following CCI using the laser speckle imaging
approach (Liu et al., 2018). Our findings (Figure 3) support those
previous reports of acute reduction in cortical CBF following CCI
compared to sham. We were not able to measure cortical CBF
baseline prior to sham or CCI because the LSCI apparatus was in a
different building from where the surgery was performed. Therefore,
the contralateral hemisphere was used as a baseline reference to
evaluate the effect of mild impact or sham surgery on cortical CBF
post-surgery as described in the methods section.

FIGURE 4
Topical application of SB-612111 improved CBF in the ipsilateral side following mTBI, but not sham surgery. SB improved CBF in the ipsilateral side
following mTBI after addition of 10 µM and 100 μM, dropwise (A). Increased CBF on contralateral side in mTBI rats was noted only following 100 μM SB,
compared to vehicle but not the contralateral side compared to vehicle. Vehicle and SB treatment has no effect on CBF following sham (B). (C) contains
representative images of CBF in the cortex following sham (upper panels) and mTBI (lower panels) at after surgery and following treatment with
vehicle, 1 μM, 10 μM, and 100 µM SB. Values are presented as mean ± SD. Significant differences are indicated as **p < 0.01; *p < 0.05 as determined by
Repeated measures 2-way ANOVA with Tukey’s post-hoc test.
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Based on previous findings from our group and others
(Armstead, 2000c; Witta et al., 2003; Awwad et al., 2018), we
hypothesized that mTBI would acutely increase N/OFQ levels in
brain tissue and CSF. Our findings support the acute increase in
N/OFQ levels in CSF shortly after TBI, as was demonstrated
previously using the fluid percussion injury model of TBI (FPI)
(Armstead, 2000c; Armstead, 2002) in piglets. However, the new
findings demonstrate that N/OFQ levels in tissue are not yet
upregulated at 3 h following mTBI CCI (Figure 5B), as reported
for 8 days post-CCI TBI (Al Yacoub et al., 2023) 1 day post blast TBI
(Awwad et al., 2018) or 6 hr–24 h following cortical stab injury
(Witta et al., 2003). Similarly, this study found no increases in serum
N/OFQ 3 h post-CCI (Figure 5C), as we’d previously reported for
plasma 24 h post-blast injury (Awwad et al., 2018). This suggests
that 3 h is too early to detect changes in N/OFQ levels in tissue or in
blood. Collectively, this indicates that there is an acute release of
N/OFQ into the CSF, but the process of replenishing peptide stores
has not yet begun at this early time point. This is confirmed by our
RT-PCR results in which no difference in N/OFQ mRNA tissue
levels between sham and CCI TBI rats was evident (Figure 6B).

Following stab TBI, N/OFQ mRNA was not elevated in
pericontusional tissue until 24 h post-injury (Witta et al., 2003).
However, the fact that N/OFQ levels in CSF correlated negatively
with a percent decrease in CBF in the ipsilateral cortex relative to the
contralateral cortex (Figure 5D) establishes an association between
increased N/OFQ levels and mTBI-induced cerebrovascular
disruption.

N/OFQ vasodilates and directly relaxes blood vessels under
normal, non-injury conditions (Champion et al., 2002; Brookes
et al., 2007; Simonsen et al., 2008). Systemic (Hashiba et al.,
2003) and central (Burmeister and Kapusta, 2007) administration
of N/OFQ reduces blood pressure and causes bradycardia. The
indirect vasodilative effects of N/OFQ are mediated by histamine
released from immune cells in the blood that occurs after NOP
receptor activation in those cells (Brookes et al., 2007). Direct
relaxation occurs by inhibiting pre-junctional adrenergic
neurotransmission (Simonsen et al., 2008). The vasodilatory
effect of N/OFQ is not nitric oxide or prostaglandin-dependent
(Champion et al., 2002). Lambert’s group showed recently that
sepsis increases NOP receptor mRNA expression in human

FIGURE 5
N/OFQ levels in CSF, serum, and tissue from contralateral and ipsilateral hemispheres collected 3 h post mTBI. Levels of N/OFQ were quantified
using RIA in CSF (A) and serum (C) collected from rats following euthanasia 3 h post-TBI. Data were analyzed using a two-tailed unpaired t-test, and
values are presented as mean ± SD (n = 5-6 per group). Differences from sham are represented as *p < 0.05). (B) indicates N/OFQ levels measured in
ipsilateral and contralateral tissue collected 3 h post-TBI. Values are presented as mean ± SD (n = 5-6 per group). Two-way ANOVA with Tukey’s
post-hoc test was employed to determine contributions of injury severity and side of the brain. (D) represents the results of a Pearson’s correlation
analysis between N/OFQ levels in CSF and the % decrease in CBF on the ipsilateral side relative to the contralateral side, *p < 0.05. Two samples were
excluded due to contamination with blood.
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vascular endothelial cells, but not in vascular smooth muscle cells
in vitro (Bird et al., 2022). N/OFQ administration on cortical
cerebral arteries elicited vasodilation that is protein kinase C
(PKC), K(ATP), and k(Ca) activation dependent under normal
conditions (Armstead, 1999). However, N/OFQ application
caused vasoconstriction following ischemia and brain injury

(Armstead, 2000a; Armstead, 2000b; Armstead, 2000c; Armstead,
2002). Administration of the NOP receptor putative antagonist, [F/
G] NOC/OFQ (1–13), attenuated pial artery vasoconstriction and
impaired CBF when applied topically to the cortex shortly after FPI
TBI (Armstead, 2000c; Armstead, 2002). This peptide was later
classified as a NOP receptor partial agonist, not an antagonist, based

FIGURE 6
NOP receptor (A) and preproN/OFQ (B) mRNA expression in ipsilateral tissue is not altered 3 h post-mTBI. Messenger RNA was extracted from
ipsilateral tissue for real-time PCR analysis as described in methods. Target gene expression in sham and mTBI-treated rat ipsilateral hemispheres were
normalized to GAPDH gene expression and individual 2−ΔΔCT values frommTBI (n = 5) were normalized to themean of individual 2−ΔΔCT values of the sham
group (n = 6) to determine fold change in mRNA. Values are presented as mean ± SD and compared using a two-tailed unpaired student’s t-test.

FIGURE 7
Expression of MAPKs in ipsilateral tissue from rat brains collected 3 h post-surgery. Representative immunoblots of MAPKs from brain tissue of
5–6 rats in each group at 3 h post-TBI are shown in (A). Expression of p-ERK (B), ERK (C), p38 (D), and JNK (E)were quantified by densitometric analysis of
immunoblots normalized to actin loading control from the same lane except phospho-ERK was normalized to total ERK values. A two-tailed unpaired
t-test was performed to assess difference from sham; significant differences are denoted by *p < 0.05. Values are presented as mean ± SD (n = 5-
6 per group).
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upon pharmacological studies conducted by several groups
(McDonald et al., 2003; Kapusta et al., 2005; McDonald and
Lambert, 2010; Asth et al., 2016). SB-612111 is a standard NOP
receptor antagonist and one of the most potent and selective
nonpeptide antagonists for the NOP receptor (Spagnolo et al.,
2007). Our group previously demonstrated that a single
treatment with SB injected shortly after mild blast TBI prevented
the development of hypoxia in brain tissue of rats 8 days post-TBI
(Awwad et al., 2018). One of the major goals of this study was to
examine the acute effect of SB treatment on CBF (1–3 h) post-CCI
TBI. We hypothesized that the acute upregulation of the N/OFQ-
NOP receptor system contributes to CBF-induced deficits post-CCI
TBI, and that a topical application of SB to the exposed cortex would
attenuate the decrease in CBF following CCI TBI. Three different SB
concentrations were applied to the exposed cortex, 1–100 μM, 2 h
post-TBI. Two concentrations, 10 and 100 μM, improved CBF in
ipsilateral tissue following TBI. No effects on sham rat CBF were
found. The lack of effect of SB on CBF in sham was likely because
CSF N/OFQ levels remained unchanged from baseline in those rats.
Since we did not measure baseline CBF before surgery, it is not
known if, or to what extent, CBF in the contralateral side was also

affected by TBI. These findings improve our understanding of one of
the mechanisms by which the N/OFQ-NOP receptor system
contributes to TBI-induced deficits. However, further studies are
needed to explore the effect of systemic administration of NOP
receptor antagonists on cerebrovascular dysregulation post-TBI.

TBI also upregulates and activates MAPKs (Zeng et al., 2023).
ERK and p38 MAPKs and protein kinase C (PKC) activation were
involved in N/OFQ-mediated vasoconstrictive actions in the parietal
cortex post-FPI TBI (Armstead, 2003; Philip and Armstead, 2003;
Ross and Armstead, 2005). In this study, we evaluated changes in
MAPKs and other injury markers in pericontusional tissue collected
from sham and mTBI animals. We considered the general effect of
topical SB on the dissected tissue to be negligible since it was present
for only a short time and was washed away until previous CBF levels
returned. This appears to be a fair assessment as increased
phosphorylation of ERK was detected 3 h post-TBI in ipsilateral
tissue compared to sham (Figure 7A). The levels of ERK
phosphorylation correlated with tissue N/OFQ levels, which
indicates an association between N/OFQ levels and activation of
ERK. However, no changes in phosphorylation or total protein levels
of p38 and JNK were detected at this early time point. Further

FIGURE 8
Expression of injury markers in ipsilateral tissue from rat brain hemispheres collected 3 h post-surgery. Representative immunoblots of TBI or
ischemia-related markers from 5–6 rats in each group are shown in (A). (B, C) show expression of phospho-cofilin-1 (actin depolymerizing factor) and
cofilin-1 (B, C, respectively). Phospho-cofilin-1 was normalized to total cofilin-1 values. UCHL-1 (neuronal injury marker) (D), NF-L [axonal injury marker;
(E)], and GFAP [astrogliosis marker; (F)] were quantified by densitometric analysis of immunoblots and values were normalized to actin loading
control from the same lane. A two-tailed unpaired t-test was performed to assess the difference between TBI, and sham, and significant differences are
denoted by *p < 0.05. Values are presented as mean ± SD.
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studies are needed to link the timeline of vasoconstrictive actions
and decreased CBF post-TBI with N/OFQ-NOP receptor system-
mediated activation of MAPKs.

Acute elevations (2 h–5 days) in UCH-L1 (Liu et al., 2010; Osier
et al., 2021) andNF-L (Korley et al., 2018; Karlsson et al., 2021) levels
were previously detected in serum and CSF post-TBI. The earliest
time at which changes in GFAP levels in injured brain tissue was
detected is 3 days post-TBI (Wang et al., 2018; Niu et al., 2020), and
our results are consistent with that. One of our aims in this study was
to evaluate the effect of mTBI on injury markers in injured tissue at
3 h post-TBI. We found no changes in levels of UCH-L1, GFAP, or
NF-L in injured tissue at this early time point (Figure 8) compared to
sham. This is the first study to report on tissue levels of NF-L and
UCH-L1 at 3 h post mild CCI TBI.

Cofilin-1 is a cytoskeleton-associated protein involved in
actin filament dynamics and depolymerization (Pollard et al.,
2000). TBI and cerebral ischemia increased cofilin expression
and its de-phosphorylation in injured tissue, and it has been
used as a marker of ischemia (Campbell et al., 2012; Bahader
et al., 2023). Activation of cofilin by de-phosphorylation (e.g.,
reduced phosphorylation) leads to increased actin
depolymerization and, as a result, dendritic remodeling and
spine loss post-TBI (Campbell et al., 2012). Cofilin-1 activation
is also involved in oxidative stress and microglial activation
responses post-TBI (Bahader et al., 2023). Activated cofilin may
be involved in BBB disruption by destabilizing tight junction
adherent junction proteins connecting endothelia cells within
the BBB (Toshima et al., 2001; Suurna et al., 2006; Nagumo et al.,
2008; Shiobara et al., 2013), thus it may also become a useful
marker of BBB integrity. Several signaling pathways are involved
in cofilin-1 phosphorylation and dephosphorylation under
physiological and pathophysiological conditions in the CNS
(Namme et al., 2021). However, regulation of cofilin-1
expression and activation following TBI is not well studied.
Our results supported findings from the few previous studies
(Campbell et al., 2012; Bahader et al., 2023) that show an early
activation of cofilin by dephosphorylation in ipsilateral tissue
post-TBI. This activation of cofilin is an indication of the acute
ischemic response in injured tissue resulting from tissue damage
and decreased CBF post-TBI. No correlation was found between
cofilin-1 or p-cofilin-1 expression in tissue, and N/OFQ levels in
tissue or CSF. Further studies at later timepoints are needed to
better understand if there is a relationship between N/OFQ and
cofilin-1 activation, as well as the mechanism, in general, behind
cofilin-1 activation and upregulation post-TBI.

Conclusion

The present study demonstrated the involvement of the N/OFQ-
NOP receptor in decreased CBF 1–3 h post-mTBI. Mild TBI results
in decreased CBF, ischemia, increased release of N/OFQ into the
CSF, and activation of ERK MAPK as early as 3 h post-CCI TBI,
while other injury markers andMAPKs were unchanged at this early
time point. Together, our data suggest that acute blockade of the
NOP receptor provides a protective effect against cerebrovascular
dysregulation and potentially prevents the detrimental effects of
decreased CBF post-mTBI.
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impact (CCI), to produce mild TBI, and used the NOP receptor
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