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Background: Disulfidptosis is a metabolically relevant mode of cell death, and its
relationshipwith acutemyeloid leukemia (AML) has not been clarified. In this study,
disulfidptosis scores were computed to examine the potential biological
mechanisms.

Methods: Consensus clustering was applied to detect disulfidptosis-related
molecular subtypes. The least absolute shrinkage and selection operator
(LASSO) regression analysis was used to construct a DRG prognostic model.

Results: DRGs are upregulated in AML and associated with poor prognosis. The
higher the disulfidptosis activity score, the worse the clinical outcome for patients,
accompanied by increased immune checkpoint expression and tumor marker
pathway activity. The two molecular subtypes exhibited distinct prognoses and
tumor microenvironment (TME) profiles. A prognostic risk score model was
established using six DRGs, and the AML cohort was divided into high- and
low-risk score groups. Patients in the high-risk group experienced significantly
worse prognosis, which was validated in seven AML cohorts. Receiver Operating
Characteristic (ROC) curve analysis indicated that the area under the curve values
for risk score prediction of 1-, 3-, and 5-year survival were 0.779, 0.714, and 0.778,
respectively. The nomogram, in conjunction with clinicopathological factors,
further improved the accuracy of prognosis prediction. The high-risk score
group exhibited a higher somatic mutation frequency, increased immune-
related signaling pathway activity, and greater immune checkpoint expression,
suggesting a certain degree of immunosuppression. Patients with advanced age
and higher cytogenetic risk also had elevated risk scores. According to drug
prediction and AML anti-PD-1 therapy cohort analysis, the low-risk score group
displayed greater sensitivity to chemotherapy drugs like cytarabine and
midostaurin, while the high-risk score group was more responsive to anti-PD-
1 therapy. Finally, clinical samples were collected for sequencing analysis,
confirming that the progression of myeloid leukemia was associated with a
higher risk score and a negative disulfidptosis score, suggesting that the poor
prognosis of AML may be associated with disulfidptosis resistance.
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Conclusion: In conclusion, a systematic analysis of DRGs can help to identify
potential disulfidptosis-related mechanisms and provide effective new biomarkers
for prognosis prediction, TME assessment, and the establishment of personalized
treatment plans in AML.

KEYWORDS

disulfidptosis, acute myeloid leukemia, tumor microenvironment, prognosis,
immunotherapy

Introduction

Acute myeloid leukemia (AML) is a hematologic tumor that
originates from hematopoietic stem cells (HSCs) (Shimony et al.,
2023). The prognosis for patients with AML is extremely poor.
Currently, the conventional treatment involves induction
chemotherapy. However, due to variations in age, individual
physical condition, and disease heterogeneity, this treatment
often yields suboptimal responses, frequently resulting in relapse
or drug resistance (Bhansali et al., 2023). Therefore, finding new
therapeutic targets and prognostic markers is imperative for the
management of patients with AML.

Regulatory cell death (RCD) refers to a mode of cell death that is
governed by specific molecular pathways and can be regulated
through artificial means, such as genetics or pharmacology
(Galluzzi et al., 2018). The controlled occurrence of RCD plays a
pivotal role in bodily development and cellular homeostasis.
Conversely, dysregulated RCD is closely associated with various
diseases, including cancer. Evading cell death is recognized as a
fundamental hallmark of cancer. The presence of apoptosis
resistance in tumor cells has prompted researchers to investigate
alternative RCD mechanisms (Mohammad et al., 2015). Non-
apoptotic RCD encompasses autophagy, ferroptosis, pyroptosis,
and necroptosis. Among these, ferroptosis is a form of RCD
induced by iron-dependent lipid peroxidation discovered in
recent years, which has a unique morphology and mechanism of
occurrence (Dixon et al., 2012). Recent studies have shown that
certain cancer cells that are resistant to conventional therapies are
particularly susceptible to ferroptosis (Zhang et al., 2022).
Ferroptosis regulated by solute carrier family 7 member 11
(SLC7A11; also known as xCT)-mediated cystine uptake plays a
key role in promoting glutathione biosynthesis and mitigating
oxidative stress (Koppula et al., 2021). However, a 2017 study
demonstrated that SLC7A11 significantly promotes cell death
under glucose-starvation conditions (Goji et al., 2017; Koppula
et al., 2017; Shin et al., 2017), contradicting prior research
findings. In 2020, Liu et al. (2020) uncovered the mechanism by
which SLC7A11-mediated reduction of ingested cystine to cysteine
depends heavily on reduced nicotinamide adenine dinucleotide
phosphate (NADPH) generated by the glucose-pentose phosphate
pathway. Consequently, in glucose -starvation conditions, NADPH
is depleted in cells overexpressing SLC7A11, leading to abnormal
accumulation of disulfide stress, such as cystine, which triggers rapid
cell death. Recently, Gan et al. revealed the mechanism behind
disulfide stress-induced cell death and coined this novel mode of cell
demise as disulfidptosis (Liu et al., 2023).

In the context of AML, inhibiting SLC7A11 can enhance the
effects of chemotherapy by preventing cystine uptake (Pardieu et al.,

2022). Furthermore, AML cell growth and proliferation also depend
on more active glucose metabolism (Chen et al., 2014). Therefore,
inducing disulfidptosis through glucose starvation as a treatment
strategy for AML holds potential therapeutic value. In this study, we
conducted a comprehensive analysis of the expression patterns of
disulfidptosis-related genes (DRGs) in AML samples. We computed
disulfidptosis-related scores using single-sample gene set
enrichment analysis (ssGSEA) and analyzed the relationship
between DRGs and AML prognosis, pathway activity, and the
tumor microenvironment (TME). Additionally, we developed a
risk score model to predict the prognosis and immunotherapy
response of patients with AML. This research furnishes a more
substantial theoretical foundation and data support for the
exploration of AML disulfidptosis and provides personalized
guidance for the clinical treatment and prognosis evaluation
of AML.

Materials and methods

Data acquisition and processing

A total of 1,653 AML samples and 337 normal samples were
included in this study. AML samples included The Cancer Genome
Atlas-Acute Myeloid Leukemia (TCGA-LAML) cohort and seven
GEO cohorts (GSE10358-GPL570, GSE12417-GPL96, GSE12417-
GPL570, GSE37642-GPL96, GSE37642-GPL570, GSE71014-
GPL10558), GSE14468-GPL570) (Supplementary Table S1), and
normal samples were Genomic tissue expression (GTEx)-whole
blood cohort. For GEO cohort data from the affymetrix platform,
raw “CEL” files were downloaded and normalized with the use of the
robust multiarray averaging (RMA) method, whereas microarray
data from the other platforms were directly downloaded with a
normalized matrix file. TCGA-LAML and GTEx RNA-seq data
(RSEM TPM) were downloaded from the UCSC XENA database
(https://xenabrowser.net/datapages/). The “human.gtf” file was
adopted to raw matrix annotation. All data were analyzed using
R x64 and the associated R Bioconductor software package, and the
data information is shown in Supplementary Table S1. Ten DRGs
were retrieved from the study by Gan et al., of which, SLC7A11,
SLC3A2, RPN1, and NCKAP1 are drivers, and GYS1, NDUFS1,
OXSM, LRPPRC, NDUFA11, and NUBPL are suppressors.

Calculation of disulfidptosis-related scores

We used the ssGSEA algorithm to calculate enrichment scores
for disulfidptosis drivers and suppressors, defined as disulfidptosis
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positive score and negative score, respectively, and subtracted the
negative score from the positive score to obtain disulfidptosis
activity score (Subramanian et al., 2005).

Consensus cluster analysis of DRGs

Based on the expression profiles of 10 DRGs, the
“ConsensusCluster” package was used to perform unsupervised
clustering of the TCGA-LAML dataset by consensus clustering
method (Wilkerson and Hayes, 2010), and two cluster subtypes
with significant differences were obtained. We performed
1,000 replicates to ensure stable and reliable clustering.

Weighted correlation network analysis
(WGCNA)

WGCNA can assess patterns of gene expression correlations and
perform methods for visualization of co-expression networks. We
used the “WGCNA” software package to identify genes associated
with disulfidptosis scores in the TCGA-LAML cohort (Langfelder
and Horvath, 2008). Pearson correlation analysis was used for
adjacency matrix formation for all paired genes, and a scale-free
topology of the adjacency matrix was implemented based on the
optimal soft threshold power. Then, we further transform the
adjacency matrix into the topological overlap matrix (TOM).
Based on the TOM difference measure, a minimum module size
of 30 and a cut height of 0.2 were set to partition genes with similar
expression patterns into the same modules by average linkage
hierarchical clustering. Then, the correlation between module
eigengenes (MEs) and disulfidptosis score was evaluated, and the
modules that met the study purpose were determined according to
the degree of correlation.

Pathway enrichment analysis

For the target module genes identified by WGCNA, Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was used to identify gene functions. The Gene Set
Variation Analysis (GSVA) algorithm was used to calculate the
activity scores of individual gene sets in different samples, and the
Gene Set Enrichment Analysis (GSEA) algorithm was used to
evaluate the difference in pathway activity between patients with
high- and low-risk score groups to analyze the biological differences
among patients with different risk scores.We used q value < 0.05 as a
threshold for significant enrichment.

Assessment of TME and immune cell
infiltration

We used the ESTIMATE algorithm (Yoshihara et al., 2013)
to evaluate the immune and stromal scores for each AML sample
and applied the CIBERSORT algorithm (Newman et al., 2015)
to determine the proportion of immune cell subsets in each
sample.

Construction of risk score model

We performed univariate Cox regression analysis of
disulfidptosis activity score related genes based on p < 0.01 was
used to identify the DASRGs significantly related to AML prognosis.
In order to limit the influence of multicollinearity between variables,
the least absolute shrinkage and selection operator (LASSO)
regression analysis was used to further reduce the dimension and
screen out the optimal variables to prevent instability caused by
model estimation distortion, so as to construct an accurate
prognostic risk score model. The risk score for each sample was
obtained by multiplying the expression value of each model gene
with its corresponding coefficient and adding it. Then, the risk
scores of all patients were ranked, and AML patients were divided
into high-risk score group and low-risk score group based on the
optimal cut-off value, and the differences in clinicopathological
factors and biological characteristics between the two groups
were further analyzed.

Assessment of mutation and treatment
sensitivity

We download the somatic mutation data from the TCGA
database (https://portal.gdc.cancer.gov/), and compared the
mutation differences in high- and low-risk score groups. The
“pRRophetic” package was used to predict the half maximal
inhibitory concentration (IC50) of AML samples to commonly
used therapeutic drugs (Geeleher et al., 2014). A smaller
IC50 value indicates a better treatment effect. We further used
the SubMap (https://cloud.genepattern.org/gp) algorithm to predict
the response of different risk score groups to anti-PD-1 and anti-
CTLA4 immune checkpoint inhibitors.

Single-cell RNA-seq data processing

We downloaded AML single-cell sequencing data containing
21 cell types (GSE116256) from the GEO database, as well as another
group of AML Single-cell sequencing data in the context of PD-1
blocking (GSE198052). We referred to previously published
literature related to single cells (Jiang et al., 2022; Zheng et al.,
2023). The 10 × scRNA-seq data were processed by R software
according to a standardized procedure. The original gene expression
matrix was introduced into the “Seurat” package for processing, only
genes expressed in at least three single cells, and cells with unique
molecular identifiers (UMI) counts <200 were removed. Moreover,
only cells expressing more than 1,500 genes and less than
6,000 genes were included. The percentage of mitochondrial or
ribosomal genes was calculated for each cell, and cells with more
than 20% mitochondrial gene expression were considered low
quality cells and also not subjected to downstream analysis.
Then, normalized counts were obtained by using the library size
normalization of the original matrix, and the top 2,000 genes with a
large coefficient of variation were obtained by using the
“FindVariableFeatures” function. After z-score processing,
principal component analysis (PCA) was performed based on
high-variable genes. The uniform manifold approximation and
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projection (UMAP) algorithm was used to realize the visualization
of clustering. Cell types were referred to the annotation file provided
by van Galen et al. (2019).

Myeloid leukemia clinical sample collection

Clinical samples were collected in accordance with the
Declaration of Helsinki and institutional guidelines, and informed
consent was obtained from each patient and healthy volunteer.
Ethical approval was obtained from the Ethics Committee of the
Second Affiliated Hospital of Nanchang University [No. review.
(2018) No. (092)], and all experimental protocols and methods were
performed in accordance with relevant protocols and regulations.
Five samples from patients with newly diagnosed chronic myeloid
leukemia without any previous treatment, five samples from patients
in blast crisis, and five normal samples from healthy volunteers were

collected according to the World Health Organization classification
of tumors of hematopoietic and lymphoid tissues. Detailed details of
sample collection, next-generation sequencing, and processing
procedures are available in our previous publications (Li et al., 2020).

Statistical analysis

Wilcoxon and Kruskal–Wallis tests were used for between-two
and multiple-group comparisons, respectively. The “survminer”
package was used to determine the optimal cut-off value. The
number of patients in a single risk group was set to be no less
than 30% of the total population. Kaplan-Meier survival analysis was
performed using the log-rank test. The receiver operating
characteristic (ROC) curve was used to evaluate the specificity and
sensitivity of the risk score, and the area under the curve (AUC) was
determined. Bilateral p < 0.05 was considered statistically significant.

FIGURE 1
Expression characteristics of disulfidptosis-related genes (DRGs) and correlation analysis of disulfidptosis score. (A) Differential expression analysis
of DRGs between AML samples and normal samples; The red ones are drivers and the blue ones are suppressors. (B) Correlation analysis of DRGs
expression and its relationship with AML prognosis. (C) PPI network connectivity diagram of DRGs. (D) Potential regulatory relationships between
transcription factors (TFs) and DRGs. (E) Differences in disulfidptosis score between AML samples and normal samples. (F–H) K-M curve analysis of
positive, negative, and activity scores for disulfidptosis. Log-rank test. (I)Correlation analysis between disulfidptosis score and glucosemetabolic pathway
activity. (*p < 0.05; **p < 0.01; ***p < 0.001).
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Results

Analysis of DRG expression and scoring
patterns in bulk RNA-sequencing

In comparison with normal samples, DRGs exhibited
upregulated expression in AML samples, suggesting potential

crosstalk between DRGs and AML (Figure 1A). Expression
correlation analysis indicated positive correlations among most
DRGs, with suppressor NDUFA11 showing a negative correlation
with drivers SLC7A11 and NCKAP1. Additionally, NCKAP1 and
GYS1 exhibited a negative correlation (Figure 1B), suggesting the
presence of an antagonistic regulatory mechanism in disulfidptosis.
Cox regression analysis identified DRGs as risk factors, except for

FIGURE 2
Analysis of potential biological mechanisms of disulfidptosis. (A) UMAP analysis of the AML single-cell sequencing dataset GSE116256 shows the
distribution characteristics of all cell types. (B,C) The bubble maps show the expression characteristics of disulfidptosis genes and scores in all cell types.
(D–F)Heatmaps showe the distribution characteristics of disulfidptosis scores in all cells. (G)Differences in disulfidptosis scores between normal cells and
AML malignant cells. (H–K) Correlation analysis of disulfidptosis score with immune cell infiltration (H), TME score (I), immune checkpoint
expression (J), and tumor marker pathway activity (K). (*p < 0.05; **p < 0.01; ***p < 0.001).
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NUBPL (Figure 1C). K-M curve analysis demonstrated that high
expression groups of SLC7A11, SLC3A2, OXSM, NDUFA11, and
NDUFS1 had significantly worse prognoses than low expression
groups, while the high expression group of NUBPL had a
significantly better prognosis (Supplementary Figures S1A, B).
PPI network analysis revealed NDUFS1 as the hub gene among
the suppressors (Figure 1C). Furthermore, a set of TFs with potential
regulatory roles with DRGs was identified (Figure 1D). Using the
GSVA algorithm, disulfidptosis positive, negative, and activity
scores were computed. Compared to normal samples, AML
samples exhibited higher disulfidptosis positive and activity
scores and lower negative scores, indicating AML cell resistance
to disulfidptosis (Figure 1E). K-M curve analysis showed that
patients in both high positive and activity score groups had
worse prognoses than those in low score groups, with the
opposite observed for the negative score (Figures 1F–H). The
occurrence of disulfidptosis was found to be influenced by
glucose starvation, with glucose metabolic pathways such as
citrate cycle (TCA cycle), glycolysis gluconeogenesis, pentose and
glucuronate interposition, and pentose phosphate pathway
enrichment scores being significantly positively correlated with
disulfidptosis negative score. Conversely, the TCA cycle was
significantly negatively correlated with the positive score
(Figure 1I), implying that increased glucose metabolism activity
is unfavorable for disulfidptosis occurrence.

Validation of DRG expression and scoring
patterns in single-cell sequencing

The GSE116256 cohort included bone marrow samples from
16 patients with AML and 5 healthy participants, encompassing
21 cell types (Figure 2A). Among these, six types of AML malignant
cells were identified as HSC-like, progenitor-like, granulocyte-
monocyte-progenitor (GMP)-like, promonocyte-like, monocyte-
like, and conventional dendritic cell-like. Expression profile
analysis revealed that disulfidptosis suppressor genes like
LRPPRC and NDUFA11 exhibited higher detectable expression
rates in single cells, particularly in GMP-like cells (Figure 2B).
Furthermore, the calculation of disulfidptosis scores in various
cells showed that AML malignant cells, especially GMP-like cells,
had higher negative scores (Figures 2C–F). Additionally, malignant
cells demonstrated higher positive scores, resulting in no significant
difference in activity scores between them and normal cells
(Figure 2G).

Exploration of the potential mechanism of
disulfidptosis

Correlation analysis of immune infiltration showed that a high
disulfidptosis activity score was associated with reduced infiltration
of M2 macrophages and memory B cells, and increased infiltration
of neutrophils. Conversely, high disulfidptosis negative scores were
associated with increased infiltration of memory B cells,
M1 macrophages, mast cells, and resting CD4+ T cells, along with
reduced infiltration of monocytes and activated CD4+ T cells
(Figure 2H). Analysis of TME characteristics demonstrated that

higher disulfidptosis activity scores were associated with higher
immune and stromal scores and lower tumor purity, whereas the
opposite trend was observed for negative scores (Figure 2I). This
suggests the involvement of disulfidptosis in antitumor responses
within the AML TME. Moreover, the disulfidptosis activity score was
significantly positively correlated with the expression ofmost immune
checkpoints, with the opposite seen for the negative score (Figure 2J).
Pathway analysis revealed that the activity score was positively
correlated with the enrichment score of most tumor marker
pathways (Figure 2K). Among these pathways, proliferation-related
signaling pathways like MYC targets V1/V2 and DNA repair were
negatively correlated with the activity score, indicating a potential
inhibitory effect of disulfidptosis on cell viability. Correlation analysis
with clinicopathological factors showed that white blood cell (WBC)
count exhibited a negative correlation with both the positive score and
activity score, while age showed a positive correlation with the activity
score and a negative correlation with the negative score (Figure 3A). In
the comparison of categorical variables, the activity score and positive
score increased with an increase in cytogenetic risk, with the highest
values observed in the French-American-British (FAB) classification
of M6 andM7 (Figures 3B, C). Moreover, disulfidptosis scores did not
show significant differences among patients (Figure 3D).

Identification of potential DRGs and
signaling pathways

The weighted correlation network analysis (WGCNA) analysis
was performed on The Cancer Genome Atlas—Acute Myeloid
Leukemia (TCGA-LAML) dataset to identify additional potential
DRGs. The cluster dendrogram displayed an increase in color depth
corresponding to the magnitude of the disulfidptosis score
(Figure 3E). Figures 3F, G show the scale-free fit exponent and
average connectivity analysis for various soft threshold powers. The
blue and purple module feature genes were combined with a cut
height of 0.2 (Figures 3H, I). A soft threshold power of β = 5
(unscaled R2 = 0.9) was selected to categorize the top 5,000 genes,
sorted by standard deviation, into 14 independent co-expression
modules (Figure 3J). The correlation plot of the module-trait
relationship indicated that the magenta gene module, comprising
152 genes, exhibited the highest correlation with the disulfidptosis
activity score (Figures 3J, K; Supplementary Table S2). KEGG
analysis highlighted that these genes were mainly enriched in
signaling pathways such as metabolic pathways, hematopoietic
cell lineage, platelet (PLT) activation, and proteoglycans in cancer
(Figure 3L).

Identification of disulfidptosis-related
molecular subtypes and analysis of their
differences in biological characteristics

We performed a consensus cluster analysis based on the
expression of DRGs retrieved in the study of Gan et al.
According to the distribution characteristics of the cluster plots
and considering the small size of samples in the TCGA-LAML
cohort (Supplementary Figure S2). We chose cluster number 2 as
optimal. Two disulfidptosis-related molecular subtypes, Cluster A
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and Cluster B, were thus identified (Figure 4A). Cluster B
demonstrated a significantly worse prognosis than Cluster A
(Figure 4B). The expression of RPN1, GYS1, SLC3A2, and
NDUFA11 was significantly higher in Cluster B than in Cluster A
(Figure 4C). Additionally, Cluster A exhibited a higher disulfidptosis
negative score, while Cluster B displayed a higher activity score
(Figure 4D). TME analysis indicated that Cluster B possessed higher
stromal and immune scores (Figure 4E), primarily due to a greater
proportion of monocyte infiltration. In contrast, Cluster A was
enriched in more naive B cells, resting memory CD4+ T cells,
and eosinophils (Figure 4F). Higher expression of PD-1,
TNFRSF9, and CD86 was observed in Cluster B, suggesting the
potential presence of immunosuppression in this subtype
(Figure 4G). Difference analysis results showed that the activity
of 50 tumormarker pathways in Cluster B exceeded that in Cluster A
(Figure 4H).

Prognostic predictive value of DRG analysis

Univariate Cox regression analysis on potential DRGs identified
by WGCNA analysis revealed significant correlations between AML
prognosis and GCLM, PLEKHH3, NEO1, CSF1, ST6GALNAC4,
AK1, and SLC14A1 (Figure 5A). To reduce dimensionality and
construct a prognostic risk score model, LASSO regression
analysis was performed using six genes, excluding PLEKHH3
(Figures 5B, C) (Supplementary Table S3). Patients with AML
were stratified into high- and low-risk score groups based on the
optimal cut-off value (Figure 5D). Compared to the low-risk score
group, the high-risk score group exhibited a higher number of
deceased patients (Figure 5E), higher expressions of GCLM,
NEO1, CSF1, ST6GALNAC4, and AK1, and lower expression of
SLC14A1 (Figure 5F). Survival analysis demonstrated that the high-
risk score group had a significantly worse prognosis than the low-

FIGURE 3
Analysis of clinical relevance of disulfidptosis scores and identification of potential DRGs. (A) Correlation analysis between disulfidptosis scores and
clinicopathological factors. (B–D) Differences in disulfidptosis scores among clinicopathological factors. (E) Clustering dendrogram of AML samples.
Color intensity was positively correlated with disulfidptosis scores. (F,G) Scale-free fit index (F) and average connectivity (G) analysis of various soft
threshold powers. (H) the cluster of module feature genes. The red line indicates the cutting height (0.2). (I) Dendrogram of clustering based on
different measures (1-TOM). (J) Heatmap of correlation between module signature genes and disulfidptosis score. Each cell contains a p-value and a
correlation coefficient. (K) Scatter plot of module characteristic genes associated with disulfidptosis activity score in magenta modules. (L) KEGG
enrichment analysis of magenta module genes. (*p < 0.05; **p < 0.01; ***p < 0.001).
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risk score group (Figure 5G). ROC curve analysis revealed high area
under the curve (AUC) values for the risk score at 1, 3, and 5 years
(0.779, 0.714, and 0.778, respectively), indicating the robust
prognostic value of the risk score (Figure 5H). Univariate and
multivariate Cox regression analyses confirmed the risk score as
an independent factor for predicting AML prognosis (p < 0.001)
(Figures 5I, J).

Validation of prognostic ability of risk score
model and clinical nomogram construction

The prognostic prediction ability of the risk score model was
further validated across seven AML cohorts, with the high-risk score
group consistently exhibiting a significantly worse prognosis than
the low-risk score group (Figures 6A–G). Univariate Cox regression
analysis confirmed the prognostic power of risk score model (p <
0.05) (Figure 6H). A clinical nomogram was constructed by

combining clinicopathological factors significantly associated with
AML prognosis, namely, age and cytogenetic risk (Figure 6I).
Calibration curve analysis demonstrated the consistency between
observed overall survival (OS) and predicted OS (Figure 6J). ROC
curve analysis showed high AUC values for the nomogram at 1, 3,
and 5 years (0.784, 0.769, and 0.871, respectively), confirming its
strong prognostic value (Figure 6K).

Immunological features, pathway activity,
genomic traits, and clinicopathological
factors differences between high- and low-
risk score groups

Further exploration was conducted to explore potential reasons
for the significant prognostic differences between the high- and low-
risk score groups. The high-risk score group had a higher count of
monocytes, while the low-risk score group had more memory B cells

FIGURE 4
Identification of disulfidptosis-related molecular subtypes and analysis of differences in biological characteristics between subtypes. (A) Two
molecular subtypes were identified by consensus clustering. (B) Survival analysis between subtypes. (C)Heatmap shows the expression characteristics of
DRGs between subtypes. (D–H)Differences in disulfidptosis score (D), TME score (E), immune cell infiltration (F), immune checkpoint expression (G), and
tumor marker gene set score (H) between subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001).
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and resting and activated mast cells (Figure 7A). Notably, immune
checkpoint expression, including PD-L1, CTLA1, LAG3, PD-1, PD-
L2, CD80, CD86, and TNFRSF9, was significantly upregulated in the
high-risk score group (Figure 7B). GSEA enrichment analysis
revealed heightened activity in immune-related signaling
pathways, such as antigen processing and presentation, B cell
receptor signaling, chemokine signaling, cytokine-cytokine
receptor interaction, and neutrophil extracellular trap formation
in the high-risk score group (Figure 7C). Conversely, metabolism-
related pathways, including ascorbate and aldarate metabolism,
glycosaminoglycan biosynthesis-heparan sulfate/heparin,
hedgehog signaling, lipoic acid metabolism, and pentose and
glucuronate interposition, were enriched in the low-risk score
group (Figure 7D). The high-risk score group displayed a higher
gene mutation rate, with DNMT3A, NPM1, FLT3, TP53, and
RUNX1 being the most frequently mutated genes (Figures 7E, F).
Risk scores also significantly differed across various clinical

characteristics, with patients of advanced age, male gender, and
worse cytogenetic risk demonstrating higher risk scores (Figures
7G–I). In terms of the French-American-British (FAB)
classification, patients with the M3 type had the lowest risk
scores, while patients with the M5-M7 type exhibited higher risk
scores (Figure 7J). Notably, risk scores did not differ significantly
across white blood cells (WBC) and platelet (PLT) count groups
(Figures 7K, L).

Sensitivity of chemotherapy and
immunotherapy differences between high-
and low-risk score groups

Sensitivity to commonly used AML drugs was predicted, with
the low-risk score group exhibiting lower IC50 values for cytarabine
and midostaurin, indicating greater sensitivity to these drugs. No

FIGURE 5
Construction of risk scoring model. (A) Cox regression analysis was used to identify DRGs significantly associated with prognosis. (B) The penalty
coefficient of theminimum 10-fold cross-validation error point was calculated to determine the correspondingmodel gene. (C)Determination of model
gene coefficients. (D–F) Based on the optimal cut-off value, patients in the TCGA-LAML cohort were divided into high- and low-risk score groups (D), the
survival status distribution (E), and model gene expression (F) in high- and low-risk score groups. (G) Survival analysis between high- and low-risk
score groups. (H) Time-dependent ROC curve analysis of risk scores. (I,J) Univariate and multivariate Cox regression analysis of clinicopathological
factors and risk score.
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significant difference in sensitivity to doxorubicin was observed
(Figures 8A–C). Predictive results for immunotherapy showed that
the high-risk score group was more responsive to anti-PD-
1 treatment, with significantly upregulated PD-1 expression
(Figure 8D). We further analyzed the differences in risk scores
among different patients in a set of AML single-cell sequencing
datasets after anti-PD-1 treatment. Figures 8E–G shows AML cell
distribution, treatment response versus non-response population,
and expression levels of risk scores in patients with AML,
respectively. Analysis of the risk scores revealed that the single-
cell risk score and average risk score were higher in patients with
AML who did not respond to anti-PD-1 therapy compared to those
who responded (Figures 8H, I). In the TCGA-LAML cohort,
patients with both high PD-1 expression and high-risk scores
exhibited the worst prognosis, while those with low levels of both
had the best prognosis (Figure 8J). These results suggest that the risk
score can predict the sensitivity of patients to chemotherapy and
immunotherapy.

Validation in a real-world clinical cohort

In a real-world clinical cohort, transcriptome sequencing was
performed on samples from five normal individuals, five myeloid
leukemia chronic-phase patients, and five myeloid leukemia acute-
phase patients. Compared to the normal samples, the expression of
CSF1 was upregulated in the chronic and acute phase samples, while
AK1, NEO1, and SLC14A1 were downregulated. The expression of
GCLM was upregulated in the chronic phase samples, while
ST6GALNAC4 showed no significant change (Figure 9A). Risk
scores increased with the progression of myeloid leukemia
(Figure 9B). Correlation analysis with clinicopathological factors
indicated positive correlations between the risk score and WBC,
PLT, hemoglobin (HB), and age, while red blood cell (RBC) count
showed a negative correlation (Figure 9C). Although the small
sample size did not yield significant correlations (p < 0.05),
disulfidptosis negative scores increased and activity scores
decreased with the progression of myeloid leukemia (Figure 9D),

FIGURE 6
Validation of risk score model and construction of nomogram. (A–G) survival analysis between high- and low-risk score groups in the validation
cohorts. (H)Univariate regression analysis were performed to evaluate the prognostic predictive power of risk score model in the training cohort and the
validation cohorts. (I)Nomogram constructed by risk score combined with clinicopathological factors to predict OS of AML patients. (J) time-dependent
calibration curve to verify the predictive power of the nomogram. (K) ROC curve analysis of nomogram.
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confirming the presence of disulfidptosis resistance. Notably, there
were no significant differences in disulfidptosis scores between
gender groups (Figure 9E). Positive and active scores were
positively correlated with WBC, RBC, PLT, HB, and age, while
negative scores exhibited negative correlations with WBC, PLT, and
HB (Figure 9F).

Discussion

Evasion of cell death plays a crucial role in the occurrence and
development of tumors, contributing significantly to drug resistance
(Strasser and Vaux, 2020). The rapid proliferation of AML cells
seriously affects the hematopoietic and immune systems of patients,

FIGURE 7
Differences in clinical characteristics and biological factors between high- and low-risk score groups. Differences in immune cell infiltration (A),
immune checkpoint expression (B), enriched pathways (C,D), and somatic mutation frequency (E,F) between high- and low-risk score groups.
Differences in risk scores between subgroups with different clinicopathological factors (G–L). FAB, French–American–British; WBC, white blood cell.
(*p < 0.05; **p < 0.01; ***p < 0.001).
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leading to complications like bleeding and infections that pose
substantial health risk (Shimony et al., 2023). Tumor cells benefit
from heightened energy metabolism and rely on antioxidants such
as glutathione to scavenge reactive oxygen species generated during
metabolism, protecting the cells from oxidative damage (Hole et al.,
2011). Disulfidptosis, a novel metabolism-related cell death
mechanism proposed by Liu et al. (2023), relies on glutamate
intake through xCT and is influenced by glucose scarcity. Our
study has revealed abnormal expression patterns of DRGs in
AML, showing a strong correlation with patient prognosis. It has
also identified two subtypes related to disulfidptosis with significant
differences in biological characteristics. Our DRG-based risk score
model can accurately predict the prognosis and treatment sensitivity
of patients with AML.

All 10 DRGs were significantly upregulated in AML samples,
with all except NUBPL serving as prognostic risk factors, indicating
the potential role of DRGs in carcinogenesis. Patients with higher

disulfidptosis positive and activity scores exhibited a poorer
prognosis, while the opposite was true for negative scores. AML
cells with heightened activity scores may be more sensitive to
disulfidptosis. Analysis of single-cell data also confirmed the
overexpression of disulfidptosis suppressor genes in AML
malignant cells and revealed a higher ferroptosis inhibition score.
These findings align with our clinical cohort analysis, suggesting that
AML progression is accompanied by greater resistance to
disulfidptosis. Thus, patients with a poor prognosis might benefit
from disulfidptosis induction to inhibit AML cell activity. Moreover,
a significant negative correlation between the TCA cycle, a vital
glucose metabolism pathway, and activity scores suggests its pivotal
role in inhibiting disulfidptosis in AML cells (Kreitz et al., 2019). A
high activity score was associated with greater immune scores,
higher immune checkpoint expression, and more active tumor
marker pathways. These factors may contribute to the poorer
prognosis seen in these patients.

FIGURE 8
Differences in chemotherapy sensitivity and immunotherapy response between high- and low-risk score groups. (A–C) Sensitivity prediction of
cytarabine, doxorubicin, and midostaurin for AML in high- and low-risk score groups. (D) Prediction of response to anti-PD-1 and anti-CTAL4
immunotherapy in different risk score groups. (E)UMAP analysis of the AML single-cell sequencing dataset GSE198052 shows the distribution of AML cell
expression (indicated by different colors) in different patients. (F) Distribution of AML cells in patients with and without response to anti-PD-
1 therapy. (G) Risk scores for all AML cells of patients with and without response to anti-PD-1 therapy. (H,I) Analysis of differences in all AML cellular risk
scores (H) and mean risk scores (I) between patients who responded and those who did not respond to anti-PD-1 therapy. (J) Survival analysis of TCGA-
LAML patients grouped according to risk score and PD-1 expression. PT, The patient.

Frontiers in Pharmacology frontiersin.org12

Zhong et al. 10.3389/fphar.2023.1272701

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1272701


Furthermore, based on the expression clustering of DRGs, we
identified two molecular subtypes, with Cluster B patients exhibiting
significantly worse prognosis. This group displayed higher
expressions of PD-1, TNFRSF9, and CD86, along with increased
enrichment scores for tumor marker pathways, distinguishing them
from Cluster A patients.

Our analysis of potential DRGs, identified through WGCNA,
revealed close associations with metabolic pathways. This highlights
the intricate relationship between tumor metabolism and
disulfidptosis. The DRG-based risk score model can accurately
predict the prognosis of patients with AML and patients with
high-risk scores exhibiting worse clinical outcomes. The risk
score demonstrated robust predictive accuracy, with AUC values
for 1-, 3-, and 5-year prognosis prediction exceeding 0.7. The
model’s prognostic value was consistently confirmed across seven
AML cohorts. Both univariate and multivariate regression analyses
supported the risk score’s independence as a prognostic factor for
AML. Moreover, our clinical cohort analysis confirmed a positive
correlation between the risk score and myeloid leukemia
progression. The nomogram, constructed by combining
clinicopathological factors, offers an intuitive prediction of
patient OS with high accuracy.

Next, we focused on the clinical and biological differences
between high- and low-risk score groups. High-risk score
patients exhibited more active immune-related signaling

pathways, but their elevated immune checkpoint expression,
particularly of PD-1, likely contributed to the poorer prognosis.
These patients also showed a higher somatic mutation rate, a
common characteristic of AML, with unfavorable cytogenetic
risk, older age, and male gender associated with higher risk
scores. The analysis indicated that patients with high-risk scores
may respond well to anti-PD-1 therapy. Furthermore, their
sensitivity to common chemotherapy agents such as cytarabine
and midostaurin was lower. This underscores the importance of
personalized treatment for patients with AML based on their risk
scores.

In conclusion, our findings demonstrate a connection between
DRGs and the occurrence and progression of AML. This
connection is closely related to TME characteristics, immune
status, and pathway activity. The DRG-based risk score model is
a powerful tool for predicting prognosis, revealing differences in
immune characteristics, and guiding personalized AML treatment.
While this study has shed light on the expression patterns,
potential biological mechanisms, and prognostic value of DRGs
and pathways, further in vivo and in vitro experiments are
necessary to elucidate their role in AML cells. Additionally,
larger real-world cohorts will be required to validate the
prognostic potential of the risk score model. Our future studies
aim to provide deeper insights into the mechanisms of
disulfidptosis in AML.

FIGURE 9
Clinical cohort was used to verify the correlation of disulfidptosis scores and risk score with disease progression. (A,B) Differences in the expression
of risk scoring model genes (A) and risk score (B) among normal samples, myeloid leukemia chronic-phase samples and myeloid leukemia acute-phase
samples. (C) Correlation analysis between risk score and clinicopathological factors. (D) Differences in disulfidptosis scores among normal samples,
myeloid leukemia chronic-phase samples andmyeloid leukemia acute-phase samples. (E)Differences in disulfidptosis scores between patients with
different genders. (F) Correlation analysis between disulfidptosis scores and clinicopathological factors.
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