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In order to achieve optimal glycemic control, intensive insulin regimes are needed
for individuals with Type 1 Diabetes (T1D) and insulin-dependent Type 2 Diabetes
(T2D). Unfortunately, intensive glycemic control often results in insulin-induced
hypoglycemia. Moreover, recurrent episodes of hypoglycemia result in both the
loss of the characteristic warning symptoms associated with hypoglycemia and an
attenuated counterregulatory hormone responses. The blunting of warning
symptoms is known as impaired awareness of hypoglycemia (IAH). Together,
IAH and the loss of the hormonal response is termed hypoglycemia associated
autonomic failure (HAAF). IAH is prevalent in up to 25% in people with T1D and up
to 10% in people with T2D. IAH and HAAF increase the risk of severe hypoglycemia
6-fold and 25-fold, respectively. To reduce this risk for severe hypoglycemia,
multiple different therapeutic approaches are being explored that could improve
awareness of hypoglycemia. Current therapies to improve awareness of
hypoglycemia include patient education and psychoeducation, the use of
novel glycemic control technology, pancreas/islet transplantation, and drug
therapy. This review examines both existing therapies and potential therapies
that are in pre-clinical testing. Novel treatments that improve awareness of
hypoglycemia, via improving the counterregulatory hormone responses or
improving hypoglycemic symptom recognition, would also shed light on the
possible neurological mechanisms that lead to the development of IAH. To
reduce the risk of severe hypoglycemia in people with diabetes, elucidating the
mechanism behind IAH, as well as developing targeted therapies is currently an
unmet need for those that suffer from IAH.
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Impaired awareness of hypoglycemia—complication
of insulin treated diabetes

For people with diabetes, hypoglycemia is caused by excess insulin action in the setting of
impaired counterregulation. In people who rely on insulin therapy to control their blood
sugar levels, episodes of hypoglycemia increase the risk for subsequent episodes of
hypoglycemia as part of a vicious cycle (Cryer, 1993; Davis et al., 2000; Muneer, 2021).
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With recurrent episodes of hypoglycemia, brain glucose sensing
becomes impaired and the usual neuronal signaling pathways that
elicit a counterregulatory response to raise blood glucose levels are
diminished (Muneer, 2021). Thus, in the setting of impaired insulin
and glucagon responses to hypoglycemia, recurrent hypoglycemia
induces a syndrome of Hypoglycemia Associated Autonomic Failure
(HAAF) that is composed of an impaired awareness of
hypoglycemia (IAH) and a blunted counterregulatory response
(Davis et al., 2000). The blunted counterregulatory response
consists of impaired adrenergic signaling that results in an
impaired endogenous epinephrine secretion from the adrenal
medulla (Muneer, 2021). In conjunction with reduced autonomic
signaling, neurogenic symptoms of hypoglycemia are also
attenuated. Thus, people with recurrent episodes of insulin-
induced hypoglycemia have a diminished ability to detect hunger,
sweating, tremors, or other signals that indicate that carbohydrates
should be ingested to raise blood glucose levels (Cryer, 1993; Davis
et al., 2000; Muneer, 2021).

With better glycemic control, patients with Type 1 (T1D) and
insulin-dependent Type 2 Diabetes (T2D) have been able to
reduce the risk for diabetes complications (e.g., retinopathy,
neuropathy, and nephropathy) (Holman et al., 2008; Diabetes,
2016). Yet, as patients intensify glycemic control, the risk for
iatrogenic hypoglycemia increases proportionately (Holman
et al., 2008; Lipska et al., 2014; Diabetes, 2016; Chittineni
et al., 2019). From 1999 to 2011, there has been a trend in
reduced hospitalizations for hyperglycemia, but the rates of
hospital admissions for severe hypoglycemia remain almost
two-fold higher than those for hyperglycemia (Lipska et al.,
2014). Severe hypoglycemia is therefore a burden for patients
with established diabetes and increases the risk of adverse
clinical outcomes (Mantovani et al., 2016). Severe
hypoglycemia is also associated with impaired cognitive
function (Deary et al., 1993). Overall, hypoglycemia remains
the rate-limiting factor in patients striving to achieve optimal
glycemic control in people with Type 1 and longstanding Type
2 Diabetes (Cryer, 2014).

In addition to recurrent episodes of hypoglycemia, other
factors can impair counterregulation and/or induce IAH and
thus contribute to the risk for hypoglycemia (Martyn-Nemeth
et al., 2019). Nocturnal hypoglycemia is also prevalent in T1D.
Barnard et al. showed that 35% of patients with T1D self-reported
having experienced hypoglycemia while sleeping (Barnard et al.,
2016). People with IAH often fail to wake from sleep to correct an
episode of hypoglycemia due to their impaired activation of the
autonomic nervous system in response to hypoglycemia (Jones
et al., 1998; Banarer and Cryer, 2003). Another confounder in
achieving optimal glycemic control is exercise (Martyn-Nemeth
et al., 2019; Romeres et al., 2021). An bout of exercise increases
glucose utilization and also increases tissue sensitivity to insulin.
This combination lowers blood glucose and increases the risk and
incidence of hypoglycemia, compared to insulin alone (Munoz
et al., 2018; Nguyen et al., 2021; Romeres et al., 2021). Moreover,
antecedent exercise has been shown to blunt awareness and the
counterregulatory response to hypoglycemia, thus contributing to
the development of HAAF (Galassetti et al., 2001; Sandoval et al.,
2004).

Diagnosis of impaired awareness of
hypoglycemia

Since HAAF increases the risk for severe hypoglycemia by 25-
fold (Cryer, 2016), it is important for healthcare providers to
determine if their patients can sense hypoglycemia. Several
questionnaires have been developed to assist the diagnosis of
IAH. The Gold Score is a hypoglycemia questionnaire in which
subjects are asked a single question, “Do you know when your
hypoglycemic episodes are commencing?” (Gold et al., 1994; Ang
et al., 2023). The patient responds using a 7-point Likert scale where
one to two denotes awareness, 3 is equivocal, and four to seven
indicates unawareness (Gold et al., 1994). The Clark Score is a more
multi-dimensional survey which consists of eight questions that are
used to achieve objective answers regarding awareness of
hypoglycemia (Clarke et al., 1995; Ang et al., 2023). With a score
range from 0 to 7, a response total of 4 or above indicates IAH
(Clarke et al., 1995; Lin et al., 2019; Ang et al., 2023). The Pedersen-
Bjergaard questionnaire asks patients to recall their previous
experiences with hypoglycemia and asses their ability to
recognize symptoms of hypoglycemia (Pedersen-Bjergaard et al.,
2003). The Pedersen-Bjergaard Score provide a unique
understanding of the multiple levels of awareness ranging from
“normal awareness, impaired awareness, and unawareness”
(Pedersen-Bjergaard et al., 2003). HypoA-Q is a more recently
developed hypoglycemia assessment instrument that is used to
characterize IAH and allow for “a more definitive diagnosis
of IAH” (Speight et al., 2016). Since the IAH questionnaires
vary, some discrepancies can arise such as overestimating
impaired awareness in populations that may still have awareness
intact, thus leading to the apparent failure of some studies to
detect significant improvements in response to clinical
interventions (Sepulveda et al., 2020; Ghandi et al., 2021; Ang
et al., 2023).

These questionnaires have been criticized for 1) having a high
degree of inter-questionnaire variability in identifying subjects with
IAH and subjects with impaired counterregulation, 2) susceptibility
to recall bias by the subject, 3) lacking sensitivity to detect changes in
hypoglycemia awareness over a short period, and 4) were developed
in the pre-continuous glucose monitor (CGM) era (excluding
HypoA-Q). Also, hypoglycemia questionnaires do not distinguish
whether awareness reflects true restoration of hypoglycemia
awareness (i.e., improvement in symptom recognition) versus or
“electronic awareness” by noting the glucose trace falling or hearing
the alarms with CGM (Reddy et al., 2018; Lin et al., 2020a).

Hypoglycemic questionnaires do have many meritorious
qualities in that they are 1) inexpensive, 2) non-invasive, and 3)
amenable to out-patient settings. In addition, these questionnaires
have been validated and adapted to populations beyond their
original demographic (Alkhatatbeh et al., 2019; Yosef, 2021;
Takagi et al., 2022a). Added benefits for these questionnaires
include them being flexible to meet a large sample size
(Sepulveda et al., 2020; Ghandi et al., 2021; Takagi et al., 2022a;
Ang et al., 2023). More recent studies also demonstrate that
patients with IAH diagnosed by questionnaires continue to
experience higher risks of severe hypoglycemia (Lin et al., 2019;
Lin et al., 2022).
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Impairedawarenessofhypoglycemia (IAH)
therapies

Mistimed or imprecise dosing of insulin increases the likelihood of
hypoglycemic events and recurrent episodes of hypoglycemia lead to
the development of IAH (Cryer, 1993; Davis et al., 2000; Geddes et al.,
2008; vanMeijel et al., 2020;Muneer, 2021). In addition to people who
have a history of hypoglycemic events, certain populations are at a
greater risk for hypoglycemic episodes and IAH, such as the young,
elderly, and those with comorbidities (Munshi et al., 2011; Cengiz
et al., 2013; Farrell and McCrimmon, 2021). Thus, identifying
individuals who are at a higher risk for severe hypoglycemia and
IAH is a priority for clinical providers and their patients in order to
decrease the incidence of both events.

In spite of their limitations (see above), the most practical
method to assess for IAH in a clinical setting is hypoglycemia
questionnaires. However, if patients are not asked about
hypoglycemia or fail to report asymptomatic hypoglycemia, the
diagnosis of IAH can be missed (Farrell and McCrimmon, 2021).
Therefore, it is extremely important for providers to inquire about
and for patients to be educated about IAH. After identification of
IAH, the goals would be to provide at-risk patients with strategies to
recognize and avoid hypoglycemia.

Prior to advanced diabetes technology such as CGMs and the
automated insulin delivery systems, several of these earlier studies
demonstrated that the scrupulous avoidance of recurrent episodes of
hypoglycemia could restore (at least partially) awareness of
hypoglycemia (Cranston et al., 1994a; Fanelli et al., 1996; Fritsche
et al., 2001). To the extent that HAAF may be reversed (at least
partially), avoidance of hypoglycemia is a practical goal treatment for
IAH. Unfortunately, even withmodern technology, complete avoidance

of hypoglycemia is difficult, compounded by the evidence that only one
to two episodes of hypoglycemia are sufficient to induce IAH (Galassetti
et al., 2001). In the setting of intensive glycemic control achieved with
intensive insulin delivery, complete avoidance of hypoglycemia may not
be realistic for some individuals. The question remains whether
complete avoidance of hypoglycemia using the latest strategies can
restore hypoglycemia awareness. Conversely, if iatrogenic hypoglycemia
cannot be completely avoided, analysis of CGM data will enable
researchers to determine the maximal amount of time spent in the
hypoglycemic range that will still allow for amelioration/restoration of
IAH and the defective counterregulatory response.

Given the complexity of IAH, a variety of clinical treatment
considerations have been investigated to decrease hypoglycemia and
the cycle of IAH (Figure 1). In the following sections, various
treatment options for IAH will be discussed (see Table 1).

Strategies to avoid hypoglycemia include transplantation
(pancreas or islet cells), technology (e.g., CGM, insulin pumps,
hybrid closed loop), pharmaceuticals, and patient education. The
overarching goal is to decrease incidences of hypoglycemia and
thereby restore both awareness of hypoglycemia and improve the
counterregulatory response to hypoglycemia.

Education and psychoeducation

Fundamentally, the most pressing issue with IAH is the inability
to sense when blood glucose concentrations fall to severe levels
(i.e., requiring assistance from another individual in order to treat
the episode of hypoglycemia). Diabetes education programs have
been successfully employed to improve glycemic control and the
overall health of people with T1D and T2D (Siminerio et al., 2018).

FIGURE 1
Restoring awareness of hypoglycemia. While there is no direct treatment for impaired awareness of hypoglycemia (IAH), there are therapies that can
help avoid hypoglycemia, which include: education, pharmaceuticals, technology, and transplantation (whole pancreas or islet cell). Using these
therapies, hypoglycemia can be avoided leading to improve sympathoadrenal responses of hypoglycemia and awareness of hypoglycemia.
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Although not specifically designed to treat IAH, some of the original
educational programs that focused on glycemic management
resulted in improving hypoglycemia awareness. The Diabetes
Teaching and Treatment Program (DTTP) demonstrated (in a

12-year follow-up) that the rates of hypoglycemia were reduced
and the improvement in HbA1c was sustained after attending
educational programs (Plank et al., 2004; Samann et al., 2005).
Modeled after DTTP, the dose adjustment for normal eating

TABLE 1 Clinical therapies for impaired awareness of hypoglycemia (IAH).

Clinical therapies

Type Sub-type Description/Purpose Outcome Citation(s)

Education

HARPdoc
Program

6-week group program with motivational
interviewing and cognitive behavioral theory

aiming to reduce negative cognitions
around IAH

Improved mental health of participants,
decreased severe hypoglycemic episodes

similar to BGAT

de Zoysa et al. (2014), Amiel, 2022; Amiel et al.
(2022), Jacob et al. (2022b)

BGAT 8-week psychoeducational training program to
anticipate, prevent, and treat extreme BG levels

Repeatedly efficacious in multicenter
trials, interactive/personalized unit

materials

Gonder-Frederick et al. (1997),
Gonder-Frederick et al. (2000), Cox et al.

(2001), Cox et al. (2004), Snoek et al. (2008),
Soukup et al. (2019)

DAFNE-HART Program centered around problematic
hypoglycemia, specifically individual’s
motivational and cognitive barriers

Training to address cognitive/
motivational barriers to improving

hypoglycemia

de Zoysa et al. (2014)

HyPOS Five, 90-min lesson over 5-week of educational
material to treat patients with hypoglycemia

complications

Training centered around improving
awareness and decreasing hypoglycemia

Hermanns et al. (2007), Hermanns et al. (2010)

HypoAware Three, 2.5 h group sessions over 4-week
+2 online modules and aimed to improve
hypoglycemic symptom recognition, risk

awareness, prevention of hypoglycemia, and
coping with hypoglycemia

Can be used in both T1D and severe T2D
patients and evaluated in multiple centers

Rondags et al. (2016)

Technology

Glucometers Manual, handheld device that determines blood
glucose in real-time

Multiple models on the market,
extensively researched, affordable

Khan et al. (2006), Sonmez et al. (2010), Bellary
et al. (2012), Clarke and Foster (2012),

Francescato et al. (2012), Freckmann et al.
(2012), Mishra et al. (2022), Ebekozien and

Shah (2023)

CGM Continuous glucose monitoring technology
generates data for better management of
diabetes, low glucose alarms and alerts

Decrease hypoglycemia events and
severity, has alarms to alert subjects with

IAH to a hypoglycemic event

Cryer (2013), Shivers et al. (2013), Rickels et al.
(2016), Agiostratidou et al. (2017), Rickels et al.
(2018), Battelino et al. (2019), Cook et al.

(2019), Henriksen et al. (2019), Advani (2020),
Battelino and Bergenstal (2020), Lin et al.

(2020c), Kalra et al. (2021), Cobry et al. (2022),
Perez Cavero et al. (2022), Renard et al. (2022),
Vieira et al. (2022), Lin et al. (2023a), DeSalvo

et al. (2023), Dovc et al. (2023)

Closed Loop
Systems

CGM is combined with a sensor augmented
insulin pump that automates insulin delivery

Decrease the episodes and fear of
hypoglycemia

Kudva et al. (2021), Takagi et al. (2022b)

Sensor
Augmented
Pumps

Also known as an “open-loop system”—SAPs
are insulin pumps that communicate with
CGMs for optimal glucose management

Improved awareness via Clarke
assessment

Takagi et al. (2022b)

Automated
Insulin Delivery

CGM combined with a partially automated
insulin delivery system with user input for

insulin meal boluses

Improved awareness (with robust
measurements) and counterregulatory

responses

Burckhardt et al. (2021), Malone et al. (2021),
Flatt et al. (2023), Nattero-Chávez et al. (2023)

Transplantation

Pancreas Transplantation of tissue/cells to restore
endogenous insulin and glucagon secretion/

action

Fully restore hypoglycemia awareness Kendall et al. (1997)

Islet Cell Rickels et al. (2015), Rickels et al. (2016),
Rickels et al. (2022), Hu et al. (2023)

Abbreviations: continuous glucosemonitor (CGM), blood glucose (BG), impaired awareness of hypoglycemia (IAH), severe hypoglycemia (SH), blood glucose awareness training (BGAT), dose

adjustment for normal eating (DAFNE), hypoglycemia awareness restoration training (HART), hypoglycemia, anticipation, awareness, and treatment training (HAATT), hypoglycemia

(HYPO), gastrointestinal (GI), Type 1 Diabetic (T1D), Type 2 Diabetic (T2D), Automated Insulin Delivery (AID), Close Loop Systems (CLC).
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(DAFNE) training program showed in a 1-year follow up that
subjects had improved awareness of hypoglycemia and reduced
rates of severe hypoglycemia (Group, 2002; Hopkins et al., 2012).
The Tayside Insulin Management education program also showed
reduced rates of severe hypoglycemia, reduction in HbA1c, and a
25% improvement in awareness after 6-month of the program
(Jordan et al., 2013).

Given the increased risk of hypoglycemia with intensive
glycemic control, educational programs began to focus on
improving awareness of hypoglycemia. More specific
psychological training and bio-psycho-behavioral techniques have
been shown to help people with diabetes improve their awareness.
The Blood Glucose Awareness Training Program (BGAT) is an IAH
focused psychoeducational program (Cox et al., 2004). BGAT equips
people with T1D with comprehensive and practical content
including insulin, dietary, physical activity, blood glucose
management, and most importantly, its goal is to heighten an
individual’s ability to detect and avoid hypoglycemia. Since its
inception, BGAT has undergone several revisions as a result of
multicenter trials across the globe. BGAT is available outside of a
clinical setting, which enables it to reach more people and decrease
the workload in the clinic (Cox et al., 2006). While still extremely
effective at improving overall blood glucose awareness, BGAT did
not intentionally set out to assess IAH. Nonetheless, several studies
demonstrated the ability of BGAT in improving hypoglycemia
awareness (Cox et al., 1995; Snoek et al., 2008); including a
recent trial with exclusively IAH subjects that had recurrent
severe hypoglycemic episodes (Jacob et al., 2022b).

After the success of BGAT, educational programs entered an era
of utilizing hypoglycemia symptom detection training for
improving/treating hypoglycemia awareness/IAH. Adapted from
BGAT, the HypoAware training program focused on training
and empowering people with T1D and advanced T2D to reduce
episodes of hypoglycemia, improve awareness, and reduce fear of
hypoglycemia (Rondags et al., 2016). Another educational program
for treating diabetic patients with hypoglycemia problems (HyPOS),
focused on optimizing intensive insulin therapy. Additional
dependent variables were assessed then in the previous tests
including hypoglycemia detection, hypoglycemia treatment,
quality of life, and rates of mild/severe/very severe hypoglycemia
(Hermanns et al., 2007). In comparison to BGAT, the HyPOS study
found a 41% improvement (BGAT 24%) in hypoglycemia detection
and an 18% reduction in mild hypoglycemia (BGAT 12.5%)
(Hermanns et al., 2007). Additionally, the long-term benefits of
HyPOS curriculum remained after a 31-month follow-up
(Hermanns et al., 2010). Similar to the HypoAware adaptation
from BGAT, the dose adjustment for normal eating (DAFNE)—
Hypoglycemia Awareness Restoration Training (HART) was
developed from the DAFNE program. DAFNE-HART
Researchers hypothesized that the IAH persistence seen in the
DAFNE project was due to maladaptive beliefs and/or
motivational barriers. The DAFNE-HART in a pre-post trial with
23 participants demonstrated that psychology plays an important in
the development of IAH. Of note, 45% of subjects improved their
awareness and 85% of subjects experienced no further episodes of
severe hypoglycemia in a 12-month follow-up (de Zoysa et al., 2014).

Building on the DAFNE-HART program, the Hypoglycemia
Awareness Restoration Programme for People with Type 1 Diabetes

and Problematic hypoglycemia Persisting despite optimized self-
care (HARPdoc) was developed as a multidisciplinary strategy
targeting cognitive in subjects with IAH. The HARPdoc program
was recently evaluated and compared its effectiveness with BGAT in
a population who continued to have IAH and developed recurrent
severe hypoglycemia despite prior structured diabetes education and
offered advanced diabetes technologies (Jacob et al., 2022b).
HARPdoc and BGAT were similarly able to improve awareness
of hypoglycemia and decrease the rate and fear of hypoglycemia
(Jacob et al., 2022b). HARPdoc was also shown to decrease
maladaptive hypoglycemia beliefs, diabetes distress and
depression and anxiety symptoms which was not demonstrated
in recipients of BGAT (Jacob et al., 2022b). HARPdoc brain
responses have also been compared to the HypoAware study
(Jacob et al., 2022a). While limited in statistical power (only
compared 12 subjects), HARPdoc was able to determine
awareness status more accurately during two-stepped
hyperinsulinemic-hypoglycemic clamps (Jacob et al., 2022a). In
comparison to HypoAware, the HARPdoc treatment showed that
the superior frontal gyrus region was more activated during
hypoglycemia, indicating improved self-awareness and symptoms
associated with hypoglycemia (Jacob et al., 2022a).

Treatment of IAH in people with T2D has been studied to a
much lesser extent compared to studies in people with T1D. The
Common Sense Model (CSM) assessed illness perceptions in
subjects with T2D and IAH on insulin therapy (Shen et al.,
2022). While the study showed that the overall welfare and
coping of subjects was improved, CSM did not change fear or
awareness of hypoglycemia (Shen et al., 2022). These results may
be due to a short-duration of follow-up (1 and 3-month).

The efficacy of educational programs cannot be understated.
Educational programs that use close and frequent patient contact
(Cranston et al., 1994b; Fanelli et al., 1994; Little et al., 2014) have a
clinical benefit that may be larger than the beneficial effect observed
with diabetes technological interventions (vide infra). For example,
the HypoCOMPaSS trial (Comparison of Optimized MDI versus
Pumps with or without sensors in severe hypoglycemia) (Cox et al.,
2006) demonstrated improvements in hypoglycemia awareness and
reduction in severe hypoglycemia with intensive hypoglycemia-
focused education and close monitoring program, with non-
differential effects between groups using more traditional or
advanced glucose monitoring and insulin administration
technologies (Yeoh et al., 2015). The positive effects of the
HypoCOMPaSS program were maintained at least 2 years after
the completion of the original study (Speight et al., 2019).

Technology

For people with IAH, hypoglycemia is often detected not by
symptoms, but with glucose monitoring technology (e.g., handheld
glucometers, continuous glucose monitors, low glucose alerts/
alarms, etc.). Unquestionably, diabetes technologies have
markedly improved treatment for people with diabetes (Akturk
and Garg, 2019). It is indeed unfortunate that the more
widespread use of these valuable technologies is limited by
socioeconomic inequalities (Bellary et al., 2012; Scott et al., 2017;
Alcantara-Aragon, 2019; Fauzi et al., 2022; Mishra et al., 2022).
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Novel diabetes technologies for assessing glucose levels can be
classified (broadly) into three tiers; 1) CGM (or flash/intermittent
monitors), 2) CGM with sensor augmented insulin pump, and 3)
automated insulin delivery systems (Ebekozien and Shah, 2023).
Although these technological advances have unquestionably helped
to improve glycemic control and reduce that incidence of severe
hypoglycemia in people with T1D, the extent to which these
technologies can restore awareness of hypoglycemia remains an
active area of investigation (Choudhary et al., 2013; Little et al., 2014;
van Beers et al., 2016; Heinemann et al., 2018; Rickels et al., 2018;
Cook et al., 2019; Lin et al., 2019; Lin et al., 2020b; Pratley et al., 2020;
Sepulveda et al., 2020; Burckhardt et al., 2021; Bahrami et al., 2022;
Takagi et al., 2022b).

Continuous glucose monitors (CGM)
CGMs have revolutionized diabetes management. Since CGMs

can measure glucose every 5 min and alert patients of impending
low (as well as high) glucose levels, they represent a major leap
forward in glycemic management over handheld glucometers.
Recent data has shown that CGM users (N = 5,506/11,469) had
better glycemic control (lower median HbA1C, 7.7%) and lower
rates of severe hypoglycemia compared to non-CGM users (DeSalvo
et al., 2023). While HbA1c has been the gold standard for assessing
long-term glycemic control, the data available from CGMs are
making these devices the new standard of care (Battelino et al.,
2019; Advani, 2020; Battelino and Bergenstal, 2020; Kalra et al.,
2021; Dovc et al., 2023). CGMs indicate the amount of time subjects
experience hypoglycemia and how often these episodes go
unnoticed. Henriksen et al. evaluated 153 men with T1D and
found that 87% had at least one hypoglycemic episode per day
(Henriksen et al., 2019). Additionally, they noted that of all the
hypoglycemic events captured by the CGMs (≤54 and <39.6 mg/dL),
~74% of them were asymptomatic (Henriksen et al., 2019). This
study highlighted the persistent prevalence of IAH in people with
T1D despite CGM usage.

The Advanced Technologies and Treatments for Diabetes
Congress formed a panel of expert individuals to compose CGM
guidelines for clinician use (Battelino et al., 2019). These guidelines
include: the number of days CGM was worn, percentage (%) of
CGM active, mean glucose, glucose management indicator, glycemic
variability, time above range (TAR), time in range (TIR), and time
below range (TBR) (Battelino et al., 2019). To determine if these
metrics would be useful in identifying individuals with IAH, Lin
et al. showed that half of the subjects with IAH met the proposed
guidelines for hypoglycemia (Lin et al., 2020c). More specifically, the
% of TBR (<70 and <54 mg/dL) and hypoglycemic events that lasted
15 or 20-min provide both acute and chronic glycemic history,
respectively (Lin et al., 2020c). Additionally, using CGM data,
researchers proposed a new CGM metric to identify IAH. One
study assessed intermittent CGM use to identify risk factors for IAH
and glycemic patterns (Vieira et al., 2022). After analyzing CGM
data it was proposed that the duration of a hypoglycemic episode
(≥106.5 min) was one criterion by which IAH could be identified
(Vieira et al., 2022).

While CGM usage reduces the incidence and severity of
hypoglycemic episodes, there are conflicting reports as to
whether CGM usage results in an improved awareness of
hypoglycemia. A recent study (Ali et al., 2023) showed that using

a CGM decreased IAH by 50% compared to previous years in
individuals with T1D. In a larger population (N = 90 subjects) T1D
subjects who spent greater than 1.5 h/day in hypoglycemia were
given the Eversense© (Ascensia Diabetes Care, United States) CGM
to determine if it decreased the time spent in hypoglycemia.
Researchers found that after 3–4 months subjects decreased their
TBR, which was associated with increased TIR and was sustained
after 5–6 months (Renard et al., 2022); however, hypoglycemia
awareness status was not assessed in the trial. Decreased TBR
could improve awareness; however, this study found (Renard
et al., 2022) no improvement in HbA1c after 6-month indicating
that glycemic control was still not attained.

While CGM technology has made patients and clinicians more
cognizant of the frequency of hypoglycemic events, it is clear that
GCM use does not eliminate hypoglycemic episodes (Lin et al.,
2023a; Hu et al., 2023). Even a long-term study (18-month of CGM
use) failed to improve both symptomatic responses to hypoglycemia
and hormonal counterregulatory responses (Rickels et al., 2018).
Consistent with these disheartening findings, our research team has
consistently found a persistently high prevalence of IAH among
CGM users, again dispelling any notion that CGM usage somehow
restores awareness of hypoglycemia (Lin et al., 2019; Lin et al., 2020a;
Lin et al., 2020b; Lin et al., 2020c; Lin et al., 2022).

Despite the use of a CGM, the reasons for only partial
improvements in HAAF remain largely unknown, but have been
attributed to 1) failure to adequately/scrupulously avoid recurrent
hypoglycemia for a sufficiently long duration, 2) a methodology
issue wherein self-reported hypoglycemia awareness questionnaires
may lack sufficient sensitivity to note an improvement in
hypoglycemia awareness in follow up testing, and 3)
heterogeneous factors distinct from recurrent hypoglycemia (e.g.,
age, duration of diabetes, glycemic variability) that may play a
pathophysiological role the development/perpetuation of IAH,
and 4) the mistrust of CGM glucose information during
asymptomatic episodes and other barriers to hypoglycemia self-
management (Lin et al., 2023b) which further perpetuate future
hypoglycemic episodes. Alternatively, ineffective use of CGM
hypoglycemia-informing features (Lin et al., 2023a), alarm
fatigue, psychosocial/behavioral factors (Shivers et al., 2013; Cook
et al., 2019; Cobry et al., 2022; Lin et al., 2023a), and/or other factors
not related to hypoglycemia avoidance may play an important role
in this apparent failure to completely restore both counterregulation
and awareness in subjects with HAAF. Identifying these and other
factors that might be necessary for the restoration of hypoglycemia
awareness are needed to developmitigation strategies and achieve an
overall goal of reducing the burden of disease in people with T1D.

Closed-loop systems (CLS)
In addition to CGMs, people with diabetes also use insulin pump

delivery systems (thus replacing multiple daily injections of insulin).
The combination of CGM and insulin pump technologies have been
described as the holy grail of diabetes management (Templer, 2022).
The CLS was developed by people with T1D and their families by
creating an open-source software (Templer, 2022). This software
connects CGMs and insulin pumps to a software through a phone or
computer, and analyzes blood glucose to make decisions that adjust
insulin delivery (Templer, 2022). Currently, there are three available
platforms that combine a CGM and insulin pump: Loop, OpenAPS
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(Open Source Artificial Pancreas), and AndroidAPS (Android
Artificial Pancreas). However, as of yet, none of these platforms
have been approved by the Federal Drug Administration (Palmer
et al., 2021). Given the self-service (“DIY”) nature of a fully CLS, it
has been difficult to assess their usefulness on IAH until the
International Diabetes Closed-Loop Trial (Kudva et al., 2021). In
this trial, subjects were randomized into a CLS or a sensor
augmented pump (SAP). Hypoglycemia fear (Cox et al., 1987;
Irvine et al., 1994), diabetes distress scale (Polonsky et al., 2005),
hypoglycemia awareness, hypoglycemia confidence, and
hyperglycemia avoidance were assessed at baseline, three, and 6-
months post-technology implementation. CLS subjects had
improved hypoglycemia fear scores (at 6 months) and a tendency
for improved confidence in managing hypoglycemia; however,
awareness was not different between the technologies (Kudva
et al., 2021).

Sensor augmented pumps (SAP)
With low (or predicted low) glucose values detected by CGM,

sensor augmented pumps (SAP) allow for automated insulin
suspension. By temporarily suspending insulin delivery, SAP can
avoid (or limit) the severity of hypoglycemia (Steineck et al., 2017).
SAPs have been shown to be useful in people with severe
hypoglycemia (Ly et al., 2013; Maahs et al., 2014; Bosi et al.,
2019) and have improved hypoglycemia awareness (Quirós et al.,
2016; Sakane et al., 2023). One such study investigating T1D subjects
with IAH (based on the Clarke questionnaire) were assessed at
baseline and 3 and 6-month follow-ups after SAP + CGM
implementation. The study reported a decrease in Hb1Ac, TAR,
and Clarke scores; however, there was no change in TBR (Takagi
et al., 2022b). Thus, authors concluded that the SAP improved
glycemic control by decreasing hyperglycemia and may improve
awareness; but counterintuitively, not by reducing TBR (Takagi
et al., 2022b). Given both 1) the limited evidence of improvement in
awareness with SAPs, and 2) the rapid commercialization of
automated insulin delivery systems, IAH research has evolved to
be conducted with the next level of technology, automated insulin
delivery systems.

Automated insulin delivery systems
Automated insulin delivery (AID) systems use an algorithm to

automate insulin delivery to manage sugar levels; however, it
requires the user to manually enter meal insulin boluses and thus
is often termed a “hybrid closed loop” rather than a fully “closed
loop” (Templer, 2022). AID systems have been shown to be effective
in both T1D adults and adolescents in improving HbA1c, increasing
TIR, and decreasing hypoglycemia (Kovatchev et al., 2014;
Bergenstal et al., 2016; Garg et al., 2017; ForlenzaGregory et al.,
2019; Pulkkinen et al., 2023). Malone et al. (2021) examined the
long-term benefit (18-month) on awareness using an AID in T1D
subjects (Malone et al., 2021). No statistical improvement for
awareness was found; but there was a trend in improvement
from baseline (Malone et al., 2021). Burckhardt et al. (2021)
examined both arms of HAAF that perpetuate IAH,
counterregulation and awareness (Burckhardt et al., 2021). While
counterregulatory responses did not change (epinephrine,
norepinephrine, cortisol, growth hormone) with the use of AID,
the total symptom scores assessed (both adrenergic and

neuroglycopenic) during a hypoglycemic clamp improved from
baseline compared to subjects using a SAP alone (Burckhardt
et al., 2021). In contrast to the Burckhardt study, Flatt et al.
(2023), found that both awareness and counterregulatory
response improved after the implementation of AID (although
this study lacked a control group) (Hu et al., 2023). Another
study examined CGM metrics and awareness after the
implementation of an advanced AID, MiniMed 780G™
(Medtronic, Dublin, Ireland): multiple daily insulin system
(Nattero-Chávez et al., 2023). Out of the 46 patients included in
the study, 12 patients (27%) had IAH at the baseline screen based on
Clarke scores. Regardless of previous technology, subjects with IAH
had improved HbA1c and Clarke scores; however, authors included
subjects with Clarke scores ≥3. A score of 3 on the Clarke score is
borderline for IAH; therefore, some aware subjects could have been
included in the statistical analysis in the described study (Nattero-
Chávez et al., 2023). Additionally, diabetes education provided to the
AID subjects could have, independently, played a role in improving
awareness scores (Nattero-Chávez et al., 2023). The benefits of
automated insulin delivery cannot be minimized; the
aforementioned studies showed improvements in glycemic
management and awareness.

It is worthwhile to note that while some intervention studies do
demonstrate an improvement in hypoglycemia questionnaire scores,
it is unclear if a statistical improvement is clinically relevant as study
subjects often demonstrate a persistent impaired awareness of
hypoglycemia (Burckhardt et al., 2021; Takagi et al., 2022b).

It should be noted that the study design is another factor
contributing to these seemingly discordant results viz-a-viz the
ability of technology to restore awareness of hypoglycemia. The
putative factors that contribute to the short-term blunting of the
sympathoadrenal response to hypoglycemia induced by a few bouts
of antecedent hypoglycemia in non-diabetic subjects are almost
certainly different from the factors that contribute to HAAF (having
developed over years in people with T1D). Disparate patient
inclusion criteria are also confounding factors when comparing
results from different studies. For example, early studies that
established the efficacy of hypoglycemia avoidance to improve
autonomic symptom responses were conducted in subjects with
relatively short disease duration (~7 years) (Dagogo-Jack et al.,
1994). Some of the more recent studies that fail to reproduce
such marked improvements recruited subjects with longer disease
(≥15 years) duration and (apparently) a particularly immutable
impaired awareness (Yeoh et al., 2015; Iqbal and Heller, 2018).
These and other factors may explain the apparent efficacy of early
studies showing benefits with short term (one to three months)
interventions in small cohorts (6–12 subjects with T1D). In contrast,
recent interventions using the latest diabetes technologies failed to
demonstrate an improvement in hypoglycemia awareness in larger
cohorts (Pratley et al., 2020) and failed to improve autonomic
symptom scores following a long-term (18-month) intervention
(Rickels et al., 2018).

An alternative notion to the exclusively glucocentric etiology of
HAAF, is the possibility that HAAF is a heterogeneous clinical entity
that develops, in part due to recurrent hypoglycemia, but also
develops due to other factors (e.g., long-standing diabetes, aging,
glycemic variability, sleep, antecedent exercise, alcohol, autonomic
neuropathy and/or changes in CNS metabolism and function)
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(Lin et al., 2020a). If these heterogeneous factors are indeed major
factors that contribute to HAAF, then perhaps the failure to restore
awareness of hypoglycemia with novel diabetes therapeutics (vide
supra) is not necessarily due to a failure to scrupulously avoid

recurrent hypoglycemia. Consequently, it is possible that multiple
interventions addressing these many potential confounding
variables may be necessary to completely restore normal
awareness and counterregulation in all subjects.

TABLE 2 Pharmacological therapies for impaired awareness of hypoglycemia (IAH).

Pharmacological therapies

Drug Model/
Subject
tested

Site of action Mechanism of action Effects on IAH Citations

Miglitol Rat Gastrointestinal Tract SGLT3 agonist, alpha-
glucosidase inhibitor

Improvements in CRR, HYPO
awareness not assessed

Jokiaho et al. (2022)

Carvedilol Rat CNS blocks alpha-1, beta 1 and 2-
adrenergic receptors

Improved both CRR and HYPO
awareness via improved regulatory

hormones and hunger

Farhat et al. (2019)

Modafinil Mice and
Humans

Brain (Hypothalamus and
Tuberomammillary

Nucleus)

Stimulates secretion of orexin
neuropeptides/histamine and is
a weak dopamine reuptake

inhibitor

Mice - Improved HYPO awareness
via activating orexin neurons and

behavioral testing

Smith et al. (2004),
Klement et al. (2014),
Patel et al. (2022)

Humans—increased autonomic
symptom scores

Formoterol Rat Brain (Ventromedial
Hypothalamus) and
Smooth Muscle

Beta-2-adrenergic receptor
agonist

Improved epinephrine responses,
awareness not assessed

Szepietowska et al.
(2013)

Metoclopramide Rat Brain (chemoreceptor
trigger zone in area

postrema)

Dopamine receptor antagonist Improved both CRR and HYPO
awareness via improved

counterregulatory hormones and
food intake

Vieira De Abreu et al.
(2018), Devore et al.

(2022)

Exenatide Human Pancreas, hypothalamus,
enteric nervous system

GLP-1 receptor agonist Did not improve CRR or awareness van Meijel et al.
(2019)

Dapagliflozin Human Kidneys and Small
Intestine (S1 and S2)

Inhibits SGLT2 and blocks
reabsorption of glucose

Improves glucagon secretion, CGM
metrics, and exogenous glucose

needed during HYPO clamp, but no
differences in symptom scores

van Meijel et al.
(2021), Boeder et al.
(2022), Urakami et al.

(2023)

Losartan Human Adrenal Gland, Heart, and
Brain

Angiotensin II receptor blocker Lowers CRR responses and HYPO
awareness

Deininger et al.
(2001)

Amitriptyline Human Brain Tricyclic antidepressant,
serotonin reuptake inhibitor

(alpha-adrenergic and
histamine receptor)

Case study where drug cessation
restored symptoms to hypoglycemia

Sherman and
Bornemann (1988)

Imipramine Human Brain Tricyclic antidepressant
antagonist of acetylcholine

receptors

Case study where a nondiabetic man
had low glucose and no adrenergic
symptoms to hypoglycemia with drug

treatment

Shrivastava and
Edwards (1983)

Selective Serotonin
Reuptake Inhibitors
(SSRIs)—Fluoxetine,
Sertraline, Paroxetine

Human Brain Selective Serotonin Reuptake
Inhibitors

Induced IAH in T1D subjects that had
intact awareness prior to starting

medications

Sawka et al. (2001)

Theophylline Human Pulmonary system and
other smooth muscles/

organs

Nonselective phosphodiesterase
inhibitor and adenosine
receptor antagonist

Improved CRR responses, induced
sweating (symptom of HYPO), and
decreased blood flow to the brain

de Galan et al. (2002)

Terbutaline Human Pulmonary system and
other smooth muscles/

organs

Selective Beta-2-agonist Decreased nocturnal hypoglycemia,
awareness not assessed

Cooperberg et al.
(2008)

Naloxone Human Brain Opioid receptor antagonist Ameliorates epinephrine response
and restores endogenous glucose

production

Vele et al. (2011)

Abbreviations: impaired awareness of hypoglycemia (IAH), sodium dependent glucose transporter 3 (SGLT3), counterregulatory response (CRR), hypoglycemia (HYPO), central nervous

system (CNS), glucagon-like peptide 1 (GLP-1), proximal tubule segment 1 and 2 (S1, S2), continuous glucose monitor (CGM), sodium dependent glucose transporter 2 and 3(SLGT2 and

SGLT3), type 1 diabetes (T1D).
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Transplantation (islet cell and pancreas)

For people with intractable episodes of severe hypoglycemia,
whole pancreas or islet cell transplantation remains an important
treatment option recommended by the American Diabetes
Association (Robertson et al., 2004). Previous studies have shown
both whole pancreas and islet cell transplantation are effective
(almost immediately) at restoring endogenous insulin and
glucagon secretion (Kendall et al., 1997; Rickels et al., 2015;
Rickels et al., 2016). Sympathoadrenal responses and
hypoglycemia associated symptoms may take >6 months to
recover (Kendall et al., 1997; Rickels et al., 2015). More recent
data from the Clinical Islet Transplantation Consortium (CIT-
08 Study) showed that greater than 90% of subjects with islet-
only or islet-after-kidney transplant were free of hypoglycemia
(Rickels et al., 2022). The authors concluded that either
treatment would be most appropriate for patients with IAH
(Rickels et al., 2022). Virtual elimination of hypoglycemia with
intrahepatic islet transplantation in subjects with T1D leads to
improvement in hypoglycemia symptom recognition (Rickels
et al., 2016). Following transplant, epinephrine response to
hypoglycemia was improved at 6- months and normalized at 18-
months and the symptoms of hypoglycemia were normalized at both
time-points after transplant (Rickels et al., 2016). Supporting the
glucocentric cause of HAAF, findings in transplant patients indicate
that the prolonged, near complete elimination of hypoglycemia, can
completely reverse HAAF. Transplantation is therefore a very
effective treatment for IAH; however, like any tissue transplant
program, both availability of tissues/cells, as well as transplant
rejection, are the primary challenges with such approaches
(Aggarwal et al., 2022; Opara et al., 2023).

Pharmacological therapies

Given that CGMs and questionnaires make it relatively easy to
identify subjects at high risk for severe hypoglycemia, and some of
the neuronal transmitters/circuits that contribute to HAAF have
been identified, an unanswered call to action is the identification of
potential pharmacological therapies that could improve awareness
of hypoglycemia. The effects of various drugs on hypoglycemia
awareness and counterregulatory responses have been assessed in
preclinical models of HAAF, clinical models of inducible HAAF, and
subjects with long-standing T1D and HAAF (Summarized in
Table 2).

Animal studies
With the goal of augmenting the response to hypoglycemia,

pharmacological interventions have targeted sites of action that are
responsible for blood glucose sensing. When blood glucose falls,
neurons in the brain (Thorens, 2012) and the periphery (Fournel
et al., 2016) coordinate a counterregulatory response. One
peripheral glucose sensor that responds to hypoglycemia lies
within the portal-mesenteric vein (PMV) (Matveyenko et al.,
2007) and signals the lateral hypothalamus and the
paraventricular nucleus via the nucleus of the solitary tract (NTS)
(Adachi et al., 1984). Recent studies suggest that PMV glucose
sensing may be mediated via sodium-dependent glucose

transporter 3 (SGLT3) receptors. Following antecedent
hypoglycemia, miglitol (Glyset©, Pfizer, New York, NY,
United States) a SGLT3 agonist, was shown to restore the
counterregulatory response to hypoglycemia in rats (Jokiaho
et al., 2022). Interestingly, authors concluded that miglitol could
be used as a “day-after pill” restoring the counterregulatory response
to avoid another incidence of hypoglycemia (Jokiaho et al., 2022).

The predominant glucose-sensing apparatus lies within the
brain. Early studies identified the ventromedial hypothalamus
(VMH) as a key glucose-sensing region (Borg et al., 1997; Routh,
2010; Chan and Sherwin, 2013), but several areas of the brain have
been identified as having a key role in glucose counterregulation as
part of an afferent and efferent neural circuit (Ritter et al., 1998; Beall
et al., 2012).

In terms of testing responses to drug therapy, one study
examined the effects of systemic and central (VMH)
administration of a beta 2-adrenergic receptor agonist,
formoterol, on the counterregulatory responses following
hypoglycemia (Szepietowska et al., 2013). Systemic administration
improved the glucose infusion rate and hepatic glucose production
response to hypoglycemia; however, counterregulatory hormones
did not change with formoterol administration (Szepietowska et al.,
2013). While formoterol and miglitol improved counterregulation
and hepatic glucose production of HAAF, awareness was not
assessed in those studies and the effects of those drugs on IAH
remain unknown.

In rodent models of HAAF, recurrent hypoglycemia consistently
blunts the sympathoadrenal response (noted by a blunted plasma
catecholamine response) (Powell et al., 1993). Unfortunately, the
ability to determine hypoglycemia unawareness induced by
recurrent hypoglycemia has been understandably more difficult
to quantify in animal models (Sankar et al., 2020).

Of note, Farhat et al. (2019), targeted the VMH and assessed the
preservation of the awareness of hypoglycemia using a non-selective
β-adrenergic antagonist, carvedilol (Farhat et al., 2019). As model of
IAH, recurrent antecedent treatment with 2-deoxyglucose (2DG)
blunted the food intake response to insulin-induced hypoglycemia;
yet rodents treated with carvedilol did not develop IAH (i.e., did not
exhibit a blunted food intake response to hypoglycemia) (Farhat
et al., 2019).

Another area of the brain that has been implicated in glucose
sensing is the perifornical hypothalamus (PFH). Researchers
focused on the orexin-glucose-inhibited neurons in the PFH
(responsible for arousal) as a target for IAH and explored
treatment with the anti-narcolepsy drug, modafinil (Teva
Pharmaceutical Industries Ltd., United States) (Patel et al., 2022).
Mice underwent a conditioned place preference test (surrogate test
for IAH) prior to recurrent hypoglycemia and treatment. Compared
to saline-treated mice, modafinil-treated mice adjusted their
preference for the food-associated chamber after insulin-induced
hypoglycemia. Additionally, researchers showed that modafinil
restored glucose sensing by the orexin-glucose-inhibited neurons
in the PFH (Patel et al., 2022). Modafinil is a dopamine reuptake
inhibitor thus, it appears that dopamine signaling is potentially
involved in the development of IAH. Consistent with this notion,
metoclopramide (Teva Pharmaceutical Industries Ltd.,
United States), a dopamine (D2), receptor antagonist, was shown
to improve both hypoglycemia awareness and counterregulatory
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hormone responses in response to insulin-induced hypoglycemia
(Vieira De Abreu et al., 2018; Devore et al., 2022). Based on these
preclinical results, the potential of this drug to restore awareness of
hypoglycemia in subjects with T1D and IAH has advanced to a
Phase 2 clinical trial (NCT03970720). Translation of these pre-
clinical results to clinical trials remains an important step to validate
potential drug therapies for the treatment of IAH.

Human studies
Drugs that work within the adrenergic system seem like an

obvious target that might improve both the counterregulatory
response and awareness of hypoglycemia (Cooperberg et al.,
2008). Consistent with preclinical studies (Li et al., 2020), clinical
studies have demonstrated that repetitive activation of the
adrenergic system appears to contribute to hypoglycemia
associated autonomic failure (Ramanathan and Cryer, 2011;
Lontchi-Yimagou et al., 2020). Thus, some degree of adrenergic
blockage within the CNS may serve to improve hypoglycemia
awareness and hypoglycemic counterregulation, at least based on
preclinical studies (Farhat et al., 2019; Farhat et al., 2021).

Another, similar pharmacological approach to treating IAH is
targeting adenosine receptors to increase alertness and enhanced
secretion of the counterregulatory hormones (De Galan et al., 2006).
One study used theophylline, an adenosine-receptor antagonist, to
determine its effects on IAH (de Galan et al., 2002). In response to
hypoglycemia, subjects with diabetes and IAH treated with
theophylline demonstrated an improved counterregulatory
hormone response but theophylline did not improve
hypoglycemia symptom scores (de Galan et al., 2002). However,
another methylxanthine, caffeine, was shown to stimulate more
symptomatic hypoglycemic episodes (i.e., improve awareness)
(Watson et al., 2000).

The glucagon-like peptide-1 receptor agonist, exenatide, was
used in a crossover trial in subjects with T1D and IAH (van Meijel
et al., 2019). Subjects treated with exenatide for 4-week had no
differences in frequency or time spent in hypoglycemia compared to
the placebo group. Exenatide-treated subjects had similar symptom
scores and counterregulatory hormone responses to that of the
placebo group (van Meijel et al., 2019).

A sodium-glucose cotransporter-2 inhibitor, dapagliflozin, has
shown effectiveness (van Meijel et al., 2021; Boeder et al., 2022;
Urakami et al., 2023). Dapagliflozin treatment did not improve
awareness of hypoglycemia, however, it did reduce the glucose
infusion rates during the clamp (indicating an improvement in
glucoregulatory response to hypoglycemia) (van Meijel et al., 2019).
Using the same drug, another study assessed glucagon response in
T1D subjects; however, subjects were on the lower end of the Clarke
score (median 3, range 1–5), suggesting that awareness might have
been present in some subjects. Similar to previous results,
dapagliflozin treatment did not improve counterregulatory
hormone responses, symptom scores, or recovery from
hypoglycemia (Boeder et al., 2022).

Treatment with the CNS stimulant, modafinil, resulted in
improved autonomic symptom scores, higher heart rates, higher
glucagon concentrations during hypoglycemia, and improved scores
on cognitive tests; however, the epinephrine response was not
altered (Klement et al., 2014). Since modafinil was administered
in non-diabetic subjects, IAH was not present (Klement et al., 2014).

Conversely, another study also conducted in healthy subjects
showed improvements in the norepinephrine response, but no
other improvements in hormonal responses (epinephrine, growth
hormone, and cortisol) or symptom scores during a hypoglycemic
clamp (Smith et al., 2004). Both of these studies attribute the positive
improvements seen in healthy subjects to γ-aminobutyric acid
(GABA) signaling.

ModulatingGABA signaling as ameans to restore counterregulation
and hypoglycemia awareness is supported by pre-clinical models
(Chan et al., 2008). Clinically, antecedent GABA-A activation with
the benzodiazepine, alprazolam, has been shown to blunt the
neuroendocrine and autonomic nervous system responses to
subsequent hypoglycemia in healthy humans (Hedrington et al.,
2010). Consistent with these findings, antagonism of GABA with
dehydroepiandrosterone (DHEA) can prevent the development of
HAAF under experimental conditions in healthy humans (Mikeladze
et al., 2016). Thus, with successful proof of concept studies in healthy
humans, more recent studies in people with long-standing diabetes have
shown thatGABAadministration significantly augmented the hormonal
counterregulatory response to hypoglycemia (Espes et al., 2021).

The role of opioid receptors in the development and/or
treatment of HAAF is an area of active investigation. Pre-
treatment with opioid receptor agonists can impair the
counterregulatory response to hypoglycemia (Carey et al., 2017).
Conversely, pre-treatment with the opioid receptor antagonist
(naltrexone) can prevent the development of an impaired
counterregulatory response to hypoglycemia (Leu et al., 2009;
Vele et al., 2011), but may not restore awareness of hypoglycemia
in subjects with long-standing T1D and IAH (Moheet et al., 2015).

Based on animal studies that indicate a possible role for selective
serotonin reuptake inhibitors (SSRIs) to augment the
counterregulatory response to glucoprivation (Baudrie and
Chaouloff, 1992), clinical studies have demonstrated that 6-week
treatment with SSRIs augmented counterregulatory, but not
symptom responses, to hypoglycemia in nondiabetic people
(Briscoe et al., 2008a; Briscoe et al., 2008b). It remains to be
determined if these beneficial effects of SSRIs are mediated by
the inhibition of neuronal serotonin uptake or via inhibition of
norepinephrine transport in the CNS (Chaouloff et al., 1991). It also
remains to be determined why hypoglycemia awareness was not
improved with SSRI therapy.

With a goal of improving both the counterregulatory response to
hypoglycemia and awareness of hypoglycemia, the development of
novel drugs and/or the repurposing of existing FDA approved drugs
remains an important area of research.

Summary and future directions

IAH continues to be a complication in people with both T1D
and T2D who seek optimal glycemic control with insulin therapy.
Providers who care for patients with diabetes should inquire about
hypoglycemia and IAH with a view towards considering treatment
options. This review shows that there are several advances in
technology and educational approaches that can improve
hypoglycemia awareness. With regards to pharmacological
treatments, basic science research in animal models is continuing
to elucidate the mechanism(s) responsible and these novel
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treatments for IAH are being advanced into clinical trials. Future
studies should focus on these possible mechanisms to develop more
targeted therapies for patients who suffer from IAH.
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