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Copper is an indispensable micronutrient for the development and replication of
all eukaryotes, and its redox properties are both harmful and beneficial to cells. An
imbalance in copper homeostasis is thought to be involved in carcinogenesis.
Importantly, cancer cell proliferation, angiogenesis, and metastasis cannot be
separated from the effects of copper. Cuproposis is a copper-dependent form of
cell death that differs from other existing modalities of regulatory cell death. The
role of cuproptosis in the pathogenesis of the nervous and cardiovascular systems
has been widely studied; however, its impact onmalignant tumors is yet to be fully
understood from a clinical perspective. Exploring signaling pathways related to
cuproptosis will undoubtedly provide a new perspective for the development of
anti-tumor drugs in the future. Here, we systematically review the systemic and
cellular metabolic processes of copper and the regulatory mechanisms of
cuproptosis in cancer. In addition, we discuss the possibility of targeting
copper ion drugs to prolong the survival of cancer patients, with an emphasis
on the most representative copper ionophores and chelators. We suggest that
attention should be paid to the potential value of copper in the treatment of
specific cancers.
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1 Introduction

Cell proliferation is a fundamental physiological process essential for the development
and homeostasis of multicellular organisms and leads to exponential tissue growth (Hanahan
and Weinberg, 2011). Cell proliferation defects and/or abnormal elevations are the primary
cause of injury, ageing and disease. A prime example of uncontrolled cellular proliferation is
cancer; the survival of cancer cells and their proliferation, and engraftment in distant tissues
are highly dependent on the ability of cancer cells to obtain adequate oxygen and nutrients in
harsh environments (Ge et al., 2022). Cancer continues to be a primary health concern
worldwide, as the number of cancer-related deaths and incidences of cancer are increasing
annually. According to the 2022 World Cancer Report, 4.82 million new cancer cases and
3.21 million cancer-related deaths are estimated to occur annually in China, and, as a result,
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China ranks first in the world in terms of number of cases and deaths
(Xia et al., 2022; Feng et al., 2023). Radiotherapy failure and poor
tumor prognosis are primarily attributed to radioresistance.

As an essential micronutrient, copper is required for various
signaling pathways and biological behaviors in almost all cell
types (Vetlényi and Rácz, 2020). In recent years, multiple lines of
evidence have indicated that copper is closely implicated in the
cell proliferation and death pathways; in other words, excess
copper can lead to cell death (Turski and Thiele, 2009; Tang et al.,
2022). However, whether copper-induced toxicity is a novel type
of programmed cell death remains controversial, and a clear
picture of its mechanisms and specific forms has not yet emerged.
In 2022, Tsvetkov and colleagues reported in the journal Science
that intracellular copper accumulation triggers the
oligomerization of mitochondrial lipoylated proteins and
destabilizes Fe–S cluster proteins, leading to an independent
cell death mode termed cuproptosis, distinct from apoptosis,
necrosis, pyroptosis, or ferroptosis (Tsvetkov et al., 2022). The
role of copper in tumor progression has long been a focus of
research in the fields of cancer pathology and cell physiology,
with a considerable number of researchers focusing on the crucial
relationship between cuproptosis and cancer. Copper, a pro-
angiogenic factor, activates tumor angiogenesis and metastasis
(Xu et al., 2022). Chemoresistance and radioresistance are
attributed to dysfunctional copper metabolism (Liu et al.,
2022; Yang et al., 2022). Several studies have shown that
elevated serum copper levels are associated with tumor stage
and disease invasion in patients with colorectal, lung, and breast
cancer (Baszuk et al., 2021; Cui et al., 2021; Tsang et al., 2022). In
contrast, in malignant cells, cuproptosis interferes with lipid
metabolism and contributes to oxidative stress, mitochondrial
damage, and endothelial cell dysfunction (Halliwell and Chirico,
1993; Ruiz et al., 2021; Zhang et al., 2021). The administration of
copper alone or in combination with ionophores disrupts cancer
cell survival, making it possible to eliminate copper with
chelators or supplement it with ionophores for anti-tumor
clinical applications (Lu et al., 2022). This implies that
additional investigations are needed to elucidate the precise
roles of copper homeostasis and cuproptosis in tumorigenesis.
Therefore, we review recent advances in the role of copper in
cancer occurrence and progression from different perspectives.
In addition, we discuss relevant copper-targeting potential
strategies in pre-clinical and clinical trials for cancer therapy,
provide key insights into valuable new clinical treatments for
cuproptosis-related tumor manifestations, and highlight the
most important challenges in this field.

2 Regulation of copper homeostasis in
mammalian cells

Copper, as a kind of indispensable transition metal, is a
double-edged: it is essential as a cofactor for enzymes across
the mammalian kingdom, including Cu/Zn superoxide dismutase
1 (Cu/Zn-SOD), cytochrome c oxidase (CCO), lysyl oxidase
(LOX), and ceruloplasmin (CP); however, even modest
intracellular concentrations can cause metabolic dysfunction,
resulting in biological death (Cobine et al., 2021; Garza et al.,

2023). In the case of mammals, copper is obtained through
consumption of certain foods, including nuts, organ meats,
and seafood (Linder, 2020). Copper is mainly distributed in
the muscle, liver, and brain in two oxidation states: cuprous
(Cu1+) and cupric (Cu2+) (Chen et al., 2020). In biological
systems, copper exists primarily in the Cu2+ form because
Cu1+ is readily oxidized to Cu2+ in the presence of oxygen or
other electron acceptors. Copper oxidation is reversible because
Cu2+ can accept electrons from strong reductants, such as
ascorbate and reduced glutathione (GSH) (Arredondo and
Núñez, 2005).

In mammals, copper homeostasis involves several key
molecular targets (Figure 1). CP, albumin, and trans-copper
proteins are the major protein carriers of exchangeable copper
in blood plasma, resulting in delivery of copper to organs and
tissues. Copper uptake occurs mainly in the small intestine,
where epithelial cells take up copper ions via copper
transporter 1 (CTR1) or solute carrier family 31 member 1
(SLC31A1), a transporter encoded by slc31a1 on the cell
surface (Mandal et al., 2020). Because of the highly specific
uptake of Cu1+ by CTR1, Cu2+ is reduced to Cu1+ by metallo-
reductases, such as the six-transmembrane epithelial antigen of
the prostate (STEAP), before entering the cells (Kleven et al.,
2015). It is unclear which protein mediates copper absorption in
the presence of CTR1 downregulation. The results of recent
experiments suggest that the low-affinity copper transporter
CTR2 may release copper from lysosomes or lysosome-like
compartments for reutilization; that is, overexpression of
CTR2 is associated with increased copper uptake (Prohaska,
2008).

Copper entering the cell binds to cytoplasmic or mitochondrial
chaperone proteins, which, in turn, transfer copper to specific
cellular destinations to perform its unique functions. Copper
chaperone for superoxide dismutase (CCS), a cytosolic
chaperone, plays a major role in oxidative stress (Miao and St
Clair, 2009). The delivery of Cu to SOD1 requires the mediation
of the CCS to detoxify reactive oxygen species (ROS) and maintain
copper homeostasis. Studies have shown that mice with targeted
disruption of CCS alleles experience significantly greater cell damage
than controls, and this damage is likely caused by superoxide
accumulation due to reduced SOD1 activity (Wong et al., 2000).
In addition, SOD1 knockout mice are more likely to develop
hepatocellular carcinoma, possibly due to oxidative damage to
liver cells (Thadathil et al., 2022). However, SOD1 overexpression
confers radioresistance in human glioma cells by suppressing
irradiation-induced late ROS accumulation. These contradictory
results may be due to the dual role of ROS in which the
difference in ROS levels is dominant (Bian et al., 2022b). The
copper chaperone for COX17, which is located in the cytoplasm
and mitochondrial membrane space (IMS), is another copper
metallochaperone involved in electron transfer in the oxidative
respiratory chains (Lyons et al., 2012). In IMS, COX17 binds to
and delivers Cu for either the synthesis of cytochrome oxidase 1
(SCO1) or COX11, which transfers Cu to CCO subunits (including
COX1 and COX2), resulting in activation of enzymes in the
mitochondrial respiratory complex (Nývltová et al., 2022).
Therefore, we suggest that mutations in COX17, SCO1, and
COX11 are associated with decreased CCO activity, and can be
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fatal. The third major copper chaperone protein is antioxidant-1
(ATOX1), which transfers copper from the trans-Golgi network
(TGN) to copper-transporting ATPases (ATP7A and ATP7B) via
the secretory pathway (Ash et al., 2021; Bitter et al., 2022). ATP7A
and ATP7B exhibit different expression patterns in various tissues
and organs. ATP7A in the basolateral membrane of enterocytes
pumps copper into portal circulation and then into the liver, where
excess copper ions are stored in the form of metallothionein 1 (MT1)
and MT2 (Wang et al., 2023). Eventually, the copper in secretory
vesicles is excreted into the bile via ATP7B on the bile canalicular
membrane of hepatocytes, thus preventing the accumulation of
copper (Wang et al., 2023). Dysregulation of copper metabolism
is disadvantageous for cells because mutations in ATP7A and
ATP7B are directly responsible for Menkes disease (MD) and
Wilson disease (WD), respectively(Bitter et al., 2022). Children
with MD exhibit severe symptoms, such as growth retardation,
intellectual disability, neuronal degeneration, and connective tissue
defects, which are associated with copper accumulation in intestinal
cells as well as systemic copper deficiency, which is characterized by
fulminant liver failure due to hepatic copper overload and copper
accumulation-induced neuropsychiatric disorders in the brain
(Chen et al., 2022). In addition, copper metabolism disorders are
present in Alzheimer’s disease, atherosclerosis, and diabetes, and
these findings undoubtedly further confirm the contribution of this
metal to cellular pathophysiology (Mezzaroba et al., 2019; Philbert
et al., 2022; Chen et al., 2023).

3 Cross-talk between components of
cuproptosis and ferroptosis

All types of human cells inevitably self-destruct; cell death in
response to unexpected stimulus signals is an uncontrolled
biological process. Apoptosis, necroptosis, pyroptosis, and
ferroptosis are tightly controlled modes of programmed cell
death that play essential roles in development, tissue homeostasis,
and defense against unwanted, redundant, and potentially
dangerous cell growth (Bian et al., 2022a). Over the past few
decades, there has been great interest in the connection between
copper and regulated cell death, and the mechanism of copper-
induced cell death has been extensively researched. Based on the
findings of several well-known studies in the literature, it was
erroneously believed that copper-dependent death is closely
related to ROS and inflammation, and that it triggers oxidative
stress-related cell death (Nagai et al., 2012; Yadav et al., 2013).
However, it has been reported that cell death caused by copper
overload was not reversed by using the 5 mM ROS inhibitor
N-acetylcysteine (NAC), and the cytotoxic effect was only
partially eliminated by 10 mM NAC; thus, copper may trigger a
cell death pathway (Xie et al., 2023). Consistent with the
experiments described above, Tsvetkov et al. also found that
treatment with inhibitors of other known cell death mechanisms,
including pan-caspase (Z-VAD-FMK and Boc-D-FMK), ferroptosis
(ferrostatin-1), necroptosis (necrostatin-1), and oxidative stress

FIGURE 1
Schematic of copper homeostasis in mammalian cells.CP is the major protein carrier for exchangeable copper in blood plasma for circulation and
delivery to organ and tissue systems. Extracellular Cu2+ is reduced to Cu1+ by STEAP, which in turn is transported into the cell by CTR1. Intracellular Cu1+

binds to different chaperone proteins to exert its unique functions. CCS delivers Cu1+ to SOD1 in the cytoplasm to clear free radicals. In themitochondrial
membrane space, COX17 transports Cu1+ to CCO to activate enzyme activity in the respiratory chain. MT1/2 and GSH are copper repositories that
can bind Cu1+. Part of the Cu1+ carried by ATOX1 enters the nucleus to participate in gene expression, and the other part is pumped into the lumen of the
TGN by ATP7A/B. When cytosolic Cu levels are high, Cu1+ in small intestinal cells is discharged into the portal circulation via ATP7A, while Cu1+ in liver cells
is secreted into bile in the form of vesicles through ATP7B. The maintenance of cellular physiological functions is inseparable from copper homeostasis.
Abbreviations: CP, ceruloplasmin; STEAP, the six-transmembrane epithelial antigen of the prostate; CTR1, copper transporter 1; CCS, copper chaperone
for superoxide dismutase; SOD1, superoxide dismutase 1; MTI/2, metallothionein 1/2; GSH, glutathione; ATOX1, antioxidant 1 copper chaperone; ATP7A/
B, ATPase copper transporter 7A/B; TGN, trans-Golgi network.
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(NAC), failed to abrogate copper ionophore–mediated cell death,
and only copper chelators were able to prevent it, suggesting a
mechanism distinct from that of previously identified cell death
pathways (Tsvetkov et al., 2022).

Ferroptosis, a unique modality of iron-dependent cell death
triggered by unrestricted lipid peroxides on cell membranes, plays
an important role in various diseases, including cancer,
neurodegeneration, and ischemic organ injury (Liang et al.,
2022). Similarly, cuproptosis can be summarized as follows:
excess Cu2+ within cells is transported to the mitochondria via
copper ionophores (elesclomol); ferredoxin 1 (FDX1) reduces
Cu2+ to Cu1+; lipoic acid synthetase (LIAS) converts the
octanoylated domains into lipoylated derivatives; large amounts
of Cu1+ bind directly to lipoylated components (including DBT,
GCSH, DLST, and DLAT) of the tricarboxylic acid cycle, resulting in
lipoylated proteins oligomerization and Fe-S cluster proteins loss,
ensuing proteotoxic stress and, ultimately, cell death (Tong et al.,
2022).

Although ferroptosis and cuproptosis are both metal-initiated
modes of cell death, little is known about their interrelationship
(Figure 2). Shen et al. (2022). performed a comprehensive pan-
cancer genomic analysis of the molecular correlations between
cuproptosis and ferroptosis regulators in 33 cancer types,
demonstrating crosstalk between the initiators, effectors, and
executioners of cuproptosis and ferroptosis at the multiomic
level. Exogenous copper increases ferroptosis sensitivity by
inducing TAX1BP1-mediated autophagic degradation of
glutathione peroxidase 4 (GPX4), independent of ROS

generation, which is the theoretical basis for Cu2+-enhanced
ferroptosis-mediated tumor inhibition in pancreatic cancer mouse
models (Xue et al., 2023). The dithiocarbazate-copper complex
synthesized by Xun et al. kills pancreatic cancer cells by
triggering multiple mechanisms, including ferroptosis (Gou et al.,
2021). In addition, amine oxidase copper-containing 1 (AOC1)
exerts anti-cancer effects by acting on spermidine, leading to the
activation of ROS and ferroptosis, which are significantly associated
with reduced proliferation and migration of prostate cancer cells
in vitro and in vivo (Ding et al., 2022). Notably, self-assembled
copper-alanine nanoparticles (CACG) have great potential to
enhance ferroptosis and immunotherapy for effective cancer
treatment, as they help eliminate the extreme restriction of
excessive GSH in the tumor microenvironment (TME) and low
ROS generation efficiency (Song et al., 2023). This conclusion was
further verified in the treatment of triple-negative breast cancer
(TNBC) by nanoreactor Cu2-xSe (Li et al., 2023). A more recent
study emphasized that copper can not only trigger iron-associated
cell death but also activate caspases to cause apoptosis of liver cancer
cells, which may provide a promising strategy to develop highly
effective anti-tumor copper complexes (Cai et al., 2023). Disulfiram
(DSF), a drug used to treat alcohol withdrawal syndrome, reacts with
copper to form an anti-cancer metabolite (DSF/Cu) (Kannappan
et al., 2021). DSF/Cu renders nasopharyngeal cancer cells or
melanoma cells more vulnerable to ferroptosis by activating the
ROS/MAPK and p53 signaling pathways or inhibiting the SLC7A11/
GPX4 pathways, respectively, (Li et al., 2020; Li et al., 2023b).
Interestingly, another chemical, elesclomol, causes copper

FIGURE 2
Overview of crosstalk between cuproptosis and ferroptosis.Cuproptosis inducers (CINs) elesclomol and disulfiram carry Cu2+ into the cell, which is
reduced to Cu1+ under FDX1. Subsequent lipoylated proteins oligomerization and Fe-S cluster proteins loss trigger proteotoxic stress, and eventually cell
death. As for ferroptosis, it is mediated by excess Fe2+ as well as abrogation of GSH biosynthesis and inactivation of GPX4 through causing lipid
peroxidation. GSH, like copper chelator, inhibits copper death. However, ferroptosis inducers sorafenib and erastin can enhance cuproptosis, with
potential mechanisms including inhibition of FDX1 degradation and reduction of GSH synthesis. Abbreviations: GSH, glutathione; GPX4, glutathione
peroxidase 4; FDX1, ferredoxin 1; LIAS, lipoic acid synthetase; TFR, transferring receptor; SLC31A1, solute carrier family 31 member 1; SLC7A11, solute
carrier family 7 member 11.
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overload within the mitochondria by promoting the degradation of
ATP7A, leading to ROS accumulation, which further enhances
oxidative stress and consequent ferroptosis in colorectal cancer
cells (Gao et al., 2021). In contrast, Yang et al. confirmed that
copper depletion induces ferroptosis. Overexpression of the copper
metabolism MURR1 domain 10 (COMMD10) can reduce
intracellular copper and disrupt the Cu-Fe balance to facilitate
HIF1α degradation, resulting in impaired transcription of CP and
SLC7A11, which jointly promote ferroptosis in hepatocellular
cancer (HCC) cells(Yang et al., 2022). In addition to the
bidirectional effect of copper on ferroptosis, ferroptosis inducers
sorafenib and erastin also enhance cuproptosis in primary liver
cancer cells by increasing copper-dependent lipoylated protein
oligomerization, which is mediated by the inhibition of
mitochondrial matrix-related protease-mediated FDX1 protein
degradation and reduction of GSH synthesis (Wang et al., 2023).
We should also not overlook other forms of cell death associated
with cuproptosis. Copper induced autophagy through mtROS-
dependent Akt/AMPK/mTOR signaling pathway, thereby
protecting mouse monocytes from CuSO4-induced apoptosis
(Luo et al., 2021). Copper-bacteriochlorin nanosheet, as a specific
pyroptosis inducer, have been shown to enhance tumor
immunogenicity and exert anti-tumor efficacy in vivo and
in vitro, while minimizing systemic side effects (Zhang et al.,
2023b). Given that cuproptosis is inextricably linked to apoptosis,
ferroptosis, and pyroptosis, it is critical to further uncover the
mechanisms of crosstalk between several modes of cell death.
This highlights a new direction for the combined use of
therapeutic drugs that target different modalities of cell death.

4 Mechanism of copper in
carcinogenesis

Given that copper is fundamental to cancer biology and a key
factor in cell signaling, it is not surprising that it is gradually
attracting much research interest; for example, studies on copper-
induced cell death have been performed by cardiovascular disease
and neurology teams. Copper directly binds to amyloid-β peptide,
which is a pathological hallmark of Alzheimer’s disease, further
increasing its aggregation and driving increased neurotoxicity
(Cheignon et al., 2018). In addition, excess copper triggers
Huntington’s disease by promoting the accumulation of
Huntingtin proteins as well as inhibiting the activity of
mitochondrial dehydrogenases (Mason et al., 2013; Xiao et al.,
2013). Interestingly, high serum copper levels are associated with
an increased risk of atherosclerotic disease, and conversely copper
deficiency may contribute to hypertrophic cardiomyopathy
(Dziedzic et al., 2022; Farrant et al., 2023). However, little is
known about the mechanism of copper in carcinogenesis. Our
review of the literature included statistical analyses that show
that in individuals suffering from various malignancies, the
concentration of copper in cancer tissues tends to be higher than
that in the tissues of their origin, such as breast, thyroid, lung,
gallbladder, pancreatic, and prostate cancer (Basu et al., 2013;
Pavithra et al., 2015; Lener et al., 2016; Baltaci et al., 2017; Saleh
et al., 2020; Wang et al., 2021). Copper is an indispensable cofactor
in mitochondrial oxidative phosphorylation (OXPHOS), which

provides the energy supply of malignant cells during rapid
division (Tang et al., 2022). In addition to interfering with
mitochondrial function, elevated copper levels affect glycolysis,
lipid metabolism, insulin resistance, and the TME, which are
integral to tumor cell proliferation, angiogenesis, distant
metastasis, and drug insensitivity (Figure 3) (Wang et al., 2023).

The role of copper in promoting malignant cell growth and
proliferation was discovered due to the critical role of the metal in
receptor tyrosine kinase-related signaling pathways. The ion Cu2+

can activate receptor tyrosine kinases (RTK) without binding to the
corresponding ligands, EGF and HGF. Activated RTK conducts
upstream signaling to EGFR and MET, subsequently leading to the
phosphorylation of downstream extracellular signal-regulated
kinase (ERK) and agammaglobulinemia tyrosine kinase (ATK)
(He et al., 2019). In addition, copper ions are also thought to
activate downstream AKT by acting on phosphoinositide-3-
kinase (PI3K) or 3-phosphoinositide dependent protein kinase 1
(PDK1) (Ostrakhovitch et al., 2002; Guo et al., 2021). Activation of
AKT by copper can further lead to the phosphorylation and
subcellular relocalization of the transcription factor forkhead box
O1a (FoxO1a), ultimately leading to tumorigenesis (Walter et al.,
2006). The mitogen-activated protein kinase (MAPK) pathway
regulates tumor growth with the assistance of copper ions.
Copper acts on mitogen-activated protein kinase 1 (MEK1) and

FIGURE 3
Summary of the relationship between copper signaling and
cancer. Copper is involved in almost all fundamental processes of
cancers. The pro-cancer role of copper can be summarized in four
aspects: inducing tumorigenesis, promoting tumor growth,
regulating angiogenesis, and assisting tumor metastasis, the details of
which are presented below. Abbreviations: RTK, receptor tyrosine
kinase; ERK1/2, extracellular signal-regulated kinase 1/2; ATK,
agammaglobulinaemia tyrosine kinase; PI3K, phosphoinositide-3-
kinase; PDK1, 3-phosphoinositide dependent protein kinase 1;
FoxO1a, forkhead box O1a; LOX, lysyl oxidase; MEK1/2, mitogen-
activated protein kinase kinase 1/2; MEMO1, mediator of ErbB2-driven
cell motility 1; PD-L1, programmed death ligand 1; VEGF, vascular
endothelial growth factor; GPER, G-protein estrogen receptor; FGF2,
fibroblast growth factor 2; TNF-α, tumor necrosis factor α.

Frontiers in Pharmacology frontiersin.org05

Bian et al. 10.3389/fphar.2023.1271613

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1271613


enhances its ability to phosphorylate ERK1 and ERK2, thus
stimulating RAF-MEK-ERK signaling (Baldari et al., 2019). For
example, pharmacological inhibition of ATOX1 with the small
molecule DCAC50 decreased the phosphorylation of ERK1/2 and
reduced the growth of BRAFV600E-driven melanoma cell lines in a
dose-dependent manner (Kim et al., 2019). Autophagy, as a dynamic
degradation and recycling system, contributes to enhancing the
resistance of cancer cells to stress (such as nutrient deprivation,
hypoxia, DNA damage, metabolic stress, and chemotherapy) and
sustains tumor metabolism and growth, ultimately driving
carcinogenesis (Li et al., 2020). Copper is required to alleviate the
inactivation of autophagic kinases ULK1 and ULK2 (ULK1/2)
through direct Cu-ULK1/2 interactions. Genetic loss of Ctr1 or
mutations in ULK1 that disrupt the binding of copper was found to
reduce the growth of oncogene-driven lung adenocarcinomas
(Tsang et al., 2020). Interestingly, the results of a recent study
also showed that copper bridges the connection between chronic
inflammation and tumor development; the authors showed that, in a
murine model, the inflammatory response induces copper uptake
through the IL-17-STEAP4-XIAP-NFκB axis to promote colon
tumorigenesis (Liao et al., 2020).

Angiogenesis, the process by which new capillaries grow from
preexisting blood vessels, is essential for the growth and metastasis
of many solid tumors, including pancreatic, colorectal, and cervical
cancer (Li et al., 2019; Wu et al., 2019; Zhang et al., 2023c). Hypoxia
is an important microenvironmental factor that determines the rate
of tumor angiogenesis, and the focus of the cell’s adaptation to
hypoxia is the transcription factor hypoxia-inducible factor 1 α
(HIF1α) (Paredes et al., 2021). Copper was originally found to have
pro-angiogenic properties precisely because it can upregulate the
expression of HIF1α (Xie and Kang, 2009). Li et al. demonstrated
that copper deprivation significantly influenced breast cancer
angiogenesis by inhibiting the HIF1α-Snail/Twist signaling
pathway (Li et al., 2015). In particular, copper stabilizes nuclear
HIF1α even under normoxic conditions, which in turn promotes the
expression of vascular endothelial growth factor (VEGF) by
cooperating with the G-protein estrogen receptor (GPER),
leading to angiogenesis in breast and liver cancers (Martin et al.,
2005; Rigiracciolo et al., 2015). SLC31A1 knockout endothelial cells
exhibit reduced VEGF-induced VEGFR2 signaling, which is
essential for developmental and reparative angiogenesis (Das
et al., 2022). In addition, copper is implicated in the activation of
many other pro-angiogenic factors, such as fibroblast growth factor
2 (FGF2), SOD1, tumor necrosis factor α (TNF-α), IL-1, IL-6, and
IL-8 (Wang et al., 2023); for example, the number of blood vessels in
tetrathiomolybdate-treated endometriosis-induced mice was much
smaller than that in controls because copper depletion limits
FGF2 mRNA expression (Delsouc et al., 2021).

Copper is an essential cofactor for various metalloenzymes with
well-documented roles in tumor metastasis. As one of the classical
secreted copper-dependent amine oxidases, members of the LOX
family catalyze the crosslinking of elastin and collagen in the
extracellular matrix, and are key mediators of tumor invasion
(Leung et al., 2019). LOX/LOXL2 has been found to accelerate
the spread of breast, colorectal, and prostate cancer (Baker et al.,
2011; Cox et al., 2016). In breast cancer, not only is high expression
of LOX related to bone metastasis, LOXL2 has also been shown to
promote lung metastasis of breast cancer (Cox et al., 2015; Salvador

et al., 2017). In an orthotopic mouse model of breast cancer, ATP7A
silencing attenuated LOX activity and reduced the recruitment of
myeloid cells to the lungs, thereby suppressing tumor metastasis
(Shanbhag et al., 2019). In addition, the ATOX1-ATP7A-LOX axis
is necessary for breast cancer cell migration, and high levels of
ATOX1 often indicate poor patient survival (Blockhuys et al., 2020).
In recent years, it has been gradually revealed that another copper-
binding protein, the mediator of ErbB2-driven cell motility 1
(MEMO1), has a particularly relevant role in cancer cell
metastasis. MEMO1 binds to insulin receptor substrate 1 (IRS1)
and activates the downstream PI3K-Akt-Snail1 signaling pathway,
thereby triggering the epithelial-mesenchymal transition program
(Sorokin and Chen, 2013). ATOX1 was also found to interact with
MEMO1 and exchange Cu1+ in vitro (Zhang et al., 2022). It is worth
noting that SPARC (a collagen-binding glycoprotein)
overexpression is closely related to increased aggressiveness of
some cancers; however, the regulatory mechanism of copper still
needs to be further explored (Morrissey et al., 2016).

Cancer immune evasion is recognized as a central hallmark of
tumor development, and targeting programmed death receptor 1
(PD-1)/programmed death ligand 1 (PD-L1) to restore the normal
anti-tumor immune response has been difficult (Mortezaee, 2020).
A search of The Cancer Genome Atlas database showed that there is
a positive correlation between CTR1 and PD-L1 expression in tumor
tissues. Copper supplementation induces PD-L1 gene transcription
and protein stabilization, whereas copper deprivation mediates the
ubiquitination and degradation of PD-L1 through the
downregulation of EGFR and STAT phosphorylation (Voli et al.,
2020). Therefore, the repurposing of clinically available Cu chelators
as immune checkpoint inhibitors may be a promising strategy.
Elucidating the precise mechanism of copper in carcinogenesis
would contribute to the individualized treatment of tumors. In
the era of precision oncology, there is an urgent need to identify
the molecular mechanisms underlying altered copper homeostasis
in different types of cancer.

5 Cuproptosis and tumors

Cuproptosis can be regulated by specific cuproptosis-related
genes (CRGs), including seven pro-cuproptosis genes (FDX1,
LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB), three anti-
cuproptosis genes (MTF1, GLS, and CDKN2A), and three key
copper transporters: ATP7A, ATP7B, and SLC31A1 (Tsvetkov
et al., 2022). An in-depth understanding of these CRGs in the
context of cancer pathology is necessary to understand
cuproptosis-related tumorigenesis and develop the cuproptosis
pathway as a therapeutic target for cancer research. We outline
the expression levels and clinical significance of CRGs in different
tumors (Table 1).

In clear cell renal cell carcinoma (ccRCC), high expression of
FDX1 and DLAT predicts better survival; however, CDKN2A
exhibits carcinogenic features, the overexpression of which is
associated with worse survival in patients with ccRCC (Bian
et al., 2022). This may be because FDX1 and CDKN2A are
involved in the regulation of immune cell infiltration in
pantumors (Chen et al., 2021). Furthermore, compared to paired
normal tissues, the expression levels of most CRGs were upregulated
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TABLE 1 Functions and clinical values of cuproptosis-related genes.

Gene Full name Subcellular
locations

Functions Role in
cuproptosis

Clinical value Ref.

FDX1 Ferredoxin 1 Mitochondrion Transfers electrons from
NADPH through ferredoxin
reductase to mitochondrial
cytochrome P450, involved
in steroid, vitamin D, and bile
acid metabolism.

Ruduces Cu2+

to Cu1+
FDX1 high expression is
associated with better
prognosis in most tumors.

Ding et al. (2022a),
Wang et al. (2022a),
Xu et al. (2022a),
Bian et al. (2022c),
Wang et al. (2022c),
Zhang et al. (2022c),
Wang et al. (2023a)

LIAS Lipoic Acid
Synthetase

Mitochondrion Catalyzes the conversion of
the octanoylated domains to
lipoylated derivatives.

Involved in
lipoylation of DLAT

LIAS high expression is
associated with better
prognosis in STAD, KIRC,
READ, BRCA, OV, and
PADD, but on the contrary
in LUAD.

Wang et al. (2022a),
Cai et al. (2022),
Huang et al. (2022)

LIPT1 Lipoyltransferase 1 Mitochondrion Catalyzes the transfer of the
lipoyl group from lipoyl-
AMP to the specific lysine
residue of lipoyl domains of
lipoate-dependent enzymes.

Involved in
lipoylation of DLAT

LIPT1 high expression is
associated with better
prognosis in SKCM, BLCA,
PADD, BRCA, STAD, and
OV, but on the contrary in
UCEC, and LIHC.

Liu et al., 2022b;
Chen (2022), Huang
et al. (2022), Lv et al.
(2022), Yan et al.
(2022)

DLD Dihydrolipoamide
Dehydrogenase

Mitochondrion and
nucleus

Component of the glycine
cleavage system and
E3 component of α-ketoacid
dehydrogenase complexes.

Involved in
lipoylation of DLAT

DLD high expression is
associated with better
prognosis in BRCA, and
HCC, and indicates the
pathological staging of
LUAD.

Li et al. (2022b),
Wang et al. (2022b),
Jiang et al. (2022)

DLAT Dihydrolipoamide
S-Acetyltransferase

Mitochondrion E2 component of the
pyruvate dehydrogenase
complex, catalyzes the overall
conversion of pyruvate to
acetyl-CoA and CO2.

Lipoylated DLAT
oligomerization
leads to cell death

DLAT high expression is
associated with better
prognosis in ccRCC, and
CRC, but on the contrary in
PADD, BRCA, LGG, and
LIHC.

Li et al. (2022a), Bian
et al. (2022c), Huang
et al. (2022), Wu
et al. (2022), Xu et al.
(2023)

PDHA1 Pyruvate
Dehydrogenase
E1 Subunit Alpha 1

Mitochondrion and
nucleus

E1 α1 component of the
pyruvate dehydrogenase
complex, catalyzes the overall
conversion of pyruvate to
acetyl-CoA and CO2.

Positively regulates
cuproptosis

PDHA1 high expression is
associated with better
prognosis in KIRC, and
CESC, but on the contrary
in PRAD, LUAD, BRCA,
and STAD.

Deng et al. (2022),
Jiang et al. (2022),
Cheng et al. (2023),
Zhao et al. (2023)

PDHB Pyruvate
Dehydrogenase
E1 Subunit Beta

Mitochondrion and
nucleus

E1 β component of the
pyruvate dehydrogenase
complex, catalyzes the overall
conversion of pyruvate to
acetyl-CoA and CO2.

Positively regulates
cuproptosis

PDHB high expression is
associated with better
prognosis in KIRC, and
KIPR, and a lower stage in
KIRP.

Zhang et al. (2023a)

MTF1 Metal Regulatory
Transcription
Factor 1

Nucleus Induces expression of
metallothioneins and other
genes involved in metal
homeostasis in response to
heavy metals such as Cd, Zn,
Cu, and Ag.

Negatively regulates
cuproptosis

MTF1 high expression is
associated with better
prognosis in STAD, KIRC,
LUNG, BRCA, and OV, but
on the contrary in LIHC,
and LGG.

Song et al. (2023a),
He et al. (2023)

GLS Glutaminase Mitochondrion and
cytosol

Catalyzes the hydrolysis of
glutamine to glutamate and
ammonia.

Negatively regulates
cuproptosis

GLS high expression is
associated with poorer
prognosis in UCEC, PRAD,
and HCC.

Zhang et al., 2022a;
Chen (2022), Li et al.
(2023a)

CDKN2A Cyclin Dependent
Kinase Inhibitor 2A

Mitochondrion, cytosol,
and nucleus

Capable of inducing cell cycle
arrest in G1 and G2 phases.

Negatively regulates
cuproptosis

CDKN2A high expression
is associated with poorer
prognosis in ccRCC,
UCEC, CRC, and BRCA,
but on the contrary
in HCC.

Ding et al. (2022a),
Bian et al., 2022c;
Chen (2022), Jiang
et al. (2022), Wu
et al. (2022)

ATP7A ATPase Copper
Transporting Alpha

Golgi apparatus,
endosome, endoplasmic
reticulum, plasma
membrane, cytosol and
nucleus

ATP-driven Cu1+ pump that
plays an important role in
intracellular copper ion
homeostasis.

knock out leads to
intracellular Cu1+

accumulation

ATP7A high expression is
associated with poorer
prognosis in HCC, and
BRCA.

Li et al. (2022a), Li
et al. (2022b)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org07

Bian et al. 10.3389/fphar.2023.1271613

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1271613


in low-grade gliomas (LGG), in addition to ATP7B. A high CRG
score implied higher TME scores, more significant TME cell
infiltration, and an increased mutation burden. Their study
showed that the potential effects of CRGs on the TME and
chemoradiotherapy sensitivity are independent predictors of
prognosis in patients with LGG (Bao et al., 2022). Sha et al.
performed a comprehensive analysis of CRGs in 346 TNBC
specimens. Groups with high expression of ATP1A, DLST, and
LIAS are characterized by high tumormutation burden and immune
activation, good survival probability, and greater immunoreactivity
to cytotoxic T lymphocyte antigen 4 (CTLA4), whereas groups with
high expression of LIPT1 and PDHA1 are characterized by the
activation of stromal pathways and immunosuppression (Sha et al.,
2022). These results provide new targets for the development of
novel anti-cancer drugs. Pancreatic adenocarcinoma (PAAD) is a
highly malignant tumor with a 5-year overall survival rate of less
than 10%. Polygenic prognostic studies based on cuproptosis may
overcome barriers that have stalled the development of treatments.
Currently, three essential CRGs (DLAT, LIPT1, and LIAS) have
been identified as potential diagnostic biomarkers (Huang et al.,
2022). FDX1 was significantly downregulated in HCC, and a
cuproptosis-related risk score (CRRS) based on FDX1 and its
associated genes was constructed using the LASSO Cox
regression model. The high-CRRS group showed a lower OS,
which may be attributed to a high mutational frequency of
tumor suppressor genes such as tumor protein P53 (TP53) and
breast cancer susceptibility gene 1 (BRCA1)-associated protein 1
(BAP1) in high-CRRS HCC patients (Zhang et al., 2022).
Lipoyltransferase 1, encoded by LIPT1, is involved in lipoic acid
metabolism, and LIPT1 silencing inhibits the tricarboxylic acid
cycle. Similarly, high LIPT1 expression in skin cutaneous
melanoma (SKCM) and bladder cancer (BLCA) has been
suggested to improve prognosis (Chen et al., 2021). Moreover,
LIPT1 expression is positively correlated with PD-L1 expression
and negatively associated with Treg cell infiltration, suggesting that
LIPT1 can guide immunotherapy in patients with cancer (Lv et al.,
2022). Although previous research on CRGs has revealed the ways in
which they may influence or be influenced by cuproptosis as well as
the potential significance of their involvement in the connection
between cuproptosis and cancers, additional clinical testing of novel
therapies based on this principle are required in order to verify the
clinical indications and safety.

6 Therapeutic strategies for targeting
copper in cancer

Chemotherapy is the main treatment for malignant tumors, and
the emergence of new targeted drugs has changed the tumor
treatment model and opened up an era of precision medicine.
Through numerous clinical practices, it has been shown that
targeted therapy can not only selectively intervene in the
molecules and pathways involved in tumor growth and
development but also reduce the risk of tumor progression,
thereby prolonging patient survival (Pérez-Herrero and
Fernández-Medarde, 2015). Given the central role of copper in
tumorigenesis, recent years have witnessed an explosion of interest
in developing therapeutic strategies that leverage copper-dependent
disease responses. Copper chelators that inhibit cuproplasia and
copper ionophores that promote cuproptosis have shown great
potential for cancer-targeted therapy (Table 2).

Copper chelators were initially designed to treat MD/WD but
have not been evaluated as antitumor agents in recent years. To date,
copper chelators have been used in several clinical trials against
copper-overloaded tumors. The earliest available drug is
tetrathiomolybdate, which inhibits lung metastasis of head and
neck tumors and breast cancer by reducing LOX activity (Kumar
et al., 2010; Chan et al., 2017). ATN-224, a second-generation analog
of ammonium tetrathiomolybdate, also showed potent anti-tumor
effects. Researchers have found that ATN-224 has the dual ability to
degrade SOD1 and CCO, which is devastating for the survival of
patients with diffuse large B-cell lymphoma (Lee et al., 2013).
Importantly, copper chelators can be repurposed as adjuvants in
conventional cancer therapy to reverse the insensitivity of some
tumors to chemoradiotherapy. The best example is D-penicillamine,
which can inhibit tumor growth in oxaliplatin-resistant human
cervical cancer cells by interfering with the Sp1-hCtr1-p53-
ATP7A axis and enhancing the lethality of radiation and
carboplatin against lung and breast cancer cells (Chen et al.,
2015; Sciegienka et al., 2017). Synergy with immune checkpoint
inhibitors is another significant finding of copper chelators. Florida
et al. confirmed that copper chelators mediated the ubiquitination
degradation of PD-L1, promoted an increase in tumor-infiltrating
CD4+ and CD8+ lymphocytes, and activated Natural Killer cells in a
glioblastoma mouse model(Florida et al., 2019). However, the
toxicity of copper chelators cannot be ignored because they

TABLE 1 (Continued) Functions and clinical values of cuproptosis-related genes.

Gene Full name Subcellular
locations

Functions Role in
cuproptosis

Clinical value Ref.

ATP7B ATPase Copper
Transporting Beta

Golgi apparatus,
endosome, plasma
membrane and
mitochondrion

ATP-driven Cu1+ pump that
plays an important role in
intracellular copper ion
homeostasis.

knock out leads to
intracellular Cu1+

accumulation

MTF1 high expression is
associated with better
prognosis in LGG, LUAD,
BRCA, and HCC.

Li et al. (2022a), Bao
et al. (2022), Li et al.
(2022b), Zhu et al.
(2023)

SLC31A1 Solute Carrier Family
31 Member 1

Plasma membrane High-affinity, saturable
copper transporter involved
in dietary copper uptake.

Promotes
intracellular Cu1+

accumulation

SLC31A1 high expression
is associated with better
prognosis in NSCLC, and
HCC, but on the contrary
in BRCA, ACC, MESO,
and LGG.

Sun et al. (2018), Li
et al. (2022a), Li et al.
(2022b), Kong et al.
(2023)
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TABLE 2 Copper-targeting agents in clinical trials for cancer treatment.

Agents Role Identifier Combination Status Phase Cancer type

Tetrathiomolybdate Chelator NCT00150995 N.A. Completed II Hormone Refractory Prostate Cancer

NCT01837329 Carboplatin/Pemetrexed Completed I Metastatic Non-small Cell Lung Cancer

NCT00195091 N.A. Active II Breast Cancer

NCT00006332 N.A. Completed II Hepatocellular Carcinoma

NCT00176800 Chemoradiation Completed II Esophageal Carcinoma

NCT00560495 Radiation Therapy Withdrawn I Stage I/II/III Non-Small Cell Lung Cancer

NCT00176774 Irinotecan/Leucovorin/5-
Fluorouracil

Completed II Colorectal Carcinoma

ATN-224 Chelator NCT00405574 N.A. Unknown II Prostate Cancer

NCT00383851 Temozolomide Unknown II Advanced Melanoma

NCT00352742 Bortezomib Terminated I/II Multiple Myeloma

NCT00674557 Exemestane Terminated II Recurrent or Advanced Breast Cancer

Trientine Chelator NCT03480750 Pegylated Liposomal Doxorubicin/
Carboplatin

Completed I/II Epithelial Ovarian Cancer

NCT01178112 Carboplatin Completed I Advanced Malignancies

NCT02068079 Vemurafenib Withdrawn I BRAF Mutated Metastatic Melanoma

Penicillamine Chelator NCT00003751 Low Copper Diet/Radiation
Therapy

Completed II Glioblastoma

Elesclomol Ionophore NCT00522834 Paclitaxel Terminated III Melanoma

NCT01280786 N.A. Unknown I Relapsed or Refractory Acute Myeloid Leukemia

NCT00827203 N.A. Suspended I Solid Tumors

NCT00808418 Docetaxel/Prednisone Completed I Metastatic Prostate Cancer

NCT00888615 Paclitaxel Completed II Recurrent or Persistent Ovarian Epithelial Cancer,
Fallopian Tube Cancer, or Primary Peritoneal
Cancer

NCT00087997 Paclitaxel Completed II Soft Tissue Sarcomas

NCT00084214 Paclitaxel Completed I/II Melanoma

NCT00088114 Paclitaxel Completed I Solid Tumors

NCT00088088 Paclitaxel/Carboplatin Completed I/II Stage IIIB/IV Non-Small Cell Lung Cancer

Disulfiram Ionophore NCT03323346 Copper Recruiting II Metastatic Breast Cancer

NCT02678975 Copper Completed II/III Recurrent Glioblastoma

NCT03950830 Cisplatin Unknown II Refractory Germ Cell Tumors

NCT05667415 Cisplatin Not Yet
Recruiting

N.A. Advance Gastric Cancer

NCT01118741 N.A. Completed N.A. Recurrent Prostate Cancer

NCT00256230 N.A. Completed I/II Metastatic Melanoma

NCT03151772 Bioavailability Terminated I Glioblastomas

NCT02101008 Chelated Zinc Completed II Refractory Disseminated Malignant Melanoma

NCT02671890 Gemcitabine Hydrochloride Active I Refractory Solid Tumors or Metastatic Pancreatic
Cancer

NCT00312819 Chemotherapy Completed II/III Lung Cancer

NCT05210374 Copper Gluconate/Liposomal
Doxorubicin

Recruiting I Treatment-Refractory Sarcomas

(Continued on following page)
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deplete copper throughout the body in a nonselective manner.
Mitochondria-targeted copper-depleting nanoparticles (CDNs)
deprive cancer cells of copper in the mitochondria, resulting in a
metabolic switch to glycolysis by decreasing oxygen consumption
and OXPHOS, and ultimately suppressing TNBC in mice (Cui et al.,
2021).

Copper ionophores, also known as copper proptosis-related
drugs, can improve the bioavailability of copper in cells. Typical
copper ionophores, DSF and elesclomol, confer the characteristic
ability to transfer copper ions from the extracellular to the
intracellular space, subsequently triggering excess ROS-
mediated tumor cell death (Ge et al., 2022). Elesclomol, a
copper ionophore that targets mitochondrial metabolism in
cancer therapy, shows significant inhibitory effects on cancer
stem cells, drug-resistant cancer cells, and cells with lower
glycolytic activity (Zheng et al., 2022). A randomized, double-
blind, phase II clinical trial showed that the addition of elesclomol
to paclitaxel for the treatment of stage IV metastatic melanoma
significantly doubled the median PFS, with an acceptable toxicity
profile and prolonged OS (O’Day et al., 2009). Although
elesclomol and paclitaxel combination therapy did not achieve
the PFS endpoint in a subsequent Phase III study, a prospectively
defined subgroup analysis revealed statistically significant
improvement in patients with normal baseline levels of lactate
dehydrogenase (LDH) (O’Day et al., 2013). This is due to the high
mitochondrial metabolism in patients with low serum LDH levels;
in other words, serum LDH levels correlate with esclomole
sensitivity. Notably, esclomole, while inducing cuproptosis in a
mouse model of subcutaneous bladder cancer, was found to bind
to an anti-programmed cell death protein ligand-1 antibody (αPD-
L1), resulting in enhanced cancer immunotherapy (Guo et al.,
2023). The serendipitous discovery of the anticancer effects of DSF
can be traced back to 1977, when its chemosensitizing effects were
demonstrated. The mechanisms by which DSF combined with Cu
reverses cancer drug resistance include the suppression of ALDH,
inhibition of NF-κB, activation of the MAPK pathway, inhibition
of the ubiquitin-proteasome pathway, and remodeling of the
tumor immune microenvironment (Li H. et al., 2020). In
addition, targeting the p97-NPL4-UFD1 axis is one of the
mechanisms by which DSF exerts its anti-tumor effects (Skrott
et al., 2017). Unfortunately, few clinical trials of DSF have achieved
the expected results owing to the inefficient delivery of DSF and
Cu2+ to tumor sites and small sample sizes. For example, a phase
II/III clinical trial found that among patients with recurrent
glioblastoma, DSF combined with temozolomide led to

significantly increased toxic effects but no significant difference
in survival, compared with chemotherapy alone, suggesting that
DSF and copper did not benefit patients with recurrent
glioblastoma (Werlenius et al., 2023). Taken together, these
findings suggest that altering the intracellular copper
concentration could be a promising therapeutic strategy for a
subset of tumors. Indeed, as the therapeutic index is the decisive
factor for the utility of any therapy, those targeting copper are
often limited by side effects rather than a lack of efficacy.
Therefore, there is an urgent need to validate the most
appropriate drug dosage through preclinical and clinical trials,
especially in cancer patients without abnormal copper
metabolism.

7 Conclusion and perspectives

Copper is a cofactor for enzymes involved in crucial metabolic
steps and regulates cell proliferation, angiogenesis, metastasis, and
drug resistance in cancers. Both deficiency and overload of
intracellular copper can negatively affect the human body. In
normal cells, the maintenance of copper homeostasis depends on
stable copper metabolism. A moderate increase in copper
concentration establishes the chronic oxidative stress
environment required for cancer growth, known as cuproplasia.
If copper levels continue to increase beyond the antioxidant capacity
of the cells, cancer cells will be forced to undergo cuproptosis.
Therefore, the targeting of copper ions to inhibit tumorigenesis has
received considerable attention. However, the use of copper
chelators or ionophores alone has not shown any clinical
benefits. In addition, owing to the lack of high specificity, the
indiscriminate attack of drugs on non-tumor cells can have
unwanted effects, which hinders their generalization. Exploring
specific metabolic processes or molecules in different types of
tumors may provide an important reference for optimizing drug
treatment using copper ions. Currently, the field of cuproptosis is
nascent in many ways. The lack of reliable cuproptosis biomarkers
and the absence of further randomized clinical trials to confirm a
direct relationship between cuproptosis and cancer are long-term
bottlenecks limiting the promotion of cuproptosis in clinical
applications. Despite these challenges, with a deeper
understanding of the role of cuproptosis in various
pathophysiological conditions, a breakthrough in applying
cuproptosis to treat or prevent copper-related diseases is just
over the horizon, and thus deserves renewed attention.

TABLE 2 (Continued) Copper-targeting agents in clinical trials for cancer treatment.

Agents Role Identifier Combination Status Phase Cancer type

NCT04521335 Copper Gluconate Terminated I Treatment-Refractory Multiple Myeloma

NCT04265274 Vinorelbine/Cisplatin/Copper Unknown II CTC_EMT Positive Refractory Metastatic

NCT03714555 Paclitaxel/Gemcitabine Completed II Metastatic Pancreatic Cancer

NCT02715609 Radiation Therapy/Temozolomide Active I//I Newly Diagnosed Glioblastoma

Clioquinol Ionophore NCT00963495 N.A. Terminated I Relapsed or Refractory Hematological
Malignancy
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Glossary

AOC1 Amine oxidase copper-containing 1

ATK Agammaglobulinaemia tyrosine kinase

ATOX1 Antioxidant-1

ATP7A/B Copper-transporting ATPase A/B

CACG Copper-alanine nanoparticles

CCO Cytochrome c oxidase

CCS Superoxide dismutase

COMMD10 Copper metabolism MURR1 domain 10

CP Ceruloplasmin

CRGs Cuproptosis-related genes

CTLA4 Cytotoxic T lymphocyte antigen 4

CTR1 Copper transporter 1

Cu/Zn-SOD Cu/Zn superoxide dismutase 1

DSF Disulfiram

ERK Extracellular signal-regulated kinase

FDX1 Ferredoxin 1

FGF2 Fibroblast growth factor 2

FoxO1a Forkhead box O1a

GPER G-protein estrogen receptor

GPX4 Glutathione peroxidase 4

GSH Glutathione

HIF1α Hypoxia-inducible factor 1 alpha

IRS1 Insulin receptor substrate 1

LDH Lactate dehydrogenase

LIAS Lipoic acid synthetase

LOX Lysyl oxidase

MAPK Mitogen-activated protein kinase

MD Menkes disease

MEK1 Mitogen-activated protein kinase kinase 1

MEMO1 Mediator of ErbB2-driven cell motility 1

MT1 Metallothionein 1

PD-1 Programmed death receptor 1

PDK1 3-phosphoinositide dependent protein kinase 1

PD-L1 Programmed death ligand 1

PI3K Phosphoinositide-3-kinase

ROS Reactive oxygen species

RTK Receptor tyrosine kinase

SLC31A1 Solute carrier family 31 member 1

STEAP Six-transmembrane epithelial antigen of the prostate

TGN Trans-Golgi network

TNF-α Tumor necrosis factor α

VEGF Vascular endothelial growth factor

WD Wilson disease
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