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Treatment response variability across patients is a common phenomenon in
clinical practice. For many drugs this inter-individual variability does not require
much (if any) individualisation of dosing strategies. However, for some drugs,
including chemotherapies and some monoclonal antibody treatments,
individualisation of dosages are needed to avoid harmful adverse events.
Model-informed precision dosing (MIPD) is an emerging approach to guide the
individualisation of dosing regimens of otherwise difficult-to-administer drugs.
Several MIPD approaches have been suggested to predict dosing strategies,
including regression, reinforcement learning (RL) and pharmacokinetic and
pharmacodynamic (PKPD) modelling. A unified framework to study the
strengths and limitations of these approaches is missing. We develop a
framework to simulate clinical MIPD trials, providing a cost and time efficient
way to test different MIPD approaches. Central for our framework is a clinical trial
model that emulates the complexities in clinical practice that challenge successful
treatment individualisation. We demonstrate this framework using warfarin
treatment as a use case and investigate three popular MIPD methods: 1. Neural
network regression; 2. Deep RL; and 3. PKPD modelling. We find that the PKPD
model individualises warfarin dosing regimens with the highest success rate and
the highest efficiency: 75.1% of the individuals display INRs inside the therapeutic
range at the end of the simulated trial; and the median time in the therapeutic
range (TTR) is 74%. In comparison, the regression model and the deep RL model
have success rates of 47.0% and 65.8%, andmedian TTRs of 45% and 68%.We also
find that the MIPD models can attain different degrees of individualisation: the
Regression model individualises dosing regimens up to variability explained by
covariates; the Deep RLmodel and the PKPDmodel individualise dosing regimens
accounting also for additional variation usingmonitoring data. However, the Deep
RL model focusses on control of the treatment response, while the PKPD model
uses the data also to further the individualisation of predictions.
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1 Introduction

Model-informed precision dosing (MIPD) is an emerging
technique used to individualise dosing regimens of otherwise
difficult-to-administer drugs (Sheiner, 1969; Keizer et al., 2018;
Darwich et al., 2021). Typical examples that would benefit from
MIPD are drugs with narrow therapeutic windows and large
treatment response variability, such as warfarin, docetaxel and
infliximab (Wadelius and Pirmohamed, 2007; Gill et al., 2016; Ma
et al., 2021). Other examples include antibiotics, like
vancomycin, where MIPD has been suggested and partially
implemented to guide dosing strategies for critically ill
patients, balancing the treatment of severe infections and the
risks for harmful adverse events (Broeker et al., 2019; Wicha
et al., 2021; Matsumoto et al., 2022). MIPD may also be used to
efficiently adapt dosing regimens to continuously changing
conditions, for example to stabilise the blood glucose levels of
diabetes patients with insulin treatment (Wang et al., 2019; Zhu
et al., 2020).

The most prominent MIPD methods are regression,
reinforcement learning (RL) and pharmacokinetic and
pharmacodynamic (PKPD) modelling (Johnson et al., 2011;
Johnson et al., 2017; Keizer et al., 2018; Ribba et al., 2020). These
methods may be further categorised into different subvariants. RL
variants include, for example, model-free algorithms such as Q
learning (Zadeh et al., 2023) and model-based algorithms such as
Monte Carlo tree search (Maier et al., 2021). MIPD variants of
PKPD modelling include maximum a posteriori-guided dosing and
Bayesian data assimilation-guided dosing (Maier et al., 2020). Other
variants include the modelling of virtual twins using physiology-
based PK (PBPK) and quantitative systems pharmacology (QSP)
models (Polasek and Rostami-Hodjegan, 2020). Although
differences across MIPD methods exist, all have in common that
they need to process data in two steps in order to make
individualised predictions. First models are fitted to population
data. This step establishes a relationship between patient
characteristics and dosing strategies. In a second step, data
specific to the to-be-treated patient is used to predict
individualised dosing regimens. For example, regression models
have been fitted using records of genetic information and dosages
across patients (Gage et al., 2008; Klein et al., 2009; Gong et al.,
2011), enabling the prediction of individualised dosages based on
genetic information.

The data used for model fitting and dosing regimen
individualisation differ substantially across MIPD methods
and include clinical factors, genetic factors and monitoring
data. The type and volume of data are key to both the
accuracy of predictions and the ease of implementation in
clinical practice (Darwich et al., 2017; Ribba et al., 2022). The
more data are collected, the better dosing regimens can be
individualised. However, practical constraints limit how much
and what type of data may be available for MIPD. As a result, the
trade-off between accuracy and practicality needs to be
considered when applying MIPD approaches to medicines.
The systematic study of this trade-off for a specific application
is, however, complicated by the astronomical costs of clinical
trials, rendering repeated clinical trials for different MIPD
methods infeasible. In this study, we propose a framework for

the simulation of clinical MIPD trials, facilitating a resource-
efficient way to test and develop MIPD approaches.

Using simulations to understand MIPD approaches is not a new
concept and several MIPD simulation studies exist in the literature.
Moore et al. (2004) and Ribba et al. (2022) use simulated treatment
responses to investigate RL approaches as a strategy to individualise
dosages of anaesthetics in intensive care units. For the simulations,
they used a semi-mechanistic PKPD model to emulate the time
course of treatment responses and a nonlinear mixed effects
(NLME) model structure to capture inter-individual variability
(IIV). A similar approach is adopted by Maier et al. (2020, 2021)
to study the individualisation of paclitaxel-based chemotherapy
using different MIPD approaches, including PKPD modelling, RL
and a hybrid PKPD-RL approach. An NLME model simulation
approach is also used by Zadeh et al. (2023) to study deep RL as a
candidate for MIPD of warfarin. Abrantes et al. (2019) extend this
NLME simulation approach, adding inter-occasion variability
(IOV) of treatment responses as an extra dimension to the
MIPD simulation. They model IOV following Karlsson and
Sheiner (1993) and randomly vary the PKPD model parameters
of virtual patients over time. An analogous approach is used by
Keutzer and Simonsson (2020) to understand MIPD-based
treatment individualisation of rifampicin.

We propose an extended framework for the simulation of
clinical MIPD trials. Our framework complements the emulation
of IIV and IOV by other previously established elements of clinical
trial simulation (Holford et al., 2000; Holford et al., 2010). In
particular, our framework includes treatment response emergence
from complex interactions of pharmacological and physiological
processes as a central feature of the trial simulation. In addition,
deviations of dose administrations from nominal dosing regimens,
as well as delayed monitoring measurements are incorporated in the
simulation to more faithfully represent practical limitations of
monitoring-based MIPD approaches.

The article is divided into three sections: methods; results and
discussion; and conclusion. In the methods, we first introduce the
general framework for MIPD trial simulation and subsequently
demonstrate its implementation in terms of a clinical trial model
for the warfarin use case.We then introduce the threeMIPDmodels,
which we will investigate with the help of the clinical trial model. The
considered models are: 1. a neural network regression model; 2. a
deep reinforcement learning model; and 3. a PKPD model. In the
results and discussion, we use the clinical trial model to simulate
MIPD trials for each of the three models and analyse the strengths
and limitations of the MIPD models. In our analysis, we pay careful
attention to attributing generic strengths and limitations to the
MIPD methodology and specific strengths and limitations to our
implementations of the models. In the conclusion, we summarise
our findings and propose future directions for MIPD research.

2 Methods

We first introduce the proposed framework for clinical MIPD
trial simulation and discuss the specific implementation for
warfarin. We then outline the investigated MIPD methods. The
data, models and scripts used in this article are hosted on GitHub
(https://github.com/DavAug/mipd-warfarin). A user-friendly API
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for MIPD approaches using PKPDmodelling has been implemented
in the open source Python package chi (Augustin, 2021). MIPD
approaches using neural networks were implemented in PyTorch
(Paszke et al., 2019).

2.1 General framework for MIPD trial
simulation

The objective of MIPD is to achieve desired treatment
outcomes across individuals despite large treatment response
variability by optimising individual dosing regimens.
Challenges for this individualisation are nonlinear and delayed
treatment responses (Mager, 2006; Dirks and Meibohm, 2010;
Véronneau-Veilleux et al., 2020), making it difficult to adjust and
extrapolate dosages based on feedback from monitoring.
Variability of the treatment response as a result of time-
varying pharmacokinetics, concomitant food-intake,
comedication and disease progression further complicate the
dosing regimen adjustment (Keutzer and Simonsson, 2020). A
realistic assessment of MIPD approaches in a simulated trial
therefore needs to account not only for IIV, but also for treatment
response delays, nonlinearities and IOV. However, PKPD-related
aspects are not the only factors influencing the success of MIPD
methods. There are also practical limitations for MIPD, including
imperfect measurements and deviations from nominal dosing
and monitoring schedules (Holford et al., 2000; Holford et al.,
2010). While measurement noise is commonly included in
simulations, the variability in the execution of the trial often
remains neglected. Deviations from the nominal schedule can
impact the success of MIPD methods, especially when they are
not fed back into the model.

To faithfully emulate the performance of MIPD in clinical
practice, our simulation framework accounts for these PKPD-
related and practical challenges using a clinical trial (CT) model
composed of five components: 1. a mechanistic model; 2. a population
model; 3. an inter-occasion model; 4. an execution model and 5. a
measurement model (see left panel in Figure 1). We describe each of
these components in Section 2.1.2. The right panel of the figure
illustrates the workflow of using the CT model for simulating MIPD
trials.

2.1.1 Workflow of MIPD trial simulation
Our method of MIPD trial simulation involves three steps (see

right panel in Figure 1): 1. simulation of pre-MIPD clinical trial data;
2. fitting of the MIPD model to this simulated data; 3. simulation of
the MIPD trial. The first two steps emulate the MIPD model
development that takes place in practice prior to MIPD trials. In
our method, we first simulate typical clinical data from e.g. phase I
trials, phase II trials and/or phase III trials using the CT model. We
then fit the MIPD model parameters to the simulated data. The
details of the fitting process are specific to the MIPD model and are
presented in Section 2.3. It is important that the simulated data are
used for the fitting, even if real clinical data are available, in order to
facilitate a clear attribution of limitations observed in a simulated
MIPD trial to the MIPD model. If instead, the MIPD model was
fitted to real clinical data, the approximation error of the CT model
with respect to the data-generating process of the real clinical trial
may also contribute to limitations observed in the simulated trials,
making it harder to draw conclusions about the MIPD model. The
real data should, instead, be used to calibrate the CT model prior to
the data simulation in order to minimise the approximation error as
much as possible. The final step of the workflow is the simulation of
the MIPD trial using the fitted MIPD model and the CT model.

FIGURE 1
Framework for MIPD trial simulation. The left panel shows the components of the clinical trial (CT) model: 1. A mechanistic model; 2. A population
model; 3. An inter-occasionmodel; 4. An executionmodel; and 5. Ameasurementmodel. The right panel shows theworkflow leading up to theMIPD trial
simulation. First, the CTmodel is used to simulate typical clinical trial data, available prior to theMIPD trial. Second, the simulated trial data is used to fit the
parameters of theMIPDmodel. This emulates the starting point ofMIPD trials in practice. Finally, the CTmodel and the fittedMIPDmodel are used to
simulate the MIPD trial.
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2.1.2 Components of the CT model
We now describe the components of the CT model. By design,

the components of the simulation are non-overlapping and are as
modular as possible. This simplifies the model structure and enables
an iterative development of CTmodels, making it possible to replace
or further develop individual components without requiring
changes in other model components.

1. The mechanistic model: This component models the dynamics
of treatment responses as a function of time, t, and the dosing
regimen, r,

�y t, r,ψ( ). (1)
�y denotes quantities of interest that may be monitored in clinical
practice, and ψ denotes the parameters of the model. The main
purpose of the mechanistic model is to faithfully reflect
nonlinearities and delays of the treatment response, emergent
from complex cascades of pharmacological and physiological
processes. Emulating this complexity provides a tool to test the
ability of different MIPD approaches to approximate the treatment
response and predict individualised dosing regimens. Popular
choices to simulate treatment response dynamics include PKPD
models and quantitative systems pharmacology (QSP) models
(Ribba et al., 2020; Azer et al., 2021; Maier et al., 2021).

An example mechanistic model of warfarin treatment developed
by Wajima et al. (2009) is illustrated in Figure 2. Warfarin is an oral
anticoagulant widely used for the prevention and treatment of
venous thrombosis, pulmonary embolism and thromboembolic
complications associated with atrial fibrillation and/or cardiac
valve replacement (FDA, 2010). The left panel shows the
53 blood components described by the model, including
warfarin, vitamin K and different coagulation factors, such as
thrombin and fibrin. Edges between the components represent
interactions, such as transitions, inhibitions or activations. The

monitored quantity of the treatment response, �y, is the
prothrombin time. The prothrombin time measures the time it
takes for plasma to clot after exposure to a thromboplastin reagent
and is routinely measured in clinical practice. In Wajima et al.’s
model, this prothrombin time test is simulated by measuring the
time elapsed between adding the reagent (300 nM tissue factor) and
reaching a fibrin area-under-the-curve (AUC) of 1500 nMs (see
right panel in Figure 2). The prothrombin time is commonly
reported in terms of the international normalised ratio (INR),
which measures the prothrombin time of a patient’s blood
sample in units of the prothrombin time of a reference sample.
We will use this model in our warfarin clinical trial simulation (see
Section 2.2 for details).

2. The population model: This component models the variability
in the treatment response across individuals using a mixed effects
model extension of the mechanistic model. A mixed effects model
defines a population distribution of model parameters

p ψ|θ( ), (2)
capturing the differences between individuals, i.e., the IIV
(Lavielle, 2014; Augustin et al., 2023). θ denotes the
parameters of the population distribution. Each sample, ψ,
from the population distribution represents an individual
with treatment response �y(t, r,ψ). Thus, differences between
individuals arise in this model structure from differences in
the mechanistic model parameters. For some applications,
these differences can be partially explained by covariates, χ,
which may divide the population into subpopulations, p(ψ|θ, χ).
The full population distribution across covariates is then given
by the average of the supopulations weighted by the relative
frequency of the covariates, p(ψ|θ) � Eχ[p(ψ|θ, χ)].

Covariates of the variability can range from clinical factors to genetic
factors. For example for warfarin treatment, the VKORC1 genotype

FIGURE 2
Warfarin clinical trial simulation - the mechanistic model. The figure shows Wajima et al.’s model of the warfarin treatment response mechanism.
The left panel shows the model. Nodes represent states of the model, including warfarin (red), vitamin K (green) and different coagulation factors (blue).
Central coagulation factors include thrombin (light blue) and fibrin (yellow). Multiple nodes for warfarin refer to the drug amount in different
compartments, while multiple nodes for vitamin K also refer to different forms of vitamin K, such as vitamin K epoxide and vitamin K hydroquinone.
Interactions between states, such as transitions, inhibitions or activations, are represented by edges. The right panel shows the model simulation of the
prothrombin time test. The arrow indicates the prothrombin time which marks the time elapsed between exposure to tissue factor and reaching a fibrin
AUC of 1500 nMs.
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explains 27% of the observed response variability (Wadelius et al.,
2009). Other covariates of warfarin treatment include mutations in
the CYP2C9 gene and the age of the patient. The link between
covariates and pharmacological or physiological processes makes it
possible to define mixed effects models that reflect the mechanistic
relationship between covariates and the treatment response variability
(Hamberg et al., 2007; Hamberg et al., 2010; Hartmann et al., 2016;
Hartmann et al., 2020). For example, warfarin’s mode of action is the
inhibition of the vitamin K epoxide reductase complex (VKORC), and
mutations in VKORC’s subunit 1 (VKORC1) affect the inhibitory
activity, which can be implemented with a reduced EC50 parameter in
Wajima et al.’s mechanistic model.

The left panel of Figure 3 illustrates the emergence of inter-
individual treatment response variability in our warfarin clinical
trial model. The figure shows simulated INR treatment responses of
6 individuals to daily administrations of warfarin. 3 individuals have
the GG genotype (VKORC1), the *1/*1 genotype (CYP2C9) and are
71 years old (see blue lines). The remaining 3 individuals have the
GA genotype (VKORC1), the *1/*2 genotype (CYP2C9) and are
46 years old (see red lines). The dashed line indicates the treatment
response of an average 71 year old individual with the GG and *1/*1
genotypes. We can see that individuals with χ = (GG, *1/*1, 71) tend
to respond less strongly to warfarin treatment than individuals
with χ = (GA, *1/*2, 46). However, there remains substantial IIV
that is not explained by covariates.

3. The inter-occasionmodel: This componentmodels the variability
of the treatment response over time using time-varyingmodifications of
the model parameters

ψ → ψ′ t( ) � ψ η t( ). (3)
η denotes the alterations of the model parameters, and ψ′ denotes
the new model parameters. The treatment response of an individual

with parameters ψ is now given by the mechanistic model simulation
using the time-varying parameters, �y(t, r,ψ′(t)) (Karlsson and
Sheiner, 1993). The role of the inter-occasion model is to
implement changes of the treatment response that are not
accounted for by the mechanistic model. Such changes can be
externally driven, e.g., by concomitant food intake or
comedication, or of completely unknown origin (Keutzer and
Simonsson, 2020). The dynamics of η, p(η|t), are a modelling choice.

A source of inter-occasion variability for warfarin is, for
example, the time-varying consumption of vitamin K (Xue et al.,
2016), changing the amount of vitamin K available in the blood.
Since warfarin’s mode of action is to inhibit VKORC – a complex
converting one form of vitamin K into another, clotting factor-
activating form of vitamin K – an increased availability of vitamin K
can reverse the treatment effects of warfarin. In the 2nd panel of
Figure 3 we illustrate the effects of varying vitamin K consumption
on the warfarin treatment response in the clinical trial simulation.
The dashed line shows the treatment response simulation with a
constant vitamin K input rate parameter, i.e., no variability in the
vitamin K consumption. The solid lines show the treatment
response simulations with vitamin K input rates that randomly
vary by 10% (blue), 20% (red) and 30% (grey) from day to day.

4. The execution model: This component models unintended
deviations from nominal dosing regimens and monitoring schedules
during the trial. Nominal dosing regimens are defined by a sequence
of doses and administration times, r = {(dj, tj)}, where dj denotes the
jth dose and tj denotes the associated administration time. Nominal
monitoring schedules are similarly defined by a sequence of
measurement times. The actual doses and times are modelled in
the execution model using random deviations from the nominal
schedules

dj → dj′ � dj + Δd, tj → tj′ � tj + Δt, (4)

FIGURE 3
Warfarin clinical trial simulation–sources of treatment response variability. The figure shows each contribution to the treatment response variability
in isolation. Panel 1: Illustrates the effect of the population model on the clinical trial simulation. The solid lines indicate the treatment responses of
6 simulated individuals to daily warfarin administrations: 3 of which have the covariates χ = (GG, * 1/* 1, 71) (see blue lines); and the remaining 3 have the
covariates χ= (GA, * 1/* 2, 46) (see red lines). The typical treatment response across individuals is indicated by a dashed line. The administration times
are indicated by blue arrows. Panel 2: Illustrates the effect of the inter-occasion model on the clinical trial simulation. The dashed line shows the
treatment response of an individual with a constant vitamin K input rate, i.e., no IOV. The solid lines show the treatment response of the same individual
with vitamin K input rates that randomly vary by 10% (blue), 20% (red) and 30% (grey) between days. Panel 3: Illustrates the effect of the execution model
on the clinical trial simulation. The dashed line indicates the treatment response of an individual associated with the nominal dosing regimen (hollow
arrows). The blue line indicates the treatment response of the same individual associated with the delayed dose administrations (blue arrows). Panel 4:
Illustrates the effect of the measurement model on the clinical trial simulation. The dashed line shows the simulated treatment response of an individual
and the scatter points show the associated monitoring measurement.
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where Δd and Δt denote the deviations. The treatment response
corresponding to the actual dosing regimen, r′ � {(dj′, tj′)}, is
simulated using �y(t, r′,ψ′(t)). The role of the execution model is
to test the robustness of MIPD approaches in clinical practice by
emulating the limited control over dose administrations and
monitoring. By choosing to report nominal schedules as opposed
to actual schedules, the execution model can also be used to mirror
common inaccuracies of clinical data. The distributions of dose
and time deviations, p(Δd) and p(Δt), are modelling choices
and may differ between dosing and measurement schedules.
While not considered in this article, the execution model may
be extended to include missed administrations or missed
measurements during the trial. Assuming no persistence, this can
be implemented using draws of Bernoulli random variables
associated with each time point, indicating whether or not a dose
was administered or a measurement was taken (Holford et al., 2000;
Holford et al., 2010). For infusions, deviations in the duration of the
administration may also be modelled.

In the 3rd panel of Figure 3 we illustrate the effects of delayed
dose administrations on the treatment response in the warfarin trial
simulation. Doses are administered daily. The nominal dosing
regimen is illustrated by hollow arrows. The actual dosing
regimen with delayed administrations is illustrated by blue
arrows. The associated treatment response simulations are
indicated by the dashed line (nominal) and by the solid line (actual).

5. The measurement model: This component models the limited
accuracy of treatment response measurements

y � �y t, r′,ψ′ t( )( ) + ε, (5)

where y denotes the measurement and ε denotes the
measurement error. This defines a distribution of
measurements around the mechanistic model output, �y, at
each time point t, p(y|t, r′, ψ′), where measurements may be
expected. The wider the measurement distribution, the larger the
measurement noise. During the trial simulation, monitoring
measurements are sampled from the measurement
distribution. This model can be extended to include noise also
in the measurement process of covariates, for example to reflect
genotyping errors of the VKORC1 or CYP2C9 genes. This is
however not considered in this article.

In the 4th panel of Figure 3, we illustrate INR measurements
sampled from the measurement distribution during warfarin
treatment (blue scatter points). The dashed line shows the
treatment response simulation of the mechanistic model without
measurement noise.

2.2 Implementation of warfarin trial
simulation

We develop the warfarin clinical trial model following the
framework for MIPD trial simulation introduced in Section 2.1.
The mechanistic model is implemented using Wajima et al.’s
model of the humoral coagulation network (see Figure 2). The
model provides a mechanistic description of warfarin’s PKPD
using a system of nonlinear differential equations

dad
dt

� −kaad + r t( ), dac
dt

� kaad − keac,
dx
dt

� f x, ac,ψ( ). (6)

ad and ac describe the pharmacokinetics of warfarin and denote the
amount of the drug in the dose compartment and the central
compartment, respectively. ka denotes the absorption rate and ke
denotes the elimination rate. r(t) denotes the dose rate and
implements the dosing regimen. The pharmacodynamics of
warfarin are captured by x, denoting the 51 remaining states of
the model. The prothrombin time is simulated as a function of the
states, �y(t, r,ψ) � g(x(t, r,ψ),ψ), involving the computation of the
fibrin AUC after exposure to 300 nM tissue factor. For full details of
the mechanistic model, we refer to (Wajima et al., 2009) and
Supplementary Appendix S1. A systems biology markup language
(SBML) specification is provided on GitHub (https://github.com/
DavAug/mipd-warfarin) for simplified cross-platform
implementation of the model.

The population model is implemented using a hybrid of two
mixed effects models developed by (Hamberg et al., 2010; Hartmann
et al., 2016; 2020). Hartmann et al. (2016) provide a mixed effects
model extension of Wajima et al.’s model, capturing the treatment
response variability emergent from varying production rates of
selected coagulation factors, including prothrombin, protein S,
protein C and coagulation factors V, VII, IX, X, XI, XII and XIII.
In a subsequent publication, they extend their model to include
variability explained by covariates, such as the genotypes of the
VKORC1 gene and the CYP2C9 gene (Hartmann et al., 2020).
VKORC1 is used to model the variability in warfarin’s EC50, while
CYP2C9 is used to model the variability in warfarin’s elimination
rate. In our population model, we modify Hartmann et al.’s model
further using elements from Hamberg et al.’s model to incorporate
age and heterozygosity in the genotypes as covariates of the IIV
(Hamberg et al., 2010). This results in a population distribution
whose subpopulations, p(ψ|θ, χ), are defined by the age of a patient,
one of three VKORC1 genotypes (GG; GA; AA) and one of six
CYP2C9 genotypes (*1*1; *1*2; *1*3; *2*2; *2*3; *3*3). For full
details of the population model, we refer to Supplementary
Appendix S1. The population model parameters, θ, used to
simulate the clinical trial are provided on GitHub (https://github.
com/DavAug/mipd-warfarin).

The inter-occasion model is implemented using time-varying
vitamin K input rates (see 2nd panel in Figure 3). The input rate
alterations are assumed to be normally distributed

p η|t( ) � N η|μη, σ2η( ), (7)

with constant mean and standard deviation: μη = 1 and ση = 0.1. To
allow a change of vitamin K consumption over time, we sample a
new η for each simulation day, such that the altered input rate may
be interpreted as the daily average of the vitamin K consumption.

The execution model is implemented using exponentially
distributed delays of the administration and monitoring times

p Δt|τ( ) � 1
τ
e−Δt/τ , (8)

where τ = 30 min denotes the average delay. For each nominal
administration time and each nominal monitoring time, we
independently sample delays from p(Δt|τ) and compute the
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actual times according to Eq. 4. If dose administrations and
monitoring measurements are scheduled at the same nominal
times, we only draw one delay random variable for both events.

The measurement model is implemented using lognormally
distributed measurements around the mechanistic model output

p y|t, r′,ψ′( ) � LN y|μ, σ( ), (9)
where μ � �y(t, r′,ψ′) denotes the median, and σ = 0.1 denotes the
scale of the distribution. This implements a measurement error that
scales proportionally with the measured quantity, producing
measurement errors of approximately 10% of the mechanistic
model output.

2.3 MIPD methods

We investigate three MIPD models for warfarin treatment
individualisation: 1. a neural network regression model (‘Regression
model’); 2. a deep reinforcement learning model (‘Deep RL model’);
and 3. a pharmacokinetic and pharmacodynamic model (‘PKPD
model’). All three models use data specific to the to-be-treated
patient to predict individualised dosing regimens. While the
details differ substantially between the models, Figure 4
illustrates their general workflow. The bottom of the figure
shows the to-be-treated patient characterised by covariates, such
as clinical and genetic factors. The top of the figure shows the
treating physician and the MIPD model. The physician uses the
model and the patient characteristics to predict an individualised
dose. For some MIPD approaches, this dose can be iteratively
refined using measurements of the patient’s treatment response.
Somemodels can also predict the full future dosing regimen at each
iteration rather than just the next dose. Below, we discuss the three
methods investigated in this study in more detail.

1. Regression model – This MIPD approach follows Anderson
et al. (2012) and Verhoef et al. (2013) and uses a static model of the
daily maintenance dose to individualise treatments. The
maintenance dose refers to the constant warfarin dose
administered daily to maintain a desired INR level. The
maintenance dose is modelled as a function of the desired
response, y*, and the patient’s covariates, χ,

d* � d* χ, y*( ). (10)
d* denotes the maintenance dose. This makes it possible to predict
individualised maintenance doses based on the covariates of an
individual. In contrast to the generalised workflow in Figure 4, the
model does not iteratively update its predictions using monitoring
measurements.

The model can be implemented using a variety of regression
approaches, including linear regression, spline regression and tree
regression (Klein et al., 2009). In this article, we choose a neural
network approach. Neural networks are universal function
approximators and can therefore learn to approximate the
maintenance dose function in Eq. 10 from data, even when the
relationship between the dose and (χ, y*) is nonlinear.

For those who are more familiar with neural network regression,
in summary we compose the network of three sequential fully
connected layers implemented in PyTorch (Paszke et al., 2019);
the two inner layers of this network are of width 1024 and have
ReLU activations. The output layer uses a sigmoid activation. The
network is trained on simulated trial data (see Section 3.2) to
minimise the mean squared error objective function using Adam
(Kingma and Ba, 2014). For full details on the implementation and
training of the model, we refer to Supplementary Appendix S2.

2. Deep RL model – This MIPD approach follows a deep
reinforcement learning approach similar to (Zadeh et al., 2023) and
uses a model of the next-to-administer dose to individualise
treatments. The dose is modelled as a function of the covariates
and the current monitoring data

dj � dj χ, yj( ). (11)

dj denotes the dose at time tj and yj denotes the INR measurement at
time tj. This makes it possible to iteratively predict individualised
dosages based on monitoring data and the covariates of an
individual, as illustrated in Figure 4. The target treatment
response, y*, is specified before the training of the model (Zadeh
et al., 2023).

Conceptually, RL learns dosing strategies from trial and error:
the model sequentially administers dosages and evaluates the
‘goodness’ of the dose decisions based on the feedback from the
treatment response. The learned dosing strategy can be shown to
optimally target the desired treatment response under certain
technical assumptions and takes the form of a function for the
next-to-administer dose (see Eq. 11). We discuss the limitations of
these assumptions in Section 3.5. While trial and error in a clinical
setting raises ethical questions, RL models can also be trained on
treatment response emulators (Ribba et al., 2022). Popular treatment
response emulators are PKPDmodels (Zadeh et al., 2023). To reduce
the number of trial and error iterations needed for convergence of
the dosing strategy, RL can be performed in conjunction with
function approximators (Baird, 1995). In this article, we choose a

FIGURE 4
Schematic illustration of model-informed precision dosing. The
top of the figure shows the treating physician and the MIPD model.
The bottom of the figure shows the to-be-treated patient
characterised by clinical and genetic factors. The physician uses
the MIPD model and the patient characteristics to predict an
individualised dose. If the treatment response is monitored over time,
the physician can use the treatment response measurements and the
MIPD model to iteratively refine the dose predictions.
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deep neural network as the function approximator – an approach
commonly referred to as deep RL.

For those who are more familiar with deep RL: we use a DQN
model to implement the Deep RL model (Mnih et al., 2013). We
compose the network of four sequential fully connected layers
implemented in PyTorch (Paszke et al., 2019): three hidden
layers of widths (256, 128, 64) with ReLU activations, and the
output layer of width 58. The outputs of the network are the
predicted Q-values (Mnih et al., 2013). The dose with the
maximum Q-value is suggested for administration. Following
(Zadeh et al., 2023), the network is trained online using a PKPD
model as a treatment response emulator. Prior to the training, the
PKPD model is fitted to simulated trial data (see Section 3.2). We
train the model to minimise the temporal difference error using
Double Q-learning (Van Hasselt et al., 2016) and the Adam
optimiser (Kingma and Ba, 2014). For full details on the
implementation and training of the model, we refer to
Supplementary Appendix S3.

3. PKPD model – This MIPD approach follows a PKPD
modelling approach similar to Hamberg et al. (2015) and uses a
model of the dosing regimen to individualise treatments. The dosing
regimen is modelled as a function of the covariates, the desired
treatment response and the monitoring data

r � r χ, y*,Dj( ). (12)

Dj � {(y1, t1), . . . , (yj, tj), rj} denotes the monitoring data
available up to and including time tj, where we use rj to denote
the administered dosing regimen for t < tj. The function makes it
possible to predict individualised dosing regimens based on
monitoring data and the covariates of an individual (see
Figure 4). The predictions can be iteratively refined as more
monitoring data becomes available.

PKPD modelling is a semi-mechanistic modelling approach
which makes use of approximate descriptions of the physiological
and pharmacological processes to predict the treatment response
dynamics. Conceptually, PKPD modelling is similar to the
mechanistic model component of the CT model (see e.g., Wajima
et al.’s models in Figure 2), but generally model the biological
processes in lower detail. An example PKPD model is illustrated
in Supplementary Figure S4.7 in Supplementary Appendix S4. By
comparing the predicted and desired treatment responses, this
approach is able to determine the optimal dosing regimens for
each individual. Analogously to the CTmodel in Section 2.1.2, inter-
individual variability is described by differences in the model
parameters across individuals. Patient-specific parameters are
derived from the patient’s covariates and monitoring data.

For those who are more familiar with PKPD modelling, in
summary we use Hamberg et al.’s model (Hamberg et al., 2010)
implemented in chi (Augustin, 2021) to model the warfarin
treatment response dynamics. We fit the model to simulated trial
data (see Section 3.2) using hierarchical Bayesian inference and the
No-U-Turn sampler (NUTS) (Hoffman and Gelman, 2014)
implemented in pints (Clerx et al., 2019). Individualised dosing
regimens are predicted in two steps: 1. The model is fit to an
individual’s monitoring data using the population model and the
individual’s covariates as prior knowledge (Maier et al., 2020); and 2.
The dosing regimen is optimised to minimise the mean squared

error between the model predictions and the desired treatment
response. We use Bayesian inference and pints’ implementation
of the adaptive covariance matrix Markov chain Monte Carlo
(ACMC) sampler to fit the model to an individual’s data. For the
dosing regimen optimisation, we use pints’ implementation of the
covariate matrix adaption evolution strategy (CMA-ES) optimiser
(Hansen et al., 2003). For full details on the implementation and the
dosing regimen prediction, we refer to Supplementary Appendix S4.

3 Results and discussion

We simulate three MIPD trials – one trial for each MIPD
model – and analyse their relative strengths and limitations. To
this end, we follow the workflow illustrated in Figure 1 and, first, fit
the MIPD models to simulated clinical trial data to emulate a
typical starting point for MIPD trials. The data imitate typical data
collected during each of the three phases of clinical trials, and are
simulated using the CT model. After the model fitting, we simulate
the MIPD trials.

3.1 Simulating trial phases prior to MIPD

At present, most clinical trials are conducted not having
MIPD in mind. As a result, the data available for the fitting of
MIPD models will often not be tailored to the needs of the
method. To reflect this practical limitation in our study, we
simulate data from three typical phases of clinical trials for
the warfarin use case, not taking the data-requirements for
MIPD into account. All MIPD models in this article are fitted
using only the data from these trials. The simulated trial data as
well as the code to reproduce the trials are hosted on GitHub
(https://github.com/DavAug/mipd-warfarin).

Trial phase I: Phase I trials are primarily used to establish the
safety of drugs and often monitor a drug’s absorption, distribution,
metabolism and elimination (ADME) in a relatively small cohort of
patients. We emulate such a trial by mirroring a clinical trial
reported in (Hamberg et al., 2007). In this trial, the
pharmacokinetics of N = 60 individuals is monitored. Each
individual is administered with a single 10 mg dose of warfarin.
Following the nominal administration time, the warfarin
concentration in the blood is measured at 10 h, 35 h and 60 h
after the administration. The data collected during the trial are the
warfarin concentration measurements, the dosing regimens and the
covariates for each of the 60 individuals. The simulated warfarin
concentrations are illustrated in the left panel of Figure 5. The
demographics of the cohort are reported in Supplementary Table S1.
Pseudo-code outlining the implementation of the trial is presented
in Supplementary Algorithm S1.

The panel shows the simulated warfarin concentration
measurements. Measurements are illustrated using scatter points.
Measurements taken from the same individual are connected using a
solid line. The nominal administration time of the warfarin dose is
indicated using a blue arrow.

Trial phase II: Phase II trials are primarily used to establish the
efficacy of drugs and monitor a drug’s pharmacodynamics. We
simulate a phase II trial using a design similar to trials reported in
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(Hamberg et al., 2010). We monitor the INR response of
100 simulated individuals for 3 weeks. Each individual is treated
with daily warfarin doses. During the first 3 days, all individuals
receive the same treatment: d1 = 10 mg; d2 = 7.5 mg; and d3 = 5 mg.
The 4th dose is adjusted for each individual based on the INR
treatment response by a medical professional, here emulated using a
simple linear heuristic: dj = dj−1 y*/yj, where yj denotes the INR
measurement taken just before the jth dose administration. This
heuristic computes a personalised warfarin dose targeting the
desired treatment response, y*, assuming a linear relationship
between the INR and the dose amount. The dose amounts are
adjusted three more times for each individual on day 5, 7 and 13 of
the trial using the same heuristic. The INR of the individuals is
closely monitored during the induction phase of the trial (day 0, day
1, day 2, day 3) and less frequently measured as the trial progresses
(day 5, day 7, day 13 and day 20). To emulate safety constrains of real
clinical trials, the trial is discontinued when an individual displays
three consecutive INR measurements above 5. The data collected
during the trial are the INR measurements, the nominal dosing
regimens and the covariates for each of the 100 individuals.

The trial was not terminated early for any of the simulated
individuals. The simulated INR measurements are illustrated in the
middle panel of Figure 5. The demographics of the cohort are
reported in Supplementary Table S1. Pseudo-code outlining the
implementation of the trial is presented in Supplementary
Algorithm S2. The panel shows the simulated INR
measurements. Measurements are illustrated using scatter points.
Measurements taken from the same individual are connected using a
solid line. The nominal administration times of the warfarin doses
are indicated using arrows. Black arrows indicate personalised
adjustments of the dose amount. The therapuetic range is
indicated using blue dashed lines.

Trial phase III: Phase III trials can vary in scope, but tend to
involve larger cohorts and have a stronger focus on treatment
endpoints. We emulate a phase III trial by mirroring a clinical
trial reported in (Klein et al., 2009). The focus of the trial is to
understand the variability of the maintenance warfarin dose. We
simulate the trial analogously to trial phase II, but with a larger
cohort, N = 1000, and for a longer duration (8 weeks). Following the
initial, identical phase of the trial, the daily doses are adjusted two

FIGURE 5
Pre-MIPD trial workflow. The figure shows the two steps performed prior to the MIPD trial simulation: 1. Simulation of clinical trial data (top); and 2.
Fitting of MIPDmodels (bottom). The CTmodel is used to simulate the trial data. The simulated data is illustrated in the middle of the figure: phase I (left);
phase II (middle); phase III (right). Measurements of the blood warfarin concentration or the INR are illustrated using scatter points. Measurements
connected by solid lines are taken from the same individual at different time points. Nominal administration times are illustrated by blue arrows. Dose
administrations with individualised, on-the-fly adjustments of the dose amount are highlighted in black. The therapeutic range is illustrated in the middle
and right panel using blue dashed lines. The bottom of the figure shows the fitting workflow of the MIPD models: The PKPD model is fitted to the data
from all trials; the Regression model is fitted only to the data from clinical trial phase III; and the Deep RLmodel is fitted to treatment responses simulated
with the PKPD model.
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more times on day 27 and 34. During the final 3 weeks of the trial,
the dose amounts remain unchanged to guarantee that individuals
equilibrate to the maintenance treatment response by the end of the
trial. To emulate safety constrains of real clinical trials, the trial is
discontinued when an individual displays three consecutive INR
measurements above 5. The data collected during the trial are the
INR measurements at the end of the trial (day 55), the maintenance
warfarin doses and the covariates for each of the 1000 individuals.

The trial was not terminated early for any of the simulated
individuals. The simulated maintenance doses and INR
measurements are illustrated in the right panel of Figure 5. The
demographics of the cohort are reported in Supplementary Table S1.
Pseudo-code outlining the implementation of the trial is presented
in Supplementary Algorithm S3. The panel shows the maintenance
dose on the x-axis and the measurement of the INR on the y-axis.
Measurements are illustrated using scatter points. The therapEUtic
range is indicated using blue dashed lines.

3.2 Fitting the MIPD models

We fit the MIPD models to the simulated clinical trial data, as
illustrated in Figure 5. The fitting is the second step of theMIPD trial
simulation workflow (see Figure 1). Only one of the models – the
PKPD model – can be fitted to all of the available clinical trial data.
The Regression model is fitted using the data from the phase III trial.
The Deep RL model is trained indirectly on the trial data through
simulations from the fitted PKPD model. For details on the fitting,
we refer to Section 2.3, Supplementary Appendix S2, Supplementary
Appendix S3 and Supplementary Appendix S4.

3.3 Simulating the MIPD trials

We simulate oneMIPD trial for each of the threemethods in Section
2.3. All trials are conducted using the same cohort. The cohort includes
N= 1000 individuals. The demographics of the cohort aremodelled after
a trial reported in (Hamberg et al., 2010) and are visualised in Figure 6.
The figure shows the CYP2C9 genotype distribution, the
VKORC1 genotype distribution and the age distribution in the cohort.

In each trial, individuals are treated with daily warfarin doses for
19 days. The dose amounts are individualised using the respective
MIPD model, as described in Section 2.3, and target a treatment
response of y* = 2.5. The data available for the individualisation are
the INR measurements taken daily before each dose administration
and the covariates of the individual. The Regression model
individualises the treatments by predicting the maintenance dose
based on the covariates of the patients. This maintenance dose is
administered every day throughout the trial. The Deep RL model
and the PKPD model predict the warfarin doses iteratively based on
a patient’s covariates and INR measurements. In contrast to the
simulated trials in the previous section, we do not emulate safety
constrains for the MIPD trials in order to expose possible
weaknesses of the models more clearly. Pseudo-code outlining
the implementation of the trial is presented in Supplementary
Algorithm S4.

3.4 Results of the MIPD trials

We use three metrics to quantify the success, the safety, and the
efficiency of the dosing regimen individualisation: the maintenance
INR; the peak INR; and the time in the therapeutic range (TTR). The
success of the individualisation is quantified using the maintenance
INR measured on the last day of the trial. INR measurements inside
the therapeutic range indicate success, while measurements outside
the therapeutic range indicate poor dosing regimen
individualisation. The safety of the individualisation is quantified
using the largest INR measurement recorded during the trial. This
peak of the INR response indicates the risk for major bleeding events
while transitioning into maintenance treatment. The efficiency of
the individualisation is quantified using the TTR, i.e., the number of
INR measurements inside the therapeutic range. For successful
individualisations, the TTR indicates how quickly the desired
treatment response has been achieved.

The results of the trials are visualised in Figure 7. Row 1 shows
the results for the Regression model, row 2 shows the results for the
Deep RL model, and row 3 shows the results for the PKPD model.
The left panel shows the maintenance INR distribution in the
cohort. INRs inside the therapeutic range (see blue dashed lines)

FIGURE 6
Demographics of MIPD trial cohort. The figure shows the CYP2C9 genotype distribution (A), the VKORC1 genotype distribution (B) and the age
distribution (C) of the MIPD trial cohort. The cohort includes 1000 simulated individuals.
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are highlighted in blue and INRs outside the therapeutic range are
highlighted in red. The target INR is illustrated using a black dashed
line. The middle panel shows the peak INR distribution in the
cohort. The right panel shows the TTR distribution across
individuals. The target TTR is illustrated using a dashed line.

The maintenance INR distributions (left panel) show that in a
time span of 19 days all three MIPDmethods are able to successfully
target the therapeutic window for a large number of individuals. The
Regression model successfully individualises the dosing regimen for
47.0% of the individuals, while the Deep RL model and the PKPD
model have success rates of 65.8% and 75.1%, respectively (see blue
histograms). For the remaining individuals, the severity of the failed
dosing regimen individualisation varies substantially. For the
Regression model, 149 individuals display maintenance INRs
above 4 with the largest value being 7.51. For the Deep RL
model, only 32 individuals exceed maintenance INRs of 4.
However, the largest maintenance INR is 29.03 — a value almost
4 times larger than for the Regression model, raising serious safety
concerns. For the PKPD model the largest maintenance INR is 3.90.
97.8% of the individuals display maintenance INR measurements
less than 3.5, showing that the PKPD model is able to most
consistently achieve maintenance INRs close to the therapeutic
window.

The peak INR distributions (middle panel) show that, for the
majority of the cohort, the methods are not able to individualise the
dosing regimens without overshooting the therapeutic window. In
the Regression model trial, 67.1% of the individuals display peak
INR measurements above the therapeutic range. The Deep RL

model controls the treatment response marginally better,
overshooting the therapeutic range for 65.1% of the individuals.
The PKPD model misses the therapeutic window for almost all
individuals (95.9%) before reaching maintenance treatment.
However, the panel also shows that the largest INR value
measured in the PKPD model trial is substantially smaller than
the largest INR values in the other two trials (Regressionmodel: 7.99;
Deep RL model: 29.03; PKPD model: 4.91), indicating that the
PKPDmodel is the safest MIPD approach among the tested models.

The TTR distributions (right panel) show that the time spent
inside the therapeutic range varies between individuals and MIPD
approaches. For the Regressionmodel, the median TTR is 45% of the
trial duration, with TTRs ranging between 0% and 85%. The other
two methods achieve substantially larger TTRs across individuals.
For the Deep RLmodel, the median TTR is 68% of the trial duration,
with individual values ranging between 5% and 95%. The PKPD
model achieves a median TTR of 74%, with a minimum TTR of 26%
and a maximum TTR of 100%. This shows that across individuals
the PKPD model takes the least time to successfully reach the
therapeutic window.

3.5 Degrees of dosing regimen
individualisation

The simulated trials in Section 3.4 show that different MIPD
approaches have different strengths and limitations. In this section,
we study the dosing strategies of the models in more detail to gain a

FIGURE 7
MIPD trial results. The figure shows the outcome of three MIPD trials conducted with an identical cohort of size N = 1000 with different MIPD
models. The top row shows the results for the Regressionmodel; themiddle row shows the results for the Deep RLmodel; and the bottom row shows the
results for the PKPDmodel. The outcome of the trials is illustrated using three metrics: the maintenance INRmeasured on the last day of the trial (A); the
largest INR value measured during the trial (B); and the time in the therapeutic range (C). The panels show the distributions of these metrics across
individuals. The therapeutic range is illustrated using blue dashed lines. INR measurements inside the therapeutic range are highlighted in blue, and INR
measurements outside the therapeutic range are highlighted in red. Target values of the dosing regimen individualisation are visualised using black
dashed lines.
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better understanding about their practical and methodological
differences. We pay particular attention to attributing generic
strengths and limitations to the methodology and specific
strengths and limitations to our implementation.

We investigate the dosing strategies by studying the dose decisions
suggested by each of the models for three representative individuals
from the simulated trials in Section 3.4. Thefirst individual, with ID 716,
is characterised by the covariates χA = (*1*1, GG, 50). The other two
individuals (ID 269; ID 305) are both characterised by the covariates,
χB = (*1*2, GA, 50). The different dosing strategies and treatment
responses are visualised in Figure 8. The figure shows the doses
administered during the trials in the top panel and the
corresponding treatment response measurements in the bottom
panel. Doses or measurements belonging to the same individual are
connected using solid lines. The therapeutic range is illustrated using
dashed lines. The left panel shows the trial results for the Regression
model, the middle panel shows the trial results for the Deep RL model,
and the right panel shows the trial results for the PKPD model.

3.5.1 The Regression model
The left panel of the figure shows that the Regression model

predicts a maintenance dose of 9 mg for the individual with ID 716
(black scatter points), and a maintenance dose of 4.5 mg for the other
two individuals (see top left panel in Figure 8). Thesemaintenance doses
are administered daily throughout the trial. For the individual with ID
305, the maintenance INR measurement at the end of the trial is inside
the therapeutic range, while the maintenance INR measurements for
the other two individuals overshoot the therapeutic range (see bottom
left panel in Figure 8). Notably, the individual with the successful

individualisation (ID 305) has the same covariates as one of the
individuals with the failed individualisation (ID 269).

This illustrates both a strength and a limitation of the Regression
model: a strength of the model is that it is able to predict
individualised dosages using information only about the
covariates of individuals, making the model easier to implement
in clinical practice than monitoring-based approaches. However, the
figure also shows that dosing regimens exclusively derived from
covariates will, at best, successfully target the desired treatment
response for an average individual characterised by the covariates.
Inter-individual differences that are not explained by covariates are
not accounted for. In this case, the individual with ID 305 happens to
respond similarly to an average individual1 with the covariates, χB,
resulting in a successful dosing regimen individualisation. The
individual with ID 269, on the other hand, responds more
strongly to warfarin than an average individual2, yielding a
maintenance INR above the therapeutic range. Not being
represented by an average individual also explains the failed
individualisation for the individual with ID 716. The inability to
account for unexplained IIV is a generic limitation of approaches
exclusively based on covariates.

FIGURE 8
Degrees of dosing regimen individualisation. The figure shows the dosing regimen individualisations achieved by the MIPD models in the simulated
MIPD trials for three representative individuals. The left panel shows the results for the Regressionmodel, themiddle panel shows the results for the Deep
RL model, and the right panel shows the results for the PKPD model. The top row illustrates the administered dose amounts and the bottom panel
illustrates the INR monitoring data. Dose amounts or measurements belonging to the same individual are connected using solid lines. The
therapeutic range is illustrated using dashed lines. One of the individuals (ID 716) is characterised by the covariates χA = (*1* 1, GG, 50). The other two
individuals (ID 269; ID 305) are both characterised by the covariates χB = (*1* 2, GA, 50).

1 In this case, the close-to-average response can be explained by the
individual’s model parameters, ψ, being close to the means of the
population distribution (Eq. 2).

2 Similarly to the above footnote, the stronger-than-average response can
be explained by key model parameters being further away from themeans
of the population distribution.
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In addition to this limited ability to account for IIV, the
figure also shows that the Regression model is incapable of
accounting for inter-occasional variation and differences in the
execution of the treatment. This limitation is, again, a direct
consequence of exclusively using covariates for the dosing
regimen individualisation. Without quantifying the
individual-specific IOV and EV, predicted dosing regimens
can, at best, be successful when the IOV and the EV of the
treated individual happen to be close to the average IOV and EV
observed in the dataset used for the model fitting.

Another limitation, illustrated in Figure 8, is that the
Regression model cannot account for treatment response
delays. The model only predicts maintenance dosages, and
therefore provides no guidance for individualisation of the
induction phase of the treatment. In our implementation, we
choose to overcome this limitation of the model by administering
the predicted maintenance dosages from the beginning of the
trial, not attempting to individualise induction dosing regimens
without model guidance. This has the consequence that
treatment responses take time to reach their maintenance
level, limiting the efficiency attainable by the model. From
Figure 8, we can, for example, see that the INR measurements
of the individual with ID 305 reach the therapeutic range for the
first time on day 8 of the treatment. After that, two more
measurements are outside the therapeutic range, giving rise to
a TTR of 10 days during the 19 days trial. Together with the top
right panel in Figure 7, this indicates that even when the
Regression model individualises maintenance dosages
successfully, it achieves, at best, an average TTR of around
55%–65%. This limit to the efficiency is specific to the
treatment response delay of warfarin and our implementation
of the Regression model.

A summary of the strengths and limitations specific to
the Regression model are presented in the left column of
Table 1.

3.5.2 The Deep RL model
In comparison, the Deep RL model is able to predict more

individualised dosing regimens than the Regression model (see
middle panel in Figure 8). The panel shows that for all three
individuals, the model begins the treatment with increased
warfarin dosages of more than 20 mg. During the maintenance
phase, it reduces the dosages. For the individual with covariates χA
(ID 716), the model alternates between administering dosages of
12 mg and 3 mg. For the other two individuals with covariates χB, the
model administers a constant dose of 3 mg, from which it only
occasionally deviates for one of the individuals (ID 269). Overall, the
figure shows that the Deep RL model is more successful in
individualising the dosing regimens of the individuals, as
indicated by their maintenance INR measurements at the end of
the trial. The individualisation of the induction phase reduces the
time needed to reach the therapeutic range, leading to all three
individuals displaying INR measurements inside the therapeutic
range within the first four treatment days.

The main reason for the improved performance of the Deep RL
model is the use of feedback control from the monitoring data in
addition to the covariate information. Themodel derives predictions
from both monitoring data and covariates using the dose function,
defined in Eq. 11, which predicts the next-to-administer dose based
on the most recently measured INR value and the covariates of the
to-be-treated individual. We visualise the predictions of the dose
function for the three individuals in Figure 9. For illustrative
purposes, the figure focuses on INR values between 0.5 and 7.
The predicted dose values are illustrated using a black line for
individuals with the covariates χA and a red-blue line for individuals
with the covariates χB. The target treatment response is illustrated
using a black dashed line, and the therapeutic range is indicated
using blue dashed lines.

The figure shows that the Deep RL model has a clear strategy for
INR monitoring measurements below 4, and a less clear strategy for
INRmeasurements above 4. We will first focus on the dose decisions

TABLE 1 Summary of the strengths and limitations of the MIPD models. The properties of the models are grouped into data-related properties (rows 1–3),
variability-related properties (rows 4–8), and strategy-related properties (rows 9–13). The parentheses around the property of the PKPD model in the top right
corner indicate that the model, as defined in Section 2.3, can be used without covariates, but, in the simulated MIPD trial in Section 3.4, we did not explore this
possibility. Similarly, parentheses around the property below indicate that the PKPD model can be used without the use of monitoring data.

Regression model Deep RL model PKPD model

Requires covariates ✓ ✓ (✓)

Requires monitoring 7 ✓ (✓)

Requires indefinite monitoring 7 ✓ 7

Accounts for explained IIV ✓ ✓ ✓

Accounts for unexplained IIV 7 ✓ ✓

Accounts for IOV 7 ✓ ✓

Accounts for EV 7 ✓ ✓

Accounts for treatment response delays 7 7 ✓

Robust to unseen treatment responses ✓ 7 ✓

Robust to model misspecification ✓ 7 7

Learns individual-specific dosing regimens 7 7 ✓
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for INRs below 4: for INR measurements below the therapeutic
range, the model administers large warfarin doses; for INRs inside
the therapeutic range, the model administers intermediate warfarin
doses; and for INRs above the therapeutic range, the model
administers low warfarin doses. The exact change points and
dose amounts are specific to the covariates. For example, for
individuals with the χA covariates, the model starts the treatment
with a dose of 21.5 mg and switches to an intermediate dose of 12 mg
for INR measurements between 2.1 and 2.7 (see black line in
Figure 9). This dosing strategy is consistent with the dose
decisions observed in Figure 8.

The dose function illustrates both a strength and a limitation of
the Deep RL model (see Figure 9). A strength of the model is that it
bases its dose decisions on a simple and interpretable feedback
control mechanism: when INR values are too low, it increases the
warfarin dose; and when INR values are too high, it decreases the
warfarin dose. These dose decisions are tailored to an individual
based on the individual’s covariates. This strategy leads to a
substantially higher success rate and efficiency of the dosing
regimen individualisation relative to the Regression model (see
Figure 7), as the feedback control enables the model to maintain
treatment responses within a desired range, even when unexplained
IIV, IOV and EV are present. This strength is generic to
reinforcement learning approaches.

However, while the ability to utilise monitoring data for control
is a strength, the model’s inability to learn from the measurements is
a limitation of the Deep RL model, making the approach indefinitely
reliant on monitoring data. The reliance on monitoring data is
specific to the Deep RL model and is a consequence of its learning
approach: the model establishes the dose function (Eq. 11) prior to
the treatment of individuals (see Section 3.2), never individualising
the dose function based on the individual-specific monitoring data.
Instead, the model treats individuals with dosing strategies
exclusively based on covariates, where the monitoring data is
only used as a control mechanism to steer treatment responses
back to the desired treatment response, if needed (see e.g., the dosing
strategy in Figure 8 for ID 269). In principle, reinforcement learning
approaches can update the dose function using individual-specific
monitoring data (Maier et al., 2021). However, for the Deep RL

model, meaningful updates of the dose function are challenging, as
the large number of model parameters of its neural network
complicates the balance between fine-tuning and overfitting to
the limited number of measurements.

The absence of fully individualised dosing strategies explains the
observed tendency of the Deep RL model to overshoot the
therapeutic range (see middle panel in Figure 7): to successfully
target the therapeutic range across individuals with the same set of
covariates, the initial warfarin dose predicted by the dose function
needs to be high enough, so that even the weakest responders in a
subpopulation reach the therapeutic range. This dose leads to INR
responses above the therapeutic range for strong responders in the
same subpopulation due to the substantial level of warfarin IIV not
explained by covariates. The over-treatment of the strong
responders is compensated for by reducing the dose for INRs
above the therapeutic range so much that even the strongest
responders are guaranteed to regress back to the therapeutic
range (see large dose steps in Figure 9). This explains the
substantial fraction of individuals with peak INRs above the
therapeutic range in Figure 7, and points to a general lack of
precision of the Deep RL model. This ‘control over precision’
strategy is a generic limitation of reinforcement learning
approaches that do not individualise their dose functions based
on the individual-specific monitoring data.

The dose function in Figure 9 also demonstrates that the Deep
RL model can fail to learn meaningful dosing strategies for the full
range of possible INR measurements. When INR measurements
become large (≥ 5.05 for χA; and ≥ 4.3 for χB), the model suggests
increasing the warfarin dose to 5 mg, despite the fact that higher
warfarin dosages inevitably lead to even higher INR values. The root
for these dose decisions lies in the training of the Deep RLmodel (see
Section 3.2): large INR monitoring measurements remain under-
explored during the training, leading to poorly tested dose decisions
for large INR measurements. Those dose decisions can remain
without consequence, when the model is able to control
treatment responses well enough to never reach large INR values
(see middle panel in Figure 8). But when an individual responds
more strongly to warfarin than expected, for example due to
unexplained IIV, IOV or EV, poorly tested dose decisions for

FIGURE 9
Dosing strategy of the Deep RL model. The figure illustrates the dose function of the Deep RL model, defined in Eq. 11, for a range of possible INR
monitoring measurements and two sets of covariates: χA = (*1*1, GG, 50) (black line); and χB = (*1*2, GA, 50) (red-blue line). The function determines the
next-to-administer dose based on themost recently measured INR value (bottom axis) and the covariates of an individual. The target treatment response
is illustrated using a black dashed line. The therapeutic range is indicated using blue dashed lines.
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large INR values can cause a failure of the model’s feedback control
mechanism. This failure explains the severe over-treatments of a few
individuals observed in the simulated MIPD trial in Figure 7.

The lack of exploration during the training, despite the use of a
standard training procedure (see ϵ-greedy policy in Supplementary
Appendix S3), is the consequence of a mismatch between the technical
assumptions of theDeep RLmodel and the reality of warfarin treatment
responses: the Deep RL model assumes that there is no delay between
dose administrations and the feedback from INRmeasurements, when,
in fact, warfarin treatment responses have delays of up to 10 days (see
e.g., Figure 3). This reduces the ability of the standard training
procedure to contribute to the exploration of large INR
measurements. The mismatch between the model assumptions and
the treatment response delay is generic to reinforcement learning
models and difficult to overcome, as the convergence and optimality
of reinforcement learning centrally relies on the assumption that
transition dynamics can be modelled by a Markov decision process
with i.i.d. actions and i.i.d. states (Sutton and Barto, 2018). For the Deep
RL model, this implies that the model has to assume that INR
measurements on 1 day depend only on the INR measurement and
the administered dose on the previous day, i.e., any dose
administrations and INR measurements on earlier days cannot be
taken into account. Despite those technical constraints, Zadeh et al.
(2023) show that their deep reinforcement learning model is able to
improve its performance, when the i.i.d. assumption of the states is
explicitly violated and dose decisions are conditioned onmore than one
recent INR measurement. As a result, the technical assumptions of
reinforcement learning, needed for convergence and optimality, may
limit the ability of reinforcement learning models to account for
treatment response delays, in theory, but in practice, it may be
possible to overcome those limitations (Gaon and Brafman, 2020).

A summary of the strengths and limitations specific to the Deep
RL model are presented in the middle column of Table 1.

3.5.3 The PKPD model
The right panel in Figure 8 shows that the PKPD model achieves

the highest degree of dosing regimen individualisation among the
testedmodels. Themodel begins the treatment for all three individuals
with a high dose of 30 mg, followed by a gradual reduction of the dose
over the following days. For the individual with ID 269, this dose
reduction is more rapid than for the other two individuals. Towards
the end of the trial, the dosages converge to constant, individual-
specific maintenance dosages. The maintenance INRs are located at
the upper threshold of the therapeutic range in close proximity to each
other, indicating success of the dosing regimen individualisation. All
three individuals display INR measurements inside the therapeutic
range within the first three treatment days.

The main reason for the good performance of the PKPD model
is its use of both covariate information and monitoring data similar
to the Deep RL model. The model uses the covariates to predict
initial dosing regimens that target the desired treatment response for
average individuals. These initial dosing regimens are further
individualised based on the individual-specific monitoring data,
achieving an increasing degree of individualisation as more
monitoring data becomes available. This increasing degree of
individualisation provides a distinct advantage over the other two
MIPD models. The PKPD model derives predictions from both
monitoring data and covariates using the dosing regimen function,

defined in Eq. 12, which predicts individualised dosing regimens
based on all available INR measurements of the to-be-treated
individual, the covariates, and the already-administered dosages.
We visualise the values of the dosing regimen function for the three
individuals in Figure 10. For illustrative purposes, the figure focuses
on 4 days of the simulated trial: day 1; day 2; day 7; and day 16. The
predicted dose values are illustrated using scatter points in two
opacity levels: opaque scatter points indicate already administered
dosages; and faded scatter points indicate future dose
administrations. The treatment day is illustrated using dashed lines.

The figure shows that the dosing regimen predictions are
iteratively updated as the treatment progresses. On day 1, the
model provides rough estimates of the dosing regimens, scheduling
maintenance dosages of 8 mg (ID 716), 4 mg (ID 269), and 5.5 mg (ID
305) after an initial induction phase of the treatment. With the next
INR measurement on day 2, both the induction dosing regimen as
well as the maintenance dosages are updated (see second panel in
Figure 10). On day 16, the model predicts fully individualised dosing
regimens which are almost identical to the dosing regimens
administered in the simulated trial (see right panel in Figure 8).

The dosing regimen function illustrates both a strength and a
limitation of the PKPD model (see Figure 10). A strength of the
model is that it predicts full dosing regimens from any number of
monitoring measurements, making the dosing schedule transparent,
foreseeable, and less reliant on frequent or regular monitoring. The
prediction of full dosing regimens is enabled by the model’s explicit
description of the pharmacological processes in terms of a semi-
mechanistic model. This permits the prediction of treatment
responses, and thus optimal dosing regimens, for any future time
points. It also helps the model to account for treatment response
delays and nonlinearities of the dose-response relationship (see
Section 2.3). However, the explicit model of the treatment
response bears a risk for model misspecification (Merlé et al.,
2004). In particular, neglecting or oversimplifying important
treatment response mechanisms can lead to inaccurate treatment
response predictions, which, in turn, can impact the quality of the
dosing regimen individualisation. For example, the results from the
simulated MIPD trial show that the PKPD model tends to
administer too large warfarin dosages during the trial, resulting
in a systematic bias towards INR measurements larger than the
target INR (see bottom panel of Figure 7). This indicates that the
PKPD model oversimplifies crucial elements of the treatment
response mechanisms, resulting in a tendency to underestimate
the treatment response of individuals. The risk for model
misspecification is a generic limitation of PKPD modelling,
which needs to be mitigated prior to clinical applications, for
example by quantifying the structural uncertainty of PKPD
models using model selection criteria or probabilistic model
averaging (Uster et al., 2021; Augustin et al., 2022).

The dosing regimen function in Figure 10 also illustrates that the
updates of the dosing regimens themselves can result in a bias of the
treatment strategy. The comparison between the predicted dosing
regimens shows that although more individual-specific monitoring
measurements are available on day 7 of the treatment, the
maintenance dosages predicted on day 2 are closer to the actual
maintenance dosages administered towards the end of the trial. This
suggests that the degree of the dosing regimen individualisation can
temporarily decrease with the number of monitoring measurements
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– a limitation specific to our implementation of the dosing regimen
individualisation. The potential for worse dosing regimens despite
more monitoring data is related to the estimation of the individual –
specific model parameters from themonitoring data: we estimate the
model parameters using Bayesian inference (see Section 2.3). The
result of this estimation is a distribution of parameter values
consistent with the data, also known as posterior distribution. In
our implementation, we estimate the individual-specific model
parameters by the modes of the distribution, also known as
maximum a posteriori (MAP) estimates. The MAP estimates are
a popular choice to reduce posterior distributions to just one set of
model parameters (Sheiner et al., 1979). However, by disregarding
the other model parameters that are also consistent with the data, it is
possible to introduce biases in the treatment response predictions with
consequences for the dosing regimen individualisation. In particular for
nonlinear treatment responses, the treatment response predicted with
the MAP estimates is, generally, not the treatment response that
maximises the predictive probability (Maier et al., 2020). This
increases the risk for inaccurate treatment response predictions.

A bias of the MAP-based treatment response predictions
explains the lack of safety observed during the simulated MIPD
trial (see bottom panel in Figure 7). The MAP-based predictions
tend to underestimate the warfarin treatment response for small
INR values which leads to individualised dosing regimens with
elevated dose amounts early in the trial. As the treatment
progresses, the uncertainty about the model parameters becomes
smaller, reducing the error of the MAP estimation, and with it, the
bias of the treatment response predictions (see maintenance INR
distribution in Figure 7). This bias is also supported by the goodness-
of-fit plot from the model fit to the pre-MIPD trial data in Section
3.2, where also the predictions with the maximum probability
parameters of the population distribution show a tendency to
provide biased treatment response predictions (see middle and
bottom right panel in Supplementary Figure S4.9). This
limitation of our PKPD model can be mitigated by predicting the
treatment response with each parameter set that is consistent with
the data, i.e., the parameters in the posterior distribution, producing

a distribution of treatment responses which reflects the uncertainty
in the treatment response predictions (Maier et al., 2020). The
distribution of treatment responses can be optimised to obtain a
dosing regimen with less risk for bias (Maier et al., 2021).

A summary of the strengths and limitations specific to the PKPD
model are presented in the right column of Table 1.

4 Conclusion

Simulated clinical trials provide a resource-efficient way to test
and develop fit-for-purpose models for precision dosing. We show
that we can emulate clinical trials using a clinical trial model with
five independent model components: 1. a mechanistic model; 2. a
population model; 3. an inter-occasion model; 4. an execution model;
and 5. a measurement model. Each model component captures a
different complexity of clinical practice that challenges the successful
individualisation of treatments, ranging from PKPD-related challenges,
such as nonlinear and delayed treatment responses, to practical
challenges, such as unintentional deviations from nominal dosing
schedules (see Section 2.1). The modularity of the model
components simplifies the development process of the clinical
trial model, allowing for independent updates of its components
throughout the drug development pipeline. This makes it possible
to iteratively improve the trial simulations and develop a promising
companionMIPD tool as more understanding and information about
the drug under trial becomes available (Polasek et al., 2019).

Simulating trials for precision dosing of warfarin, we find that
differentMIPDmodels have different strengths and limitations. These
strengths and limitations can be generic to the methodology or
specific to the model implementation. Modelling approaches that
predict dosing regimens exclusively based on covariates of the
treatment response variability are generically limited when
unexplained IIV, IOV and EV are present (see Section 3.5.1).
However, when the majority of the treatment response variability
can be explained by covariates, and those covariates are available in
clinical practice, such approaches provide an excellent solution to the

FIGURE 10
Dosing strategy of the PKPDmodel. The figure illustrates the dosing regimen function of the PKPDmodel, defined in Eq. 12, for the three individuals
from Figure 8 on 4 days of the trial: on the 1st treatment day (panel 1), on the 2nd treatment day (panel 2); on the 7th treatment day (panel 3) and on the
16th treatment day (panel 4). Dosages are illustrated using scatter points in two opacity levels: opaque scatter points for already administered dosages;
faded scatter points for future dose administrations. Dosages belonging to the same individual are connected using solid lines. The day of the
treatment is illustrated using black dashed lines.
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individualisation of dosing regimens. Otherwise, MIPD models based
on monitoring data are better at accounting for treatment response
variability, and achieve a higher degree of dosing regimen
individualisation in the simulatedwarfarin trials (see Sections 3.4, 3.5).

But there are also challenges with monitoring-based MIPD
approaches. We find that the Deep RL model adopts a ‘control
over precision’ treatment strategy, where doses are adjusted based
on the feedback response from the monitoring data with limited
foresight (see Section 3.5.2). This lack of precision makes the model
reliant on indefinite monitoring and limits its ability to account for
treatment response delays. Deep reinforcement learning may,
nevertheless, provide a good solution to the individualisation of
dosing regimens for applications where monitoring is not a
challenge, such as for treatments in the intensive care unit
(Moore et al., 2004) or for dosing devices that are physically
attached to patients, like insulin pumps (Zhu et al., 2020).

The PKPD model achieves the highest degree of dosing regimen
individualisation among the tested models. The model predicts fully
individualised dosing regimens whose level of individualisation
increases with the amount of available monitoring data. This
indicates that across applications PKPD models are the most
promising approach for precision dosing. However, PKPD
models are more susceptible to model misspecifications than the
other two approaches (see Section 3.5.3), necessitating a careful
evaluation of the predictive uncertainty of the model prior to MIPD,
for example by means of model selection criteria or probabilistic
model averaging (Augustin et al., 2022).

Overall we find that MIPD approaches vary in their ability to
account for the different sources of treatment response variability,
meaning an ideal approach depends on the context.
Distinguishing four sources of treatment response variability –

1. unexplained IIV; 2. explained IIV; 3. IOV; and 4. EV – our
results suggest that PKPD modelling is more successful than the
other two approaches in cases where the treatment response
variability is dominated by unexplained IIV. PKPD models
account for unexplained IIV by individualising treatment
response predictions from just a small number of monitoring
measurements. We expect PKPD models to also be the favourable
choice when the treatment response variability is dominated by
EV, as the other tested models cannot adapt their predictions to
irregular administration and monitoring schedules. However,
when IOV dominates the treatment response variability, deep
reinforcement learning may perform best, as its ‘control over
precision’ dosing strategy is agnostic to random fluctuations in
the treatment response. Lastly, when the treatment response
variability is dominated by explained IIV, all three models
likely provide similar maintenance predictions, making
regression the preferred choice as long as treatment response
delays are not a concern.

While the sources of the variability can indicate which MIPD
approach may perform best, the volume and type of the available data
determine which MIPD approach is possible. PKPDmodelling works
with both large and limited amounts of data, provided the treatment
response mechanisms are well known and the available data can be
linked to the processes involved. In contrast, regression and deep
reinforcement learning need more data to be feasible but can process
more complex data types and do not rely on a mechanistic
understanding of the treatment response.
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