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Background and aims: Nonalcoholic steatohepatitis (NASH) has become one of
the major causes of cirrhosis and liver failure. However, there are currently no
approved medications for managing NASH. Our study was designed to assess the
effects of ginkgetin on NASH and the involved mechanisms.

Methods:We constructed a mouse model of NASH by high-fat diet for 24 weeks.
The effects of ginkgetin on NASH were evaluated by histological study, Western
blot, and biochemical analysis. RNA Sequencing (RNA-Seq) analysis was used to
investigate the alteration in gene expression and signaling pathways at bulk and
single-cell levels.

Results: Administration of ginkgetin resulted in a marked improvement in hepatic
lipid accumulation, inflammation, and fibrosis in the NASH model. And these
results were supported by bulk RNA-Seq analysis, in which the related signaling
pathways and gene expression were markedly downregulated. Furthermore,
single-cell RNA-Seq (scRNA-Seq) analysis revealed that the effects of ginkgetin
on NASH were associated with the reprogramming of macrophages, hepatic
stellate cells, and endothelial cells. Especially, ginkgetin induced a marked
decrease in macrophages and a shift from pro-inflammatory to anti-
inflammatory phenotype in NASH mice. And the NASH-associated
macrophages (NAMs), which emerge during NASH, were also significantly
downregulated by ginkgetin.

Conclusion: Ginkgetin exhibits beneficial effects on improving NASH, supported
by bulk and single-cell RNA-Seq. Our study may promote pharmacological
therapy for NASH and raise the existent understanding of NASH.
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Introduction

Nonalcoholic fatty liver disease (NAFLD), mainly caused by
overnutrition or genetic defects, has been a major health concern
worldwide, with a prevalence of 22.1%–28.6% (Younossi et al., 2018;
Powell et al., 2021). NASH is an advanced stage of NAFLD,
characterized by hepatocyte steatosis and ballooning, hepatic
inflammation, and apoptotic body (Schuster et al., 2018). And
NASH has a high risk of developing liver fibrosis, which can
potentially advance to liver cirrhosis or cancer (Schuppan et al.,
2018; Pinter et al., 2023). In addition, NASH is closely associated
with cardiovascular diseases (Cai et al., 2019). Diet control and
enhanced exercise are recommended for NASH treatment, but with
limited effectiveness (Chalasani et al., 2018; Akuta et al., 2023).
Therefore, investigating effective pharmaceutical therapy is
currently necessary and urgent.

Traditional Chinese medicine has greatly contributed to the
Chinese people’s health over the past thousands of years, especially
in epidemic and metabolic diseases (Tu, 2016; Ma et al., 2020; Zhu
et al., 2020; Huang et al., 2021; Chen et al., 2022). In recent years,
growing studies have been performed to investigate the mechanism
of traditional Chinese medicine using modern medical methods and
achieved excellent results (Wang et al., 2018; Li et al., 2020; Wang
et al., 2021). Ginkgetin is a compound extracted from Ginkgo biloba
leaves and exerts anti-inflammatory and anti-tumor activities
(Zhang et al., 2017; Adnan et al., 2020; Lou et al., 2021; Menezes
and Diederich, 2021). Cho et al. (2019)reported that ginkgetin
inhibits adipogenesis by regulating STAT5/PPARγ/CEBPα
signaling. Wu et al. (2022) reported that ginkgetin ameliorates
cardiomyopathy caused by obesity through Nrf2/ARE signaling.
However, whether ginkgetin has activity against NASH is still
unknown.

Bulk RNA sequencing (RNA-Seq) has been extensively utilized
in experimental and translational research (Kuksin et al., 2021;
Thind et al., 2021). However, bulk RNA-Seq failed to evaluate
cell heterogeneity as it only measures the global expression. The
emergence of single-cell RNA sequencing (scRNA-Seq) enables the
investigation of cell heterogeneity at the single-cell level, which has
been applied in NASH-related studies (Xiong et al., 2019; Hendrikx
et al., 2022). In this study, we investigate the impacts of ginkgetin on
NASH and the alteration in gene expression profile using bulk and
scRNA-Seq analysis.

Materials and methods

Animal experiments

All animal experiments were conducted in accordance with
NIH guidelines and were approved by the Ethics Committee of
Tongji Medical College (Wuhan, China). Male C57BL/6J mice
aged 8 weeks were purchased from Tongji Medical College and
were provided controllable circumstances (a temperature of
20°C–22°C, 12-h light/dark cycle, and unlimited access to food
and water). For a duration of 24 weeks, the mice were provided
either a chow diet or a high-fat diet (HFD). Ginkgetin was
purchased from Climax Biotech Co., Ltd. (Chengdu, China).
Vehicle (DMSO) or ginkgetin (10 mg/kg/day) was administrated

intragastrically in the last 8 weeks. The mice were separated into
three groups: The chow diet group, the HFD + vehicle group, and
the HFD + ginkgetin group.

Fasting body weight (FBW) of all the mice was measured
every 4 weeks. Liver weight (LW) was measured after the mice
were killed. The indicators related to liver function (the levels of
alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) in the serum) and lipid metabolism (the levels of
triglyceride and cholesterol in the serum and liver tissues)
were measured by commercial kits (Servicebio Co., Ltd.,
Wuhan, China). The levels of TREM2 in the serum were
measured by ELISA kits (Servicebio).

Histological study

The liver samples were preserved in 4% phosphate-buffered
paraformaldehyde once the mice were sacrificed. After being
dehydrated, embedded in paraffin, the samples were sliced
into sections of 5 μm thick. To assess liver fibrosis, the
sections underwent staining with hematoxylin and eosin (HE)
as well as Sirius red. Lipid accumulation in the liver was assessed
by staining frozen sections with Oil red O. The images were
acquired through light microscopy (Nikon, Japan). For
immunofluorescence, the sections were incubated
consecutively with primary and secondary antibodies and 4’,6-
diamidino-2-phenylindole (DAPI). After quenching tissue
autofluorescence, the images were acquired using fluorescent
microscopy (Nikon). Supplementary Table S1 displayed the
antibodies for immunofluorescence.

Western blot

Equal proteins obtained from liver tissues were subjected to gel
electrophoresis and subsequently transferred onto polyvinylidene
fluoride (PVDF) membranes. Afterward, the membranes were
exposed to primary and secondary antibodies. The protein bands
were detected by a chemiluminescence system (Clinix Co., Ltd.,
China). Supplementary Table S1 displayed the antibodies for
Western blot.

Scanning electron microscopy (SEM)

The liver tissues were put into the electron microscope fixation
solution (Servicebio) immediately after isolation and cut into small
blocks about 2 mm× 2 mm× 2 mm. The tissues were stored at room
temperature for 4 h away from light and transferred to 4°C for
storage. After dehydration, drying, and gold-coated treatment, the
prepared specimens were detected by an SEM (SU8010, Hitachi,
Japan).

Bulk RNA-Seq analysis

We performed bulk RNA-Seq analysis on the liver tissues of
mice with NASH treated with vehicle or ginkgetin (n = 3 per group).
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Trizol reagent (Servicebio) was utilized to extract total RNA from
the liver tissues. mRNA with poly-A was isolated from total RNA
and converted to complementary DNA (cDNA). RNA-Seq array
was conducted on the Illumina Novaseq6000 platform. After getting
the expression matrix, DESeq2 was used to calculate the difference
between the two groups. Differently expressed genes (DEGs) were
considered as fold change (FC) > 2 and adjust p < 0.05. Further
analyses were performed using the corresponding R packages. The
raw data of RNA-Seq were available in the GEO database with
number GSE235797.

scRNA-seq analysis

Liver non-parenchymal cells (LNPCs) were isolated from liver
tissues of mice with NASH treated with vehicle or ginkgetin as
previously described (Mederacke et al., 2015). Then LNPCs were
used for scRNA-Seq by 10X Genomics Chromium system (n = 3 per
group). Quality control was performed by Seurat (version 4.3.0), and
only the single cells with the unique molecular identifier (UMI)
between 250 and 5,000 and mitochondrial genes <5% were used for
further analysis. The clusters were identified by marker genes
according to the CellMarker database (Hu et al., 2023). Visual
analysis was performed using R packages. The raw data of
scRNA-Seq were available in the GEO database with number
GSE235939.

Macrophage polarization index (MPI)

MPI describes all the polarized states of macrophages. Based
on scRNA-Seq, the MPI value of each macrophage was calculated
according to a well-established model (M0: unstimulated; MI:
stimulated with LPS and IFNγ; M2: stimulated with IL4 and IL13)
(Li et al., 2019). A higher MPI value indicates that the
macrophage is closer to a pro-inflammatory state of M1, and
vice versa, a lower MPI value indicates an anti-inflammatory state
of M2.

Statistical analysis

The data were shown as mean ± SD and the difference was
compared by t-test. Statistical analyses were carried out using SPSS
23.0 (IBM, United States). p < 0.05 was considered an indicator of
statistical significance.

Results

Effects of ginkgetin on HFD-induced hepatic
steatosis

The chemical formula of ginkgetin was shown in Figure 1A. We
first evaluated the impacts of ginkgetin on hepatic steatosis in a
NASH mouse model induced by HFD. Administration of HFD
resulted in a clear increase in FBW, LW, and LW/FBW ratio, which
was significantly improved by ginkgetin (Figures 1B–D). And

ginkgetin-treated mice also showed reduced levels of hepatic and
serum triglyceride and cholesterol (Figures 1E,F). Additionally, HE
staining revealed that the hepatocyte steatosis and ballooning were
markedly alleviated with reduced NAFLD activity score (NAS) after
ginkgetin treatment. And Oil red O staining confirmed the reduced
lipid accumulation in ginkgetin-treated mice (Figure 1G).
Consistently, the protein expression of FASN and PPARγ, which
are associated with lipid metabolism, were significantly
downregulated by ginkgetin (Figure 1H).

Effects of ginkgetin on HFD-induced hepatic
inflammation and fibrosis

Immunofluorescence of F4/80 showed a marked increase in
macrophage infiltration in mice with NASH, indicating
enhanced hepatic inflammation, which was reduced in
ginkgetin-treated mice (Figure 2A). And HFD-induced
fibrosis, shown by Sirius red, was also improved after
ginkgetin treatment (Figure 2A). Moreover, these histological
alterations were supported by the level of proteins associated
with inflammation (TNFα and p65) and fibrosis (COL1A1),
which were overexpressed in NASH mice and reduced after
ginkgetin treatment (Figure 2B). In addition, ginkgetin-treated
mice showed improved liver function, shown by decreased ALT
and AST (Figure 2C).

Bulk RNA-Seq analysis of liver tissues from
vehicle- and ginkgetin-treated mice with
NASH

To further investigate the process of ginkgetin-induced
regression of NASH, we performed RNA-Seq analysis of liver
tissues from NASH mice treated with vehicle or ginkgetin (n =
3 per group). The two groups could be clearly distinguished by
principal component analysis (PCA) (Figure 3A). And 1,199 DEGs
were observed, among which 406 were upregulated and 793 were
downregulated by ginkgetin (Figures 3B, C). Gene set enrichment
analysis (GSEA) showed that the signals associated with lipid
metabolism, inflammation, and fibrosis were enriched and
downregulated (Figure 3D; Supplementary Table S2).
Consistently, the expression of related genes was downregulated
by ginkgetin (Figure 3E).

scRNA-seq analysis of LNPC from vehicle-
and ginkgetin-treated mice with NASH

scRNA-seq analysis was conducted to explore the cellular
heterogeneity in LNPCs isolated from NASH mice treated with
vehicle or ginkgetin (n = 3), which are essential in regulating the
process of NASH. After quality control filtering, transcriptomes
of 26,160 cells were obtained, including 11,754 cells from vehicle-
treated mice and 14,406 from ginkgetin-treated mice. And
UMAP dimensionality reduction analysis revealed that the
cells were divided into ten clusters according to the marker
genes, including endothelial cells, hepatocytes, macrophages,
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B cells, hepatic stellate cells (HSCs), T-cells, dendritic cells,
cholangiocytes, NK cells, and Mast cells (Figures 4A–D). And
the cell counts and percent were presented (Figures 4E, F).
Remarkably, we observed that endothelial cells and
macrophages were the most abundant clusters of LNPCs,
accounting for 57.2% of the LNPCs. And 75.3% of endothelial
cells were from ginkgetin-treated mice, whereas 76.0% of
macrophages were from vehicle-treated mice. Additionally,
ginkgetin-induced alteration in gene expression was mainly
reflected in macrophages and HSCs with a marked reduction

(Figure 4G). These data suggested that the impacts of ginkgetin
on NASH may be associated with the reprogramming of
macrophages, HSCs, and endothelial cells.

Effects of ginkgetin on hepaticmacrophages
in NASH mice

4,419 macrophages were retained in scRNA-Seq analysis,
which were further divided into two subclusters, including

FIGURE 1
Effects of ginkgetin on HFD-induced hepatic steatosis. (A) The chemical formula of ginkgetin. (B) Changes in fasting body weight (FBW) over time in
the chow diet, HFD+ Veh, and HFD+Gink groups (n= 6). (C) Liver weight (LW) of themice at the end of experiments (n= 6). (D) Liver index (FBW/LW) (n=
6). (E) Biochemical analysis of hepatic triglyceride (TG) and cholesterol (Chol) (n= 6). (F) Biochemical analysis of serum TG and Chol (n = 6). (G)HE andOil
red O staining of liver tissues (n = 6). Scale bar = 50 μm. (H) Western blot analysis of FASN and PPARγ (n = 3). *: p < 0.05, chow diet vs. HFD + Veh
groups. #: p < 0.05, HFD + Veh vs. HFD + Gink groups.
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Kupffer cells (KCs, high expression of Adgre1) and monocyte-
derived macrophages (MDMs, high expression of Itgam)
(Figures 5A, B). And ginkgetin induced a significant
reduction in macrophages, especially in KCs (Figure 5C).
In addition, we also assessed macrophage polarization
using MPI based on scRNA-Seq. As expected, we observed
a marked alteration toward an anti-inflammatory
phenotype in both KCs and MDMs after ginkgetin treatment
(Figure 5D).

Next, we analyzed the alteration of NASH-associated
macrophages (NAMs), which are subcluster of KCs with high
expression of Trem2 (25). NAMs emerge during NASH and play
a protective role against NASH. And the level of NAMs is positively
correlated with the severity of NASH. Consistent with the
improvement of lipid accumulation in the liver, NAMs markedly
decreased in ginkgetin-treated mice (Figure 5E). Additionally, both
Western blot and Immunofluorescence revealed that the level of

TREM2 was significantly downregulated by ginkgetin (Figures 5F,
G). Meanwhile, we also measured the level of TREM2 in the serum,
which is a circulated marker of NASH and has a positive correction
with NAMs (Hendrikx et al., 2022). Accordingly, the elevated
TREM2 in serum during NASH also decreased after ginkgetin
treatment (Figure 5H).

Effect of ginkgetin on HSCs in NASH mice

HSC activation, marked by high expression of Acta2, is a core step
for liver fibrosis (Higashi et al., 2017). scRNA-Seq analysis revealed a
significant decrease in the expression of Acta2 in ginkgetin-treatedmice
(Figure 6A), which was supported by the Immunofluorescence of
αSMA (encoded by Acta2) (Figure 6B). Then, we performed KEGG
enrichment analysis of the DEGs specially derived from HSCs. In
addition to the pathways associated with lipid metabolism, we also

FIGURE 2
Effects of ginkgetin on HFD-induced hepatic inflammation and fibrosis. (A) F4/80 immunofluorescence and Sirus red staining of liver tissues in the
chow diet, HFD + Veh, and HFD + Gink groups (n = 6). Scale bar = 50 μm. (B)Western blot analysis of proteins related to hepatic inflammation (TNFα and
p65) and fibrosis (COL1A1) (n = 3). (C) The levels of ALT and AST in the three groups (n= 6). *: p < 0.05, chow diet vs. HFD + Veh groups. #: p < 0.05, HFD+
Veh vs. HFD + Gink groups.
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discovered that JAK/STAT pathway was enriched (Figure 6C).
Increasing evidence has demonstrated that JAK/STAT pathway was
essential for HSC activation, especially IL6/STAT3 pathway and IFNγ/
STAT1 pathways (Gao et al., 2012; Deng et al., 2013; Su et al., 2015;
Xiang et al., 2018; Marti-Rodrigo et al., 2020). Triggering IL6/
STAT3 signaling enhances HSC activation and liver fibrosis, while
IFNγ/STAT1 signaling exhibits opposite effects. GSEA revealed that
ginkgetin induced a marked downregulation in IL6/STAT3 signaling,
but no alteration in IFNγ/STAT1 signaling (Figure 6D). Furthermore,
immunofluorescence showed an increase in pSTAT3 andDCN (mainly
expressed by HSCs) with a close colocation in NASH mice, which was
abolished after ginkgetin treatment (Figure 6E). These results suggested
that IL6/STAT3 signaling may be associated with ginkgetin-induced
inhibition of HSC activation and liver fibrosis.

Effects of hepatic endothelial cells in NASH
mice

Endothelial cells make up the largest cluster of LNPCs, which
can be further divided into three subclusters, including liver
sinusoidal endothelial cells (LSECs, high expression of
Fcgr2b), per-portal endothelial cells (PPECs, high expression
of Efnb1), and peri-central endothelial cells (PCECs, high
expression of Wnt2) (Figure 7A). Cluster analysis revealed
individual transcriptomic features in the three subclusters
(Figure 7B). And in vehicle-treated mice, the main type of
endothelial cells was PPECs, while LSECs became the
dominant type after ginkgetin treatment (Figure 7C).
Consistently, immunofluorescence of vWF showed that NASH

FIGURE 3
Bulk RNA-Seq analysis on liver tissues fromNASHmice treated with vehicle and ginkgetin. (A) Principal component analysis betweenHFD + Veh and
HFD + Gink groups (n = 3). (B)Heatmap of DEGs between the two groups. (C) Difference in gene expression between the two groups shown by volcano
plot. (D) GSEA showed that the signals associated with lipid metabolism, hepatic inflammation and fibrosis were downregulated by ginkgetin. (E)
Differences in gene expression based on GSEA.
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resulted in a marked decrease of endothelial cells, which was
restored to the normal level after ginkgetin treatment
(Figure 7D). Furthermore, SEM analysis revealed that the
number of LSEC fenestrae markedly reduced due to NASH,
but increased in ginkgetin-treated mice (Figure 7E).

Discussion

In this study, we demonstrated that ginkgetin exhibits beneficial
effects on NASH, including reducing lipid accumulation and
inhibiting hepatic inflammation and fibrosis. And these results
were supported by bulk RNA-Seq analysis, in which the related
signaling pathways and gene expression were markedly
downregulated. Furthermore, we assessed the alteration in gene
profile by scRNA-Seq, which further uncovered the mechanism of
ginkgetin-induced NASH alleviation.

Previous studies have demonstrated that excessive lipid
accumulation in hepatocytes is the primary and driving factor for
NASH progression by triggering oxidative stress and releasing
inflammatory cytokines (Schuster et al., 2018; Haas et al., 2019).

And the cytokines enhance inflammatory cell infiltration and
hepatocellular injury. Remarkably, ginkgetin induced a clear
decrease in lipid accumulation in hepatocytes with improved
liver function, which was supported by the downregulation of
gene expression and signaling pathways associated with lipid
metabolism. These exciting results urged us to explore the
involved mechanisms, especially focusing on LNPCs, which
are essential in regulating the process of NASH(Xiong et al.,
2019).

Among LNPCs, macrophages occupy a central place in NASH
pathogenesis and have been considered potential therapeutic targets.
And macrophages exhibit strong heterogeneity in performing various
complex functions. In this study, scRNA-Seq analysis showed that
macrophages not only markedly decreased in number but also shifted
from pro-inflammatory to anti-inflammatory phenotype, which was
supported by the histological study and RNA-Seq analysis. We also pay
attention to NAMs, which are present during NASH and characterized
by high expression of Trem2. Recent studies indicated thatNAMsplay a
protective role against NASH by enhancing NAM-dependent
efferocytosis of apoptotic hepatocytes caused by lipid overload (Hou
et al., 2021; Hendrikx et al., 2022; Wang et al., 2023). And the level of

FIGURE 4
scRNA-Seq analysis of liver cells fromHFD+Veh or HFD+Gink groups. (A)UMAP plot revealed that the liver cells were divided into 10 clusters based
on marker genes. (B) UMAP plot for liver cells from HFD + Veh and HFD + Gink groups. (C) marker gene expression for the 10 clusters shown by violin
plots. (D) Top 10marker genes of the 10 clusters shown by heatmap. (E)Cell percent of the 10 clusters in each sample. (F) Cell counts of the 10 clusters in
the two groups. (G) Changes in gene expression by ginkgetin in the 10 clusters between HFD + Veh and HFD + Gink groups.
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NAMs is positively correlated with the severity of NASH. Consistent
with the improvement of lipid accumulation in the liver, ginkgetin
induced a marked decrease in NAMs, evidenced by scRNA-Seq,

Western blot, and immunofluorescence. Further studies are
necessary to investigate whether the impacts on macrophages are
directly caused by ginkgetin or secondary to other effects.

FIGURE 5
Effects of ginkgetin on hepatic macrophages in NASH mice. (A) Kupffer cells (KCs) and monocyte-derived macrophages (MDMs) and their marker
genes shown by UMAP plot. (B)Marker gene expression of KCs andMDMs shown by violin plots. (C) Cell counts of KCs andMDMs in HFD + Veh and HFD
+ Gink groups. (D)MPI of KCs and MDMs in the two groups. (E) Subcluster of Trem2 high expression macrophage. (F)Western blot analysis of TREM2 in
the chow diet, HFD + Veh, and HFD + Gink groups (n = 3). (G) TREM2 immunofluorescence of liver tissues from the three groups (n = 6). Scale bar =
50 μm. (H) Levels of serum TREM2 in the three groups (n = 6). *: p < 0.05, chow diet vs. HFD + Veh groups. #: p < 0.05, HFD + Veh vs. HFD + Gink groups.
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NASH has a high risk of developing fibrosis by activating HSCs
(Schuppan et al., 2018). In this study, liver fibrosis caused by NASH
was markedly suppressed by ginkgetin. Moreover, we observed that
the downregulation of IL6/STAT3 signaling was involved in the
ginkgetin-induced inhibition of HSC activation. Previous studies
have also suggested that IL6/STAT3 signaling was a promising target
for treating liver fibrosis (Deng et al., 2013; Su et al., 2015; Xiang
et al., 2018; Marti-Rodrigo et al., 2020). Thus, our study could
potentially provide a therapeutic strategy for chronic liver fibrosis.

Finally, we assessed the impacts of ginkgetin on endothelial cells
in NASH mice. Unlike the anti-angiogenesis mechanism in treating
liver fibrosis (Gao et al., 2016; Winkler et al., 2021), our data
indicated that ginkgetin promotes hepatic angiogenesis and
endothelial cell proliferation. We speculated that the reasons
might be as follows: hepatic angiogenesis is a compensatory

mechanism of portal hypertension in liver fibrosis, and in turn,
angiogenesis promotes fibrosis (Parola and Pinzani, 2019; Gracia-
Sancho et al., 2021). Therefore, it is effective to treat liver fibrosis by
inhibiting angiogenesis. Contrary to liver fibrosis, hepatic
angiogenesis decreases during NASH due to the damage of
endothelial cells by abnormal lipid metabolism. Thus, the
recovery of endothelial cells after ginkgetin treatment might be
secondary to the reduced lipid accumulation in the liver. Moreover,
ginkgetin induced a marked increase in LSEC fenestrae, which
promoted the substance exchange between hepatocytes and
portal vein.

In conclusion, this study provided evidence that ginkgetin
ameliorates NASH with a unique perspective at bulk and single-
cell levels. These data may promote pharmacological therapy for
NASH and raise the existent understanding of NASH.

FIGURE 6
Effects of ginkgetin on hepatic stellate cells (HSCs) in NASH mice. (A) Activated HSCs marked by Acta2 shown by UMAP plot. (B) αSMA
immunofluorescence of liver tissues from chow diet, HFD + Veh, and HFD + Gink groups (n = 6). Scale bar = 50 μm. (C) KEGG enrichment analysis of
DEGs between HFD + Veh and HFD + Gink groups. (D) GSEA showing the ginkgetin-induced alteration in IFNγ- and IL6-mediated signaling. (E)
pSTAT3 and DCN immunofluorescence of liver tissues from chow diet, HFD + Veh, and HFD + Gink groups (n = 6). Scale bar = 50 μm *: p < 0.05,
chow diet vs. HFD + Veh groups. #: p < 0.05, HFD + Veh vs. HFD + Gink groups.
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Glossary

Acta2 Actin alpha 2

Adgre1 Adhesion G protein-coupled receptor E1

ALT Alanine aminotransferase

ARE Androgen response elements

AST Aspartate aminotransferase

cDNA Complementary DNA

CEBPα Recombinant CCAAT/Enhancer Binding Protein Alpha

COL1A1 Collagen Type I Alpha 1

CST Cell signaling technology

DAPI 4,6-diamino-2-phenyl indole

DCN Decorin

DEG Differently expressed gene

DMSO Dimethyl sulfoxide

ECM Extracellular matrix

Efnb1 Ephrin-B1

ELISA Enzyme-linked immunospecific assay

FASN Fatty acid synthase

FBW Fasting body weight

FC Fold change

Fcgr2b Fc fragment of IgG receptor IIb

FDR False discovery rate

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

GEO Gene expression omnibus

GSEA Gene set enrichment analysis

HE Hematoxylin-eosin

HFD High-fat diet

HSC Hepatic stellate cell

IL Interleukin

Itgam Integrin subunit alpha M

JAK Janus kinase

KC Kupffer cell

KEGG Kyoto encyclopedia of genes and genomes

LNPC Liver non-parenchymal cell

LPS Lipopolysaccharide

LSEC Liver sinusoidal endothelial cell

LW Liver weight

MDM Monocyte-derived macrophage

MPI Macrophage polarization index

NAFLD Nonalcoholic fatty liver disease

NAM NASH-associated macrophage

NAS NAFLD activity score

NASH Nonalcoholic steatohepatitis

NF-κB Nuclear factor kappa-B

NIH National Institutes of Health

NK Natural killer cell

Nrf2 Nuclear factor erythroid 2-related factor 2

PCA Principal component analysis

PCEC Peri-central endothelial cell

PPARγ Peroxisome proliferator-activated receptor gamma

PPEC Per-portal endothelial cell

PVDF Polyvinylidene fluoride

RIPA Radio immunoprecipitation assay

scRNA-Seq Single-cell RNA sequencing

SEM Scanning electron microscopy

SMA Smooth muscle actin

STAT Signal transducer and activator of transcription

TNFα Tumor necrosis factor alpha

Trem2 Triggering receptor expressed on myeloid cells-2

UMAP Uniform manifold approximation and projection

UMI Unique molecular identifier

vWF Von Willebrand factor
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