
Comprehensive multi-omics
analysis of tryptophan
metabolism-related gene
expression signature to predict
prognosis in gastric cancer

Peng Luo, Guojun Chen, Zhaoqi Shi, Jin Yang, Xianfa Wang,
Junhai Pan and Linghua Zhu*

Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,
Hangzhou, China

Introduction: The 5-year survival of gastric cancer (GC) patients with advanced stage
remains poor. Some evidence has indicated that tryptophan metabolism may induce
cancerprogression through immunosuppressive responsesandpromote themalignancy
of cancer cells. The role of tryptophan and its metabolism should be explored for an in-
depth understanding of molecular mechanisms during GC development.

Material and methods: We utilized the Cancer Genome Atlas (TCGA) and Gene
ExpressionOmnibus (GEO)dataset to screen tryptophanmetabolism-associatedgenes
via single sample gene set enrichment analysis (ssGSEA) and correlation analysis.
Consensus clustering analysis was employed to construct different molecular
subtypes. Most common differentially expressed genes (DEGs) were determined
from the molecular subtypes. Univariate cox analysis as well as lasso were
performed to establish a tryptophan metabolism-associated gene signature. Gene
Set Enrichment Analysis (GSEA) was utilized to evaluate signaling pathways. ESTIMATE,
ssGSEA, and TIDEwere used for the evaluation of the gastric tumormicroenvironment.

Results: Two tryptophan metabolism-associated gene molecular subtypes were
constructed. Compared to the C2 subtype, the C1 subtype showed better
prognosis with increased CD4 positive memory T cells as well as activated
dendritic cells (DCs) infiltration and suppressed M2-phenotype macrophages inside
the tumor microenvironment. The immune checkpoint was downregulated in the
C1 subtype. A total of eight key genes, EFNA3, GPX3, RGS2, CXCR4, SGCE, ADH4,
CST2, and GPC3, were screened for the establishment of a prognostic risk model.

Conclusion: This study concluded that the tryptophan metabolism-associated
genes can be applied in GC prognostic prediction. The risk model established in
the current study was highly accurate in GC survival prediction.
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Introduction

Gastric cancer (GC) has been recognized as a main cancer
type that leads to cancer-associated mortality worldwide, with
millions of new cases being diagnosed annually (Lambert et al.,
2002; Brenner et al., 2009). Inflammation is typically related to
GC development with both acute and chronic inflammatory
cells, resulting in aggressive damage of gastric mucosa and
ultimately transformation to cancer tissue (Demaria et al.,
2010; Wang et al., 2014). In most cases, the 5-year survival
of late-stage GC patients remains poor although current
combination therapy of chemotherapy, radiation, and surgery
has improved (Li et al., 2009; Song et al., 2017). Cancer
immunotherapy has emerged recently as a promising and
powerful cancer therapy that drives the patient’s own
immune system against cancer (De Felice et al., 2015;
Whiteside et al., 2016; Bruni et al., 2020). The combination
therapy involving first-line Opdivo (nivolumab)
immunotherapy and chemotherapy was approved in 2021 for
advanced or metastatic GC patients (Twomey and Zhang, 2021;
Yoneda et al., 2021). The mechanism of GC progression and its
related tumor immune microenvironment should be analyzed
to develop novel cancer immunotargets against GC.

As an essential amino acid, L-tryptophan serves as an
indispensable material and regulates protein synthesis during
cell proliferation (Conejos et al., 2021). Tryptophan and its
metabolites play critical roles in various physiological
processes (Hoseini et al., 2019; Conejos et al., 2021). Most free
tryptophan is a biologically active substrate for the function of
the kynurenine (Kyn) signaling pathway (KP) that produces
several metabolites related to the immune response and
neurotransmission (Platten et al., 2019; Tanaka et al., 2021).
Many studies have focused on the imbalances in tryptophan
metabolism by targeting the KP, especially ryptophan-2,3-
dioxygenase (TDO), indoleamine-2,3,-dioxygenase 1 (IDO1),
and IDO2 (Platten et al., 2019; Yao et al., 2021). It has been
demonstrated that the tryptophan depletion by IDO1 and
IDO2 was highly associated with cellular function and survival
(Zhai et al., 2018; Souissi et al., 2022). However, phase III clinical
trials of IDO inhibitors against cancers were disappointing,
although they did show promising outcome in early-stage
cancer immunotherapy (Günther et al., 2019; Chen et al.,
2021). Some evidence has indicated that tryptophan
metabolism may induce cancer development and progression
through the inhibition of immune responses in the tumor site and
promoting the malignancy of cancer cells (Platten et al., 2019).
Although it is still unclear whether KP-related enzymes are
essential for cancer progression, the role of tryptophan and its
metabolism should be explored for in-depth understanding of
molecular mechanism during GC development.

Thus, in this study, we used genes significantly associated with
tryptophan metabolism pathway score to determine the molecular
subtypes. Specifically, consensus clustering followed by subsequent
comparison of clinical signatures, different signaling pathways, and
immune-related properties among different subtypes will be
performed. We then identified genes associated with the
tryptophan metabolism phenotype by differential expression
analysis and LASSO. We further predict GC patients’ outcome by

constructing a risk model, which is also used for personalized
treatment.

Materials and methods

Data sources, collection, and preprocessing

The data related to mutation, copy number variation, and RNA-
Seq profile of TCGA-STAD via TCGA GDC API were downloaded
first (http://cancergenome.nih.gov/). GSE66229 expression data
from the GEO database were obtained (https://www.ncbi.nlm.nih.
gov/geo/). Samples need to be processed as follows (Brenner et al.,
2009): excision of samples of primary tumors (Lambert et al., 2002);
removal of incomplete samples with clinical characteristic
information to ensure that samples have complete clinical
prognostic information and transcriptome expression data.
TCGA-STAD was the training set and the GSE66229 dataset was
the validation set. We excluded samples without survival time or
status. Finally, a sum of 350 primary tumor samples together with
32 normal matches were screened. We kept the protein-encoding
genes for TCGA RNA-seq data analysis. Meanwhile, all data were
log2 transformed, and RNA expression data were normalized. For
the GEO dataset, 300 GC samples were finally screened. Specifically,
the annotation information for each chip platform was acquired and
subsequently utilized to map probes with all the detected genes.
Then, we removed the probes that matched more than one gene.
When one gene can be matched by more than one probes, the mean
value of the gene expression was calculated and set as the value for
that specific gene.

The tryptophan metabolism-related gene information is derived
from a specific pathway named “KEGG_TRYPTOPHAN_
METABOLISM”, which can be found in the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb.org/).

Molecular subtypes of tryptophan
metabolism-associated genes

We constructed a consensus matrix and clustered the samples
through consensus clustering (Wilkerson and Hayes, 2010). The
transcriptional expressions of prognostic genes, which are involved
in the tryptophan metabolism score, were subsequently evaluated to
determine the molecular subtypes. We executed 500 bootstraps
employing the “hc” algorithm and “pearson” as the metric
distance. Each bootstrap process involved around 80% of the
training set patients. The cluster number was set within a range
of 2–10, and we determined the optimal classification via cumulative
distribution function (CDF). Notably, the consistency of CDF was
carefully evaluated when constructing various molecular subtypes
for GC samples.

Risk model

The distinctly expressed genes were identified among the
molecular subtypes, and then the distinctly expressed genes
associated with statistical significance for prognosis were
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FIGURE 1
Genetic variation landscape of tryptophan metabolism-related genes in GC. (A)Mutational map of genes associated with tryptophan metabolism in
primary tumor samples; (B) Primary tumor samples GSEA analysis between mutated and non-mutated groups; (C) CNVs of genes associated with
tryptophan metabolism within primary tumor samples; (D)Gene expression between different types of copy number variation in primary tumor samples;
(E) Differential expression of tryptophan metabolism-related genes between tumor and normal tissue samples. * means p-value less than 0.05; **
means p-value less than 0.01; *** means p-value less than 0.001, and **** means p-value less than 0.0001. ns means there is no significant difference
between the two groups. The same statistical criteria apply to the following figures.

Frontiers in Pharmacology frontiersin.org03

Luo et al. 10.3389/fphar.2023.1267186

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1267186


sorted out (|Log2FC|>1 and FDR<0.05). The gene numbers were
further condensed by Lasso regression, and the prognostic genes
potentially contributing to the tryptophan metabolism
phenotype were filtered. Then, the risk score for each patient
was calculated by the formula:

RiskScore = Σβi×Expi, where Expi is the expression value of each
prognostic gene that determines tryptophan metabolism phenotype.
The Cox regression coefficient of corresponding prognostic gene is
referred to as β. Based on the calculated numbers, samples were then
distributed into two subgroups, that is, RiskScore-high and
RiskScore-low groups, with the threshold set as “0". The
commonly used Kaplan-Meier method was utilized to analyze
patient survival, and the patients’ statistical significance was
calculated via a log-rank test.

GSEA

In different molecular subtypes, pathways of different
biological processes were investigated by performing GSEA
for signaling pathway analysis based on the candidate gene
sets from the KEGG/hallmark (https://www.gsea-msigdb.org/
gsea/index.jsp).

Calculation of cell invasion abundance in
tumor microenvironment

Relative abundance of 22 immune cells in tumor tissues and
percentage of immune cells was determined using CIBERSORT
algorithm (https://cibersort.stanford.edu/) and ESTIMATE
software (Wilkerson and Hayes, 2010), respectively. A total of

28 immune cells were scored using ssGSEA function
(Charoentong et al., 2017).

Prediction of patients’ responsiveness to
immunotherapy

The TIDE, as a widely used algorithm for immune
checkpoint blockade (ICB) responsiveness prediction
(Thorsson et al., 2018), was applied to verify the prediction of
clinical responsiveness to ICB, which evaluated various cell
types including tumor-related fibroblasts, which are
responsible for excessive extracellular matrix deposition,
immunosuppressive cells such as the M2 subtype of tumor-
associated macrophages, and myeloid-derived suppressor cells
that suppressed the T cell infiltration inside the tumor
microenvironment, and two distinct mechanisms involved in
escaping immune surveillance, including the score determining
the dysfunctionality of tumor-infiltrating cytotoxic T
lymphocytes (CTLs) and the score showing the rejection of
CTLs by immunosuppressive factors.

Results

Genetic variation landscape of tryptophan
metabolism-associated genes in GC

A total of 40 genes were involved in tryptophan metabolism.
To determine the genetic alteration of tryptophan metabolism in
GC, mutation frequency of cells was analyzed among the
tryptophan metabolism-associated genes. Among the

FIGURE 2
Molecular typing on genes that are associated with tryptophan metabolism. (A) The result of correlation analysis on genes that are significantly and
prognostically associated with tryptophan metabolic pathway scores is summarized into a heatmap; (B) Cumulative distribution function curves for
samples that are from TCGA cohorts; (C). Curves for the delta area under the cumulative distribution function curves for samples that are from TCGA
cohorts; (D). The second sample clustering (k = 2) is displayed as a heatmap; (E). The prognosis of two TCGA subtypes is displayed as a KM curve; (F)
The prognosis of the twoGSE66229 cohort subtypes is displayed as a KM curve; (G,H): The statistical differences of tryptophanmetabolism scores among
different molecular subtypes in the TCGA cohort (G) and in the GSE66229 cohort (H) were analyzed by one-way ANOVA.
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437 tumor samples, 121 (27.69%) samples had tryptophan
metabolism mutations. As shown in Figure 1A, AOX1 and
OGDHL genes had the highest mutation frequencies, and no
mutation was found in theWARS1 gene. To understand the effect
of mutations on tryptophan metabolism-related genes, we
analyzed the biological signaling pathways in wild-type (WT)
and mutant (Mut) groups through GSEA enrichment analysis. It
shows that tumor-associated pathways, including TNFA_
SIGNALING_VIA_NFKB, P53_PATHWAY, and MYC_
TARGET, were enriched in the mutant group (Sanchez-Vega
et al., 2018) (Figure 1B). We then examined the somatic copy
number variations of these tryptophan metabolism-associated
genes in GC tumor samples and discovered a lower frequency of
copy number variation (CNV) deletion or amplification
(Figure 1C). In order to explore mRNA expression of CNV
value in tumor tissue, the samples were distributed into
different groups relying on CNV value, including increase and
loss of CNV, as well as no obvious variation in CNV. Comparison
of the expression of genes correlating with tryptophan
metabolism between these groups showed that patients with
CNV gain had a higher mRNA expression level compared to
those with CNV loss (Figure 1D). To determine the expression of
the tryptophan metabolism-associated genes between tumor
tissue samples and adjacent normal tissues. As indicated in
Figure 1E, most tryptophan metabolism genes were
significantly differentially expressed, such as AANAT, AFMID,
HADH, IDO1, IDO2, IL4I1, KMO, KYNU, MAOA, MAOB,
TDO2, and WARS2.

Molecular subtyping based on genes related
to tryptophan metabolism

The tryptophan metabolism score in the TCGA dataset was
calculated by the ssGSEA, and then Pearson was used to estimate
the relationship between the protein-encoding genes and the
tryptophan metabolism score. A total, 30 prognostic genes
associated with tryptophan metabolism score were screened.
Figure 2A showed the correlation between the 30 genes and
tryptophan metabolism scores. We classified patients based on
the consensus clustering on 30 prognosis-correlated gene
expression profiles and selected the optimal cluster number
based on the CDF. With relatively stable clustering results
shown in Figures 2B, C, we finally chose k = 2 to acquire two
molecular subtypes (Figure 1D). We further performed the
prognostic analysis of these two molecular subtypes. As
shown in Figure 2E, we found that the overall survival of
C1 was significantly better than that of C2. In addition, a
sample of GC patients from the GSE66229 dataset showed
similar results. This suggests that GC patients in C1 would
have a better prognosis relative to the C2 subtype (Figure 2F).
Meanwhile, we determined the tryptophan metabolism scores of
each sample in the TCGA and GSE66229 datasets, which showed
the score of C2 was higher compared to that of the C1 subtype
with a good survival benefit (Figures 2G, H). Furthermore,
differences in clinicopathological characteristics of TCGA
molecular subtypes were analyzed. As indicated in Figure 3,
we found significant differences between the two molecular

FIGURE 3
Clinical information distribution of molecular subtypes for the TCGA cohort.
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FIGURE 4
Differences in immune signatures between molecular subtypes treated with immunotherapy or chemotherapy. (A) The abundance of 22 immune
cells shows differences among various molecular subtypes; (B) ESTIMATE immune infiltration differences among various molecular subtypes; (C) The
scores for 28 immune cells vary among different molecular subtypes; (D)Differentially expressed immune checkpoints between different groups; (E) The
results of TIDE analysis show significant differences comparing different TCGA cohort groups; (F) The estimated IC50 values for drugs in TCGA-
STAD are displayed as box plots.
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subtypes in terms of age, disease stages, grade classification, and
patient survival status.

Various immune characteristics and
responses to immunotherapy and
chemotherapy between molecular
subtypes.

As shown in Figure 4A, some immune cell types were
significantly different among the subtypes. Compared to the
C2 subtype, activated dendritic cells (DCs) and CD4 positive

memory T cells were significantly upregulated while the M2-
phenotype macrophages were suppressed in the C1 subtype.
Meanwhile, ESTIMATE was applied to evaluate the level of
immune cells inside tumor tissues. Figure 4B showed that the
ImmuneScore of the C2 subtype was significantly higher
compared to that of other groups, indicating that C2 has a
high level of immune cell infiltration. In addition, ssGSEA
demonstrated significant differences in most immune cell
scores between different subtypes (Figure 4C). We further
analyzed the responsiveness to immunotherapy between
different TCGA cohort molecular subtypes. As shown in
Figure 4D, compared to C1 subtype, the gene expression of

FIGURE 5
The molecular subtypes within the TCGA cohort show genomic variations. (A) Comparison of Homologous Recombination Defects, Aneuploidy
Score, Fraction Altered, Number of Segments, Nonsilent Mutation Rate, and Tumormutation burden in the TCGA cohortmolecular subtypes; (B) Somatic
mutations in the two molecular subtypes.
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immune checkpoints such as IDO1, IDO2, and CD274 were
increased dramatically in the C2 subtype.

We did this by employing the TIDE algorithm in order to
assess the potential response of tumor samples to immune
checkpoint inhibitors. Higher TIDE scores represent a higher
likelihood of immune escape in response to immune checkpoint
therapy (Jiang et al., 2018). As shown in Figure 4E, in the TCGA
cohort, the C2 subtype showed a much higher TIDE score than the
C1 subtype with best prognosis, indicating that the C2 subtype had
greater potential of immune escape. In addition, analysis on the
response of different molecular subtypes to conventional
chemotherapeutic drugs showed that C2 patients were more
sensitive to these drugs including sunitinib, MG-132,
saracatinib, dasatinib, and CGP-60474 (Figure 4F).

Mutational signatures and pathway analysis
between molecular subtypes

Further, differences in genomic alterations between two
different molecular subtypes in the TCGA cohort were analyzed.
Here, we obtained molecular information of TCGA-STAD collected
from a pan-cancer study (Thorsson et al., 2018). The C1 subtype
showed a higher aneuploidy score, fraction altered, homologous
recombination defects, non-silent mutation rate, tumor mutation
burden (TMB), and number of segments (Figure 5A). Gene
mutation differences between different molecular subtypes were
also studied. The top 10 genes were exhibited in Figure 5B,
which showed significant differences of TTN, TP53, and
MUC16 genes in mutation frequency between the two molecular
subtypes. Similarly to our results, it has been reported that TTN,

TP53 andMUC16 are the most significantly mutated driver genes in
GC, which is closely related to the prognosis of cancer patients
(Dong et al., 2022).

We then performed GSEA analysis which showed that DNA
replication, spliceosome and base excision repair signaling
pathways were highly enriched in the C1 subtype, while the
C2 subtype had high enrichment of the phagocytosis,
chemokine, and leukocyte transendothelial migration
signaling pathways (Figure 6A). We also evaluated the
10 oncogenic pathways from the previous study (Sanchez-
Vega et al., 2018). The differences showed statistical
significance in the rest of the pathways except for the
TP53 and NRF1 signaling pathways (Figure 6B). Compared
to the C2 subtype, the oncogenic pathways, such as the Wnt,
PI3K, and RAS pathways (Zhang et al., 2001; Zhang et al., 2019;
BY et al., 2020), were significantly downregulated in the
C1 subtype, which indicated an association between activated
oncogenic pathways and tryptophan metabolism that may result
in poor prognosis in C2.

Identification of key genes for the
tryptophan metabolism phenotype

As shown above, we identified two different molecular
subtypes with distinct prognostic, immune, mutational, and
pathway signatures. Next, we screened genes which are
differentially expressed in C1 subtypes compared with
C2 subtypes (|Log2FC| > 1; FDR <0.05), and a sum of
618 distinctly expressed genes were obtained as shown in the
volcano plot of differential analysis (Figure 7A) in which 36 genes

FIGURE 6
Signaling analysis between molecular subtypes. (A) The GSEA results of the TCGA cohort; (B) The scores of 10 signaling pathways associated with
tumor abnormalities for various TCGA cohort molecular subtypes.
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were significantly increased and 582 genes were decreased. We
next utilized univariate cox analysis on the 618 differentially
expressed genes and identified a total of 218 genes that showed
the greater impact on prognosis, including 217 Risk genes and
1 Protective gene (Figure 7B). Subsequently, we compressed these
218 significant differentially expressed genes through lasso
regression. As shown in Figures 7C, D, 10-fold cross-
validation was used to construct the model and eight genes at
lambda = 0.0356 were screened for further analysis: EFNA3,
GPX3, RGS2, CXCR4, SGCE, ADH4, CST2, GPC3. The final 8-
gene signature formula was as follows:

RiskScore=(0.024*EFNA3)+0.079*GPX3+0.102*RGS2+0.051*
CXCR4+0.014*SGCE+0.076*ADH4+0.067*CST2+0.066*GPC3.

Establishment and validation of clinical
prognostic model

The risk score for each TCGA sample was separately calculated,
followed by conducting a receiver operating characteristic (ROC)
analysis on the prognostic classification of the RiskScore. The
prediction classification efficiency from 1 year to 4 years was
calculated to have an area under the time-dependent ROC curves
(AUC) of 0.7, which validated the prediction capability of the model
(Figure 8A). We then performed the zscore on the RiskScore. When the
RiskScore was lower than zero, the samples were separated into the low-
risk group, while those with a RiskScore higher than zero were in the
high-risk group. As shown in Figure 8B, the low-risk group showed

FIGURE 7
Determination of predominant genes contributing to phenotypes related to tryptophanmetabolism. (A)Gene expression difference is displayed by a
volcano plot; (B) A total of 218 potential candidates were determined among the differentially expressed genes; (C) Trajectory schemes were drawn for
every independent variable associated with lambda; (D) Confidence interval under lambda.
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prolonged survival time, indicating the good performance of this
prognostic model. Additionally, GSE66229 dataset was utilized to test
the robustness and validate the risk model constructed by these eight
genes. As shown in Figures 8C, D, similar results were observed, which
indicated the excellent predictive ability of this model.

RiskScore performance on
clinicopathological features and different
molecular subtypes

We analyzed the differences in RiskScore betweenGender, Age, TNM
grades, Stage clinical grades, andGrade grades in theTCGA-STADdataset
to explore the relationship betweenRiskScore and clinical characteristics of
GC. With the increase in the clinical grade, the RiskScore also increased

(Figure 9A). Moreover, we analyzed the difference in RiskScores among
different molecular subtypes. The RiskScore of the C2 subtype with worse
prognosis was obviously higher compared to that of the C1 molecular
subtype with the best prognosis. Clinicopathological characteristics
between the RiskScore groups in the TCGA-STAD cohort were
analyzed, and the high-risk group was found to have a higher clinical
grade (Figure 9B), which was consistent with previous results.

Immune infiltration/pathway characteristics
between RiskScore groups

Next, the enrichment of 22 immune cells in the high and low
RiskScore groups was analyzed between RiskScore groups. As
shown in Figure 10A, compared to the high-risk group, resting

FIGURE 8
Establishment as well as validation of clinical prognosticmodel. (A–B) ROC curves and KM curves for eight genes derived from TCGA dataset; (C–D)
ROC curves and KM curves for eight genes derived from GSE66229 dataset.
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NK cells, activated CD4 T cells, and activated DCs were increased
dramatically while M2 macrophages were substantially decreased
in the low-risk group. ESTIMATE was also utilized to evaluate
the level of immune cells in the tumor tissues. As shown in
Figure 10B, the ImmuneScore in the high-risk group is much

higher. Although it showed a higher level of immune cells in the
high-risk group, the immunosuppressive cells such as MDSC and
M2-phenotype macrophages also increased significantly, which
might result in a poor prognosis. Further, we also used the
ssGSEA function to analyze the scores of 28 types of immune

FIGURE 9
RiskScore performance on various clinicopathological features and variousmolecular subtypes. (A) Various clinicopathological groups derived from
TCGA cohort are compared pairwise in the parameter of RiskScore; (B)Clinicopathological characteristics between RiskScore groups derived from TCGA
cohort. G2 and G3 stages were selected for comparison. For M stage, there were 312 patients in M0 stage, and only 23 patients in M1 stage. Therefore, the
difference in RiskScore between M stages was not compared in this study.
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FIGURE 10
Immune infiltration/pathway characteristics between RiskScore groups. (A) The abundance of 22 immune cells in TCGA cohort between high and
low risk groups is shown as boxplot; (B) Boxplot of differences in immune scores calculated by ESTIMATE software in TCGA cohort; (C) Boxplots of
differences in 28 immune cell scores calculated by ssGSEA in TCGA cohort; (D) Correlation analysis between 28 immune cell scores and RiskScore in the
TCGA cohort; (E) The enrichment scores for signaling pathways in high-risk and low-risk groups with a correlation factor larger than 0.6 are
displayed as a heatmap; (F)Correlation relationship betweenGSEA pathways and RiskScore was performed and thosewith a correlation factor larger than
0.6 are displayed; (G) Correlation scatter plot between RiskScore and tryptophan scores.
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cells, and most of the immune cell scores were significantly different
between high- and low-risk groups (Figure 10C). The correlation
between immune cells and RiskScore was further evaluated. As
shown in Figure 10D, the RiskScore positively correlated with most
immune cells, especially CD4 T cells, DCs, NK cells, and MDSCs, which

could support the prediction of prognoses. This suggests that the
infiltration of these immune cells increases as the risk score rises.

In Figures 10E–G, the most signaling pathways were positively
correlated with the RiskScore of the samples and a significant
positive correlation could be found between RiskScore and

FIGURE 11
Genomic variations after immunotherapy and chemotherapy among RiskScore groups. (A) Differentially expressed immune checkpoint genes
among different TCGA cohort groups; (B) The TIDE analysis results were compared between different TCGA cohort groups to show differences; (C)
Within the TCGA cohort, a correlation relationship was performed between RiskScore and TIDE results; (D) The estimated IC50 values for drugs in TCGA-
STAD were displayed as box plots.
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tryptophan metabolism ssGSEA scores, indicating that the activated
tryptophan metabolism may induce poor prognosis.

Differences in immunotherapy/
chemotherapy between RiskScore groups

We further explored the expression level of immune checkpoints
between RiskScore groups. As shown in Figure 11A, some immune
checkpoint genes, including NRP1, CD200, and CTLA4, were
significantly downregulated in low-risk groups. We further
analyzed the difference in immunotherapy among different
RiskScore groups. TIDE software was applied to evaluate the
immunotherapy response in the high and low RiskScore groups.

We can find that in the TCGA cohort, the high-risk group showed
a higher TIDE score (Figure 11B), indicating that the high-risk group
showed greater potential of immune escape and less sensitive to
immunotherapy. We further analyzed the relationship between
RiskScore and TIDE score. Figure 11C showed a positive
correlation between RiskScore and TIDE, IFNG, Exclusion, and
Exclusion scores and a significant negative correlation with MDSC.
In addition, we also analyzed the response of RiskScore groups to
chemotherapeutic drugs in the TCGA cohort and found that the high
RiskScore group was more sensitive to chemotherapeutic drugs
including MG-132, dasatinib, CGP-60474, WH-4-023, and CMK
(Figure 11D).

Combining RiskScore and clinicopathological features to
optimize prognostic model and survival prediction.

FIGURE 12
Combining RiskScore with clinicopathological features for the optimization of prognostic model and survival prediction. Patient samples with
RiskScore, stage, and age were utilized to generate the survival decision tree; (A,B): Overall survival among the different risk groups; (C,D): Comparative
analysis was performed between different groups; (E): Univariate cox analysis of RiskScore and clinical features; (F): Multivariate Cox analysis of RiskScore
and clinical features; (G): Nomogram model; (H): Compared with other clinicopathological features, the nomogram showed the most powerful
capacity for survival prediction; (I): 1- and 3-year calibration curves of nomograms; (J): Decision curves of nomograms.
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Here, patient age, gender, TNM stage, Stage clinical grade, Grade,
and RiskScore in the TCGA-STAD cohort were used to develop a
decision tree. Only age, T stage, and RiskScore remained in the decision
tree, where RiskScore was the most effective parameter (Figure 12A).
Figure 12B showed a significant overall survival differences among the
four risk subgroups. C2, C3, and C4 were all high-risk patients
(Figure 12C). A significantly decreased survival benefit was found in
the C2, C3, and C4 subgroups (Figure 12D). RiskScore, age, and Stage
were significant prognostic factors, as confirmed by Univariate and
multivariate Cox regression analysis on the clinical characteristics and
RiskScore (Figures 12E, F). A nomogram combining the RiskScore with
other clinicopathological characteristics was developed for the risk
assessment and survival probability evaluation for patients. On
survival rate prediction, the RiskScore showed the greatest impact.
The accuracy of the prediction model was evaluated by the calibration
curve (Figure 12G). As displayed in Figure 12H, the predicted
calibration curve at 1 and 3 years(s) almost overlapped with the
standard curve, indicating a strong prediction of the nomogram.
Further decision curve analysis (DCA) demonstrated that the
Riskscore and nomogram showed noticeably greater benefits than
extreme curves. Additionally, both nomogram and RiskScore
demonstrated the most powerful survival predictors compared to
other clinicopathological features (Figures 12I, J).

Discussion

Inflammation is typically associated with GC development and
migration in damage of gastric mucosa (Demaria et al., 2010; Wang
et al., 2014). The large number of immune cells, inflammatory cells and
cytokines often present in the tumormicroenvironment leads to a state
of immunosuppression and chronic inflammation (Li et al., 2020).
Although FDA approved combination therapy for the treatment of
early stage and advanced GC patients recently, the 5-year survival of
GC patients with advanced stage remains poor. We still need to
investigate the mechanism of GC progression and its related tumor
immune microenvironment for the development of novel cancer
immunotargets against GC. Cancer is a typical metabolic disease.
Nie et al. developed a prognostic model based on the metabolic
profile of TCGA that can well predict the prognosis of STAD
patients. This new metabolism-related feature can respond to the
dysregulated STAD metabolic microenvironment (Nie et al., 2021).
In addition, numerous studies have proved that the tryptophan
metabolism could progress the GC development (Platten et al.,
2019; Tanaka et al., 2021; Yao et al., 2021). Free tryptophan is a
substrate for the kynurenine signaling pathway, which produces
various metabolites related to the immune response. IDO1 and
IDO2 were most popular rate-limiting enzymes to catabolize
tryptophan, and many studies have focused on the blockade of
IDO1 to active the antitumor immunity (Günther et al., 2019).
However, phase III clinical studies of IDO inhibitors against
cancers were unsatisfying (Chen et al., 2021). Although it is still
unclear whether IDO enzymes are essential for cancer progression,
tryptophan metabolism-related genes and signaling pathways were
highly related to the GC immune microenvironment. Long et al.
showed that tryptophan metabolism-related genes were significantly
associated with immune infiltration of different cells in hepatocellular
carcinoma (Long et al., 2023). Similarly, Zhang et al. showed that

tryptophan metabolism-related genes play an important role in the
immune microenvironment of gliomas. They constructed a
tryptophan metabolism-related predictive model and found that
higher tryptophan metabolism-related gene markers were
significantly associated with immune cell infiltration (Zhang et al.,
2022).

We therefore explored the molecular mechanism of tryptophan
metabolism in GC by using RNA-seq data from human samples to
establish the risk model used for predicting clinical results. Firstly,
RNA-seq data derived from patients with GC were collected, and we
analyzed the expression signatures and mutation profiles of
tryptophan metabolism-associated genes. Then, two tryptophan
metabolism-associated molecular subtypes were constructed to
investigate the role of tryptophan metabolism in tumor immune
microenvironment and further developed and verified the use of the
model in a clinical setting.

It has been shown that Kynurenine, a catabolic metabolite of
tryptophan, is able to bind to receptors for transcription factors,
which in turn induces tumor cell invasion and immunosuppression
of the tumor microenvironment (Xu et al., 2021). This suggests that
amino acid metabolism plays a key role in the immunoregulatory
mechanisms in tumor cells and the tumor microenvironment. In this
study, we obtained a total of 40 genes that were highly related to
tryptophan metabolism. Around 27.69% samples were found with
tryptophan metabolism gene mutations, which was consistent with
previous studies (Santhanam et al., 2016; Lu et al., 2020; Pirzadeh et al.,
2022). This study classified two molecular subtypes and found that the
C1 subtype showed better prognosis comparedwith the C2 subtype. But
the immune cell infiltration and the ratio of some key immune
activation cells especially naïve and memory CD8 T cells in the
C1 molecular subtype were significantly more suppressed than those
in C2 subtype. As demonstrated, CD8 T cell infiltration in the tumor
microenvironment was critical in reviving antitumor immunity (Rahir
and Moser, 2012; Chen et al., 2018). The suppressed immune cell
infiltration in the C1 subtype might be induced by other
immunosuppressive signals such as MDSC and the M2-phenotype
macrophage, which were also important to form an
immunosuppressive tumor microenvironment and inhibit the
migration and penetration of immune cells into tumor tissues (Sica
andMassarotti, 2017;Wang et al., 2021).We also analyzed the immune
checkpoint gene expression in these two subtypes. Interestingly, more
immune checkpoint genes were found to be suppressed in the
C1 subtype compared with the C2 subtype, indicating that immune
checkpoint blockade instead of immune cell infiltration resulted in a
good clinical outcome for the C1 subtype. Additionally, the tumor-
related signaling pathways such as theNuclear Factor kappa B (NF-κB)/
P53 pathway and MYC targets pathways were enriched in the mutant
group. As reported, the NF-κB family was considered as a key regulator
of immune responses and inflammation. Some literature has
demonstrated that NF-κB/P53 signaling pathway activation was
associated with human cancer development, progression, and
metastatic potential (Tilborghs et al., 2017; Thorsson et al., 2018;
Marei et al., 2021). Moreover, several studies have indicated that the
transcription factor MYC served as a proto-oncogene in multiple
cancers, which can result in transcriptional activation or repression
of specific genes including those involved in tumor cell growth,
proliferation, and survival (Zhang et al., 2010; Hu et al., 2018). The
tumor-related signaling pathways enriched in the mutant group
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suggested that the mutation may result in functional changes and
survival benefits for GC patients.

This study determined that eight significant genes (EFNA3,
GPX3, RGS2, CXCR4, SGCE, ADH4, CST2, and GPC3) are
correlated genes to construct the risk model. Among these
genes, the chemokine receptor CXCR4 and its ligand
CXCL12 were widely reported to be involved in cancer cell
survival, proliferation, and migration (O’Boyle et al., 2013; Lee
and Jo, 2012). Preliminary in vivo experiments suggested that
CXCR4 might be essential in the development of a range of
cancer malignancies (Conley-LaComb et al., 2013; Xue et al.,
2017). The CXCR4/CXCL12 signaling could be considered as a
therapeutic target in antitumor immunity and more in-depth
exploration should be performed for the prediction of clinical
outcomes. Moreover, some studies have demonstrated that
glypican-3 (GPC3) was closely associated with tumor
progression and acted as an oncogene in GC (Zhu et al., 2002;
Ushiku et al., 2009), which was consistent with our findings.
GPC3 might provide another potential therapeutic target for the
treatment of GC.

We further established the risk model to predict the clinical
outcome, which has been evaluated and verified with good
performance and high survival prediction accuracy. The potential
therapeutic targets among the tryptophan metabolism-related genes
and signaling pathways could be applied in the clinical GC diagnosis
and treatment. However, there are some limitations to note in this
study. First, our study data were obtained from the TCGA and GEO
databases, which were analyzed only by bioinformatics. In further
studies, we should conduct relevant in vivo and in vitro validation
experiments to verify the effect of risk modeling. In addition, the
molecular mechanisms related to tryptophan metabolism in GC
remain to be further verified.

Conclusion

In this study, we screened and determined eight key genes that
are related to the phenotype of tryptophan metabolism through
differentially expressed gene analysis between molecular subtypes
and constructed the risk model based on these key genes, which
showed strong robustness and stable predictive performance with
independence of clinicopathological characteristics. To optimize the
risk model and prognostic prediction, we combined the RiskScore
with clinicopathological features, which showed high accuracy and
capability for survival prediction.
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