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The human gut microbiota is a complex ecosystem regulating the host’s
environmental interaction. The same functional food or drug may have varying
bioavailability and distinct effects on different individuals. Drugs such as antibiotics
can alter the intestinal flora, thus affecting health. However, the relationship
between intestinal flora and non-antibiotic drugs is bidirectional: it is not only
affected by drugs; nevertheless, it can alter the drug structure through enzymes
and change the bioavailability, biological activity, or toxicity of drugs to improve
their efficacy and safety. This review summarizes the roles and mechanisms of
antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-
lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and
dietary in modulating the colorectal cancer gut microbiota. It provides a reference
for future antitumor therapy targeting intestinal microorganisms.
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1 Introduction

There are over 193 million cases of colorectal cancer (CRC) diagnosed each year in
the world, despite the rising use of colonoscopies (Siegel et al., 2023). Approximately
50%–60% of incident cases of CRC can be attributed to modifiable risk factors such as
smoking, drinking a lot of alcohol, being overweight, being obese, being inactive, eating
much red and processed meat, and eating little whole grains or fiber (Li et al., 2022). A
growing body of evidence indicates that intestinal microbiomes are influenced by the
environment and contribute to disease (Sepich-Poore et al., 2021; Xia et al., 2023a; Xia
et al., 2023b). It has been found that patients with CRC have different intestinal
microbiomes compared to healthy individuals. Moreover, it has been shown that gut
microbes change during colorectal carcinogenesis assisting in identifying individuals at
risk (Hagan et al., 2019). People have learned a great deal about the composition of the
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human gut microbiota in the last decade, but the complex
temporally spatial interplay between gut microbes and humans
remains an ongoing mystery.

It is well-known that the gut microbiota can be shifted into
alternative stable states or quasi-stable states by antibiotics, which
may become more resilient to external influences (Hao et al., 2020;
Reyman et al., 2022). However, a bidirectional relationship exists
between intestinal flora and non-antibiotic drugs. Despite its impact
on drugs, it can also alter the structure of drugs via enzymes,
enhance the bioavailability and biological activity of drugs, or
reduce their toxicity (de Gunzburg et al., 2018; Willmann et al.,
2019). There have also been new changes in the treatment of tumors
(Ye et al., 2023). In this review, we summarize the roles and
mechanisms of antibiotics, antihypertensive drugs, nonsteroidal
anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic
drugs, virus-associated therapies, metabolites, and dietary in
modulating the CRC gut microbiota. It provides evidence that
intestinal microorganisms could be used as targets for future
antitumor therapies.

2 Drug repurposing and microbiota in
colorectal cancer

Drug repurposing involves using existing drugs to treat diseases
not included in the original indication. Based on the side effects of
the current chemotherapeutic agents, the repurposing of noncancer
drugs in the prevention or treatment of CRC has the advantage of a
high safety level and fewer side effects. Currently, the relationship
between the gut microbiome and CRC is gradually being elucidated
(Karpiński et al., 2022), and we have summarized the anticancer
activity of some traditional drugs and attempted to analyze their
association with the gut microbiome during treatment.

2.1 Antihypertensive drugs

Hypertension is the most prevalent chronic cardiovascular
disease globally and is closely associated with the gut microbiota.
Human global gut microbiota diversity is associated with
hypertension (Silveira-Nunes et al., 2020; Wang et al., 2021).
The gut microbiota is high in Proteobacteria and Actinobacteria
at a low level; at the genus level, Klebsiella, Clostridium,
Streptococcus, Parabacteroides, Eggerthella, and Salmonella are
more prevalent (Yan et al., 2017). The proportion of butyrate
decreased (Wang et al., 2021). Short-chain fatty acids (SCFA),
including butyrate, regulate the activity of G protein-coupled
receptors and these metabolites have immunomodulatory
functions. They also contribute to blood pressure homeostasis
and are implicated in the pathogenesis of hypertension (Katsi
et al., 2019; Duttaroy, 2021). Meanwhile, trimethylamine,
trimethylamine-producing bacteria, and trimethylamine-N-
oxide have been linked to hypertension in several pathways
(Zhang et al., 2021).

In animal studies, the ratio of Firmicutes to Bacteroidetes in the
hypertensive model rats was increased (Santisteban et al., 2017; Li
et al., 2021). Prehypertension and hypertension are associated with
the risk of multiple cancers, including CRC (Seretis et al., 2019; Lee

et al., 2020). Both elevated systolic and diastolic blood pressure and
stage 2 hypertension were positively related to the CRC risk, and
metabolic syndrome was associated with an increased risk of early-
onset CRC, including hypertension (Chen et al., 2021; Kaneko et al.,
2021).

Drugs for hypertension include angiotensin I-converting
enzyme inhibitors (ACEI), angiotensin II receptor blockers
(ARB), and β-blockers. Angiotensin II differential blood pressure
was regulated by gut microbiota metabolites. Mice lacking gut
microbiota are protected from angiotensin II-induced arterial
hypertension, vascular dysfunction, and hypertension-induced
end-organ damage (Karbach et al., 2016). ACEI, ARB, and β
-blockers significantly affect gut microbiota (Zhernakova et al.,
2016; Jackson et al., 2018). Among them, telmisartan induces
specific gut microbiota characteristics to mediate its anti-obesity
effect; irbesartan attenuates pulmonary arterial pressure in the high-
altitude pulmonary hypertension model rats by increasing the
abundance of Lactobacillaceae and Lachnospiraceae in the gut
and reducing the abundance of Prevotellaceae and
Desulfovibrionaceae; captopril exerts its sustained
antihypertensive effect by mediating captopril-reactive bacteria
(including Parabacteroides, Mucispirillum, and Allobaculum)
(Figure 1), and re-balancing of the brain-gut axis;
Antihypertensive peptides and the α-lactalbumin hydrolysates
under 3 kDa can restore the diversity of the intestinal microbiota,
induce SCFA, and relieve hypertension-associated gut dysbiosis
(Yang et al., 2019; Beckmann et al., 2021; Nijiati et al., 2021; Xie
et al., 2022).

These hypertensive drugs also have a preventive or
therapeutic effect on CRC. Some studies demonstrated that
the application of ACEI and ARB might reduce CRC
incidence, polyp formation, and metastasis and prevent the
development of CRC via a mechanism involving inhibition of
angiotensin-converting enzyme activity, angiotensin Ⅱ synthesis,
and the epidermal growth factor receptor expression (Kedika
et al., 2011; Makar et al., 2014; Childers, 2015; Asgharzadeh et al.,
2018; Nakamura et al., 2018;Cheung et al., 2020a). ARB did not
change the number of cluster of differentiation 11 b + bone
marrow cells in tumors; nonetheless, it significantly reduced
the T cell inhibition ability while reducing the production of
various immunosuppressive factors. ARB also decreased the
cancer-related fibroblasts, chemokine ligand 12, and nitric
oxide synthase 2 expressions, indicating that the renin-
angiotensin-system is involved in the production of
immunosuppressive cells initiated by bone marrow cells and
fibroblasts tumor microenvironment (Nakamura et al., 2018).
ACEI/ARB and β-blockers are associated with improved survival,
tumor progression, and decreased hospitalization in patients
with advanced CRC (Engineer et al., 2013). The β-blocker
nebivolol co-inhibited complex I and adenosine triphosphate
synthase activity, precisely hindering oxidative
phosphorylation of cancer cells (Nuevo-Tapioles et al., 2020).
Antihypertensive medications regulate intestinal flora and
maintain a healthy brain-gut axis. Angiotensin II regulates
blood pressure through gut microbiota metabolites, thereby
involving intestinal flora participation in the renin-
angiotensin-system and the formation of the suppressive
tumor microenvironment.
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2.2 Nonsteroidal anti-inflammatory drugs

Nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the
incidence and recurrence of advanced colorectal adenomas and
CRC, and numerous randomized, controlled, and double-blind
clinical trials are undergoing to evaluate NSAIDs in cancer
chemoprevention (Wang et al., 2018; Cheung et al., 2020b; Chen
et al., 2021; Chudy-Onwugaje et al., 2021; Maniewska and Jeżewska,
2021). NSAIDs play an anti-inflammatory role by inhibiting the
cyclooxygenase enzyme, prostaglandin E2 pathway, and
cyclooxygenase-independent pathway. The inflammatory
response and accessory inflammation, which is an intermediate
state between chronic inflammation and basal homeostasis,
significantly impacted CRC progression and p53 to maintain
homeostasis (Ghanghas et al., 2016). Upon loss of p53, para-
inflammation loses its tumor-suppressive properties and becomes
tumor-promoting (Lasry et al., 2016). Phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic subunit alpha mutations are
present in approximately 15% to 20% of CRC. Upregulation of
phosphatidylinositol 3-kinase increases cyclooxygenase-2 activity,
promotes prostaglandin E2 synthesis, and inhibits apoptosis in
colon cancer cells (Amitay et al., 2019). NSAIDs can also inhibit
the mechanistic target of rapamycin kinase signaling to induce
autophagy, inhibit tumor cell viability via p53-dependent
autophagy, and increase chemotherapeutic drug radiosensitivity
and cytotoxicity (Yu et al., 2018). Patients using NSAIDs have
distinct gastrointestinal microbiome profiles compared to those
not using NSAIDs. The abundance of Prevotella spp., Bacteroides
spp., family Ruminococaceae, and Barnesiella spp. can discriminate
aspirin users from no medication; celecoxib and ibuprofen users
showed enrichment of Acidaminococcaceae and Enterobacteriaceae
in the gut (Rogers and Aronoff, 2016).

Aspirin has potent chemopreventive activity in CRC and regular
use of aspirin significantly reduces the incidence of CRC (Bosetti

FIGURE 1
Effect of drug reuse on intestinal microbiota. In antihypertensive drugs, Prevotellaceae were elevated, and Lachnospiraceae, Suterellaceae, and
Erysipelotrichoceae were decreased by the use of telmisartan; irbesartan upregulates the abundance of Lactobacillaceae and Lachnospiraceae and
downregulates the abundance of Prevotellaceae and Desulfovibrionaceae; captopril modulates the abundance of Parabacteroides, Mucispirillum, and
Allobaculum. In NSAIDs, aspirin increases the abundance of Faecalibacterium, Ruminococcus,Clostridium XIVa, Akkermansia, Bifidobacterium, and
Lactobacillus; while reducing the abundance of Parabacteroides, Streptococcus, Dorea, Fusobacterium nucleatum, enterotoxigenic B. fragilis, and
colibactin-producing E. coli. 5-Aminosalicylic acid modulates intestinal flora dysbiosis by increasing the abundance of Bifidobacterium,
Lachnoclostridium, and Anaerotruncus and decreasing the abundance of Alloprevotella and Desulfovibrio. In statins, atorvastatin and rosuvastatin
upregulated the abundance of Bacteroides, Butyricimonas, and Mucispirillum; atorvastatin helps to reshape the dysbiosis of the gut microbiota by
increasing the abundance of anti-inflammatory bacteria such as Faecalibacterium prausnitzii, Akkermansia muciniphila, and the genus Oscillospira, and
decreasing the abundance of pro-inflammatory bacteria Desulfovibrio sp. Metformin treatment altered the composition of the gut microbiota by
increasing the relative abundance of Lactobacillus and Akkermansia species while reducing Erysipelatoclostridium. At the genus level, Bifidobacterium
increased and Fusobacterium nucleatum decreased. Doxycycline eliminated Fusobacterium spp. Members of the Lachnospiraceae Family (Phylum
Firmicutes, Class Clostridia) were significantly increased in the gut microbial community of the ursodeoxycholic acid-treated group.
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et al., 2020). The incidence of CRC is significantly reduced in people
with long-term aspirin use for more than 10 years (Zhang et al.,
2021). Low-dose aspirin and flexible sigmoidoscopy are equally
effective in reducing the incidence and mortality of CRC
(Emilsson et al., 2017). Kane, A.M. et al. used the B-Raf proto-
oncogene mutation model study and found that aspirin treatment
could significantly reduce the incidence of metastatic disease (Kane
et al., 2021). The 10-year overall survival was significantly prolonged
with aspirin in patients with wild-type phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha and mutated KRAS
tumors (Gebauer et al., 2021). The chemopreventive effect of aspirin
in CRC might be related to various mechanisms, including
inhibition of cyclooxygenase, cyclin-dependent kinase, β-catenin
phosphorylation, mechanistic target of rapamycin kinase, MYC,
cyclin A2, nuclear factor of kappa light polypeptide gene enhancer in
B cells, and Wnt signaling pathways, activation of adenosine
monophosphate kinase, induction of polyamine catabolism and
deoxyribonucleic acid mismatch repair proteins, and acetylation
of p53, glucose-6-phosphate dehydrogenase, and other proteins
(Sankaranarayanan et al., 2020).

It has been found that aspirin can regulate the tumor
microenvironment via gut microbes, induce autophagy, reduce
the inflammatory response induced by necrosis, and inhibit
tumor development (Frouws et al., 2017). Aspirin alters the gut
microbiome and modifies the bacterial taxa in the gut, thereby
protecting against CRC (Chan et al., 2012). Specifically, aspirin
downregulated flora positively associated with CRC risk, including
Parabacteroides and Streptococcus, while up-regulating flora
negatively associated with CRC, including Faecalibacterium and
Ruminococcus (Figure 1). In double-blind, randomized, placebo-
controlled trials, aspirin users have a higher abundance of
Ruminococcaceae and Clostridium XIVa and a lower abundance
of Parabacteroides and Dorea. In addition, aspirin increased the
abundance of the anti-inflammatory bacterium Akkermansia more
than the placebo (Figure 1) (Prizment et al., 2020; Brennan et al.,
2021). Likewise, the inhibitory effect of aspirin on the notorious
Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and
colibactin-producing Escherichia coli is noteworthy for its ability to
diminish F. nucleatum on CRC promotion (Figure 1). In mice
treated with azomethane and dextran sulfate, probiotic bacteria,
including Bifidobacterium pseudolongum and Faecalibacterium
rodentium, were enriched in aspirin-treated mice; a similar effect
also occurs for Bifidobacterium and Lactobacillus genera, including
B. pseudolongum, Bifidobacterium breve, Bifidobacterium animalis,
Lactobacillus reuteri, Lactobacillus gasseri, and Lactobacillus
johnsonii in aspirin-treated APCmin/+ mice (Figure 1) (Zhao
et al., 2020).

Celecoxib is a Food and Drug Administration-approved drug
used for colorectal polyps and prevents high-risk adenoma
recurrence (Lynch et al., 2010; Thompson et al., 2016). In a 5-
year clinical trial designed to prevent sporadic adenomatous polyps
in colon, the incidence of new adenoma was substantially lower in
the celecoxib group than in the placebo group. Celecoxib reduced
the luminal microbiome and metabolome associated with intestinal
stem cell proliferation, inhibited c-Met, and exerted anti-CRC effects
(Jendrossek, 2013; Lin et al., 2019). The ability of celecoxib to
chemoprevent CRC is mediated by the gut microbiota and
microbe-derived metabolites (Ferrara et al., 2022). In

hepatocellular carcinoma, celecoxib enhances the anti-tumor
function of immune cells by up-regulating the abundance of
Bacteroides Acidifaciens, Odoribacter Laneus, and Odoribacter
splanchnicus (Pan et al., 2023).

5-Aminosalicylic acid has also been found to exert anti-
inflammatory effects by modulating the intestinal flora. 5-
Aminosalicylic acid modulates intestinal flora dysbiosis by
increasing the abundance of Bifidobacterium, Lachnoclostridium,
and Anaerotruncus and decreasing the abundance of Alloprevotella
and Desulfovibrio (Figure 1). 5-Aminosalicylic acid is an important
metabolite of aspirin and has been found to exert anti-inflammatory
effects by modulating intestinal flora. abundance to modulate
intestinal dysbiosis and ultimately ameliorate dextran sulfate
sodium-induced colitis (Huang et al., 2022; Wada et al., 2023). In
addition, 5-aminosalicylic acid may also exert a preventive effect
against CRC by inhibiting pks + E. coli (Figure 1) (Tang-Fichaux
et al., 2021). Naproxen may influence the production of
trimethylamine and trimethylamine-N-oxide by altering the type
of choline-utilizing anaerobic bacteria implicated with CRC
progression (Rogers and Aronoff, 2016).

Besides, intestinal flora also impacts the drug use of NSAIDs.
The bioavailability of aspirin is related to its chemopreventive effect
on CRC, however, the bioavailability of oral drugs, including aspirin,
is related to intestinal flora (Zhang et al., 2021). Lysinibacillus
sphaericus weakens the chemopreventive effect of aspirin by
degrading it (Zhao et al., 2020). Not coincidentally, enzymes
produced by the intestinal flora reduced the efficacy of 5-
aminosalicylic acid in the treatment of inflammatory bowel
disease (Mehta et al., 2023). Therefore, these findings reveal the
complex interactions between aspirin, intestinal flora, and CRC, and
provide additional mechanisms and references to follow for the use
of aspirin in the treatment of CRC.

2.3 Lipid-lowering drugs

High serum triglyceride levels and high serum cholesterol levels
are positively associated with the incidence of CRC (Yang et al.,
2022). Targeting cholesterol biosynthesis, which contributes to CRC
cell growth and liver metastasis, is a promising therapy for CRC
(Zhang et al., 2021). As lipid-lowering agents, statins are among the
chemopreventive agents for CRC and play an important role in the
treatment and prognosis of CRC. A population-based case-control
study found statins to be moderately chemoprotective against CRC
(Rodríguez-Miguel et al., 2022). After undergoing a colonoscopy,
statin users were found to have a lower risk of CRC (Cheung et al.,
2019). Furthermore, atorvastatin eliminated microadenomas in
tumor-free mice (Chang et al., 2018). Statins also inhibit the
proliferation of CRC cells and promote apoptosis (Palko-Łabuz
et al., 2019). Statins may be considered as targeted therapy for
CRC (Shailes et al., 2022). Meanwhile, in the treatment, statins can
enhance the anticancer activity of the chemotherapeutic drug
oxaliplatin, enhance the sensitivity of radiotherapy for CRC and
synergize the antitumor effect of the targeted drug regorafenib,
which may arise from the weakening of stemness and drug
resistance of CRC cells by statins (Karagkounis et al., 2018; Gao
et al., 2021; Gonçalves et al., 2021; Tsubaki et al., 2023; Yuan et al.,
2023). Pravastatin, a metabolite of intestinal flora, can promote
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interleukin (IL)-13 release from type Ⅱ innate lymphocytes through
IL-33 signaling, which has been shown to promote self-renewal of
pluripotent intestinal stem cells at the base of intestinal crypts (Zhu
et al., 2019; Deng et al., 2021). In postoperative patients, statin use
has been associated with lower short- and long-term mortality
(Pourlotfi et al., 2021a; Pourlotfi et al., 2021b).

The gut microbiota is an important part of the pharmacological
action of statins. Statin therapy is negatively associated with obesity-
related microbiota dysbiosis (Vieira-Silva et al., 2020). Statins
modulate gut microbiota dysbiosis due to hyperglycemia and
hyperlipidemia, and atorvastatin and rosuvastatin upregulated the
abundance of Bacteroides, Butyricimonas, and Mucispirillum, and
notably, fecal transplants of gut microbiota altered by rosuvastatin
still exerted ameliorative effects on hyperglycemia (Figure 1) (Kim
et al., 2019). Atorvastatin helps to reshape the dysbiosis of the gut
microbiota induced by hyperlipidemia, which includes reversing the
ratio between Firmicutes to Bacteroidetes, increasing the abundance
of anti-inflammatory bacteria such as Faecalibacterium prausnitzii,
Akkermansia muciniphila, and genus Oscillospira, and decrease the
abundance of pro-inflammatory bacteriaDesulfovibrio sp. (Figure 1)
(Wang L. et al., 2021). There is no doubt that the same microbiota
regulated by statins are associated with CRC. An interesting
perspective is that the gut microbiota may already be a common
target for statins against atherosclerosis and tumors (Wu et al.,
2021). The study found that intestinal flora is crucial for preventing
or treating CRC with statins. Statins may affect the gut microbiota,
with a high proportion of Bacteroides, a low proportion of
Faecalibacterium, and a low microbial cell density in the gut of
patients not receiving statin therapy compared with patients taking
statins. Statins can enhance the number of Anaerostipes hadrus and
Bifidobacterium longum subsp and their ability to produce butyrate
Statins also increase the abundance of Bifidobacterium, Anaerobes,
Broucella, and B. longum subsp (Figure 1) (Vieira-Silva et al., 2020;
Hu et al., 2021). Statins are equally involved in the metabolism of the
gut microbiota. The application of atorvastatin enhances the
availability of tryptophan in the gut, which in turn leads to an
increase in L. reuteri, which then inhibits colorectal carcinogenesis
by metabolizing tryptophan to indole-3-lactic acid. This process
ultimately contributes to the chemopreventive effects of atorvastatin
(Figure 1) (Han et al., 2023).

2.4 Hypoglycemic drugs

Diabetes mellitus is associated with an increased risk of CRC,
and their association is related to the family history of CRC (Ali
Khan et al., 2020a; Ali Khan et al., 2020b; Amadou et al., 2021; Hu
et al., 2021). High insulin levels occurring in the pre-diabetic
phase act as a major driver of the positive association of type
2 diabetes with CRC (Murphy et al., 2022). The duration of
obesity reflects the level and duration of hyperinsulinemia,
patients with long-term obesity had an increased risk of CRC
compared to patients with no history of obesity (Peeters et al.,
2015). Stratification based on the cumulative period of obesity
revealed that patients with long-term obesity had an increased
risk of CRC compared to patients with no history of obesity.
Furthermore, insulin and insulin like growth factor 1 (IGF1) are
ligands for the IGF1 receptor, and their binding induces

autophosphorylation and conformational changes in the
cytoplasmic tyrosine domain to stimulate a signaling cascade,
including primarily the phosphatidylinositol 3′-kinase/protein
kinase B and mitogen-activated protein kinases pathways that are
closely associated with protein synthesis, survival, and
proliferation (Yu et al., 2022).

Certain hypoglycemic drugs can prevent and treat CRC.
Metformin has a potential role in the chemoprevention of CRC,
and low-dose metformin reduces the incidence and number of
metachronous adenoma or polyps after polypectomy (Higurashi
et al., 2016); Metformin, as neoadjuvant therapy, can reduce the
adverse effects of diabetes and improve the prognosis of patients
with diabetes and CRC in conjunction with 5-fluorouracil (Sang
et al., 2020). The mechanisms include metformin targeting the
mechanistic target of rapamycin kinase via the adenosine
monophosphate-activated protein kinase and insulin/insulin-like
growth factor pathway, and inducing apoptosis and autophagy
through oxidative stress, inflammation, and metabolic
homeostasis (Mallik and Chowdhury, 2018).

Studies have shown that metformin inhibits tumor progression
by modifying the gut microbiome. Transplantation of metformin-
treated mice’s feces into mice with metastatic tumors revealed
increased SCFA and decreased expression of tumor cholesterol
metabolism genes in tumor-bearing mice (Broadfield et al., 2022).
Metformin can increase Firmicutes and reduce Fusobacteria and
Bacteroidetes at the phylum level. At the genus level, there was an
increased Bifidobacterium and decreased Fusobacterium nucleatum
(Figure 1) (Huang et al., 2020; Huang et al., 2020). Metformin
altered the composition of gut flora associated with CRC, including
Bacteroides, Streptococcus, Achromobacter, Alistipes, and
Fusobacterium. Importantly, metformin inhibited the growth of
Fusobacterium in vitro and was shown to inhibit Fusobacterium
in APC Min/+ mice (Figure 1) (Huang et al., 2020).

The complex mechanism of metformin action maybe 1)
metformin is metabolized in the gut, reacts with intestinal
microbes, alters the composition and abundance of intestinal
flora, and causes a cascade related to intestinal flora, such as
regulating inflammation, innate immunity, and adaptive
immunity. 2) metformin alters gut metabolomics, including some
substances that can weaken CRC such as SCFA (Vallianou et al.,
2019). 3) complex interactions between metformin, gut microbiota,
and the growth hormone/IGF-1 axis. Metformin can affect IGF-1
levels (Khan et al., 2023). Similarly, the intestinal flora can regulate
IGF-1 through the growth hormone/IGF-1 axis. Microbial
metabolites, including SCFA, also regulate the release of growth
hormones in cancer (Yan and Charles, 2018). The gut microbiota
produces SCFA and other microbial metabolites that act on the liver
and adipose tissue to induce IGF-1 production (Matsushita et al.,
2021). IGF-1 production is associated with CRC risk and promotes
inflammation-related tumorigenesis (Youssif et al., 2018; Murphy
et al., 2020).

2.5 Antibiotics

Antibiotics have contradictory effects on intestinal
microflora. First, prolonged misuse of antibiotics, generation,
and drug resistance severely disrupt the microbial ecosystem and

Frontiers in Pharmacology frontiersin.org05

Wu et al. 10.3389/fphar.2023.1265136

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1265136


increase the risk of CRC. Antibiotic use was associated with an
increased risk of colorectal polyps, and gut dysbiosis was
implicated in the early phases of colorectal carcinogenesis,
according to a case-control study conducted in Sweden.
Tetracycline and quinolone antibiotics are strongly linked to
an elevated risk of colon and rectal polyps (Song et al., 2021).
Second, chronic inflammation induced by antibiotics can cause
gene mutation in colon epithelial cells and aberrant
deoxyribonucleic acid methylation modifications, contributing
to CRC development. In the azoxymethane/dextran sodium
sulfate mouse model, antibiotics that modulate the gut
microbiota can reduce colonic inflammation and inhibit
colonic tumorigenesis. The study revealed that when tumor-
bearing mice were treated with the Fusobacterium-resistant
antibiotic erythromycin, neither the tumor volume nor the
abundance of Clostridium bacteria in the tumor tissue
changed; however, when the tumor-bearing mice were treated
with the Fusobacterium-sensitive antibiotic metronidazole, both
the tumor volume and the abundance of Fusobacterium in the
tumor tissue decreased (Mihai et al., 2021). This indicates that
antibiotics regulate Fusobacterium and inhibit CRC tumor cell
proliferation. We demonstrated that the anticancer activity of
doxycycline is mainly because the drug can significantly affect the
diversity of Bifidobacterium populations, eliminating
Fusobacterium without any effect on other intestinal bacterial
populations (Figure 1) (Elvers et al., 2020).

The relationships between gut microbiota, inflammation, and
tumors are complicated. Antibiotics are a double-edged sword
against intestinal flora. Antibiotics can interfere with normal
intestinal flora and promote tumor occurrence; they can also
inhibit pathogenic intestinal bacteria, reduce inflammation and
inhibit tumor occurrence. Therefore, the effect on gut
microbes should be considered when investigating antitumoral
antibiotics.

2.6 Virus-related therapy

Viruses are part of the gut microbiota and significantly affect
the occurrence and progression of CRC. Compared to healthy
control, CRC patients showed higher viral diversity in the gut.
Enterovirus and disease stage-specific changes and prognosis
were also associated with CRC patients’ prognosis (Nakatsu
et al., 2018). Epstein-Barr virus, human cytomegalovirus,
human papillomavirus, and other deoxyribonucleic acid
viruses replicate within infected cells, target p53, pRb, and
p21, and disrupt the cell cycle. Therefore, it can produce an
anti-CRC effect by interfering with the virus. Zidovudine is a
nucleoside antiretroviral drug inhibiting CRC cell proliferation
(Fang et al., 2017; Sherif et al., 2021). Ganciclovir inhibits the
NLR family pyrin domain containing 3 activations and reduces
the irinotecan-induced intestinal toxicity (Huang et al., 2020).
The combination of zidovudine and veavirren completely
blocked tumorigenesis in tumor-bearing mice (Schneider
et al., 2021). Nelfinavir is a human immunodeficiency virus
protease inhibitor and fractionated radiotherapy for locally
advanced rectal cancer (Hill et al., 2016). Chemokine
receptors C-X-C motif chemokine receptor 4 and C-X-C motif

chemokine receptor 7 are involved in CRC progression, and HIV
drugs targeting C-X-C motif chemokine receptor 4 may inhibit
CRC (Goïta and (Goïta and Guenot, 2022).

Studies have shown that double-stranded DNA viruses in the gut
are mainly phages (Hannigan et al., 2018; Lin and Lin, 2019). The
abundance of phages was significantly higher in azoxymethane-
induced colorectal tumors. It disrupts the intestinal microbiota
balance and induces a specific immune response that exacerbates
colitis through the toll-like receptor 9 and interferon-gamma
pathways. Because antibiotics are often difficult to regulate the
intestinal flora precisely and can interfere with normal intestinal
flora, bacteria will develop gradual antibiotic resistance. Thus,
antitumor therapies targeting phages have distinct advantages.
Bakuradze et al. found that adding phage VA7 to enterotoxin-
producing Bacteroides fragilis-infected CRC cells significantly
decreased bacterial counts and IL-8 levels in the VA7-treated
group compared to untreated infected cells (Bakuradze et al.,
2021). Bacteriophage FNU 1 can decompose, lyse F. nucleatum
biofilms, and play an antitumor role (Kabwe et al., 2019).
Bacteriophage EFA 1 upregulates reactive oxygen species in the
culture system and inhibits HCT116 CRC cell growth (Kabwe et al.,
2021).

It is possible to obtain phage nanoparticles with increased
antibacterial activity through phage display technology by
selecting phages with a high affinity for the target and
combining them with inorganic nanomaterials having elevated
antibacterial activity. For instance, the incorporation of silver
nanoparticles into the phage surface resulted in precise clearance
of Fusobacterium, blocked the expansion of bone marrow-
derived suppressor cells in the tumor microenvironment,
enhanced the host immune response, and prolonged the
survival of CRC mice (Dong et al., 2020). Oral administration
of phage nanoparticles containing irinotecan did not affect the
number of blood cell levels, immunoglobulin and histamine
levels, and liver and kidney function of tumor-bearing animals
indicated that the safety of phage nanoparticles was good (Zheng
et al., 2019). Phages can carry different fragments and have
different effects on the tumor microenvironment. It was found
that bacteriophage M13, which targets carcinoembryonic
antigen, can specifically bind to the carcinoembryonic antigen
in tumor cells, activate antitumor immunity, and substantially
inhibit tumor growth in CRC tumor-bearing mice (Murgas et al.,
2018).

Oncolytic viruses can target cancer cells, release viral particles,
cytokines, and their contents in the tumor cells, induce local
inflammation inside the cells, and play an antitumor role. The
virus uses its protein sequence to stimulate the immune system
through pathogen-associated molecular patterns (Cook and
Chauhan, 2020). Taking the talimogene laherparepvec system as
an example, the investigators knocked out genes related to
neurovirulence and antiviral evasion in VEC, a herpes simplex
virus, and lead-in the single chain variable fragment of
monoclonal antibody to increased talimogene laherparepvec’s
target (Turkington et al., 2020). Studies have shown that the
unmodified reovirus Pelareorep can also treat CRC (Goel et al.,
2020). Oncolytic virotherapy can alter the tumor microenvironment
and improve the efficacy of anti-programmed cell death protein 1
therapy (Ribas et al., 2017).
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3 Metabolites, dietary, and gut
microbiota in colorectal cancer

3.1 Metabolites

Bile acids are mainly synthesized by cholesterol in hepatocytes.
Bile acids synthesized by hepatocytes are primary bile acids. Bile
acids have bidirectional regulation effects on the body. At
physiological concentrations, secondary bile acids have immune
regulation and anti-inflammatory effects on the body, inhibiting
intestinal inflammatory disease progression. High levels of
secondary bile acids in the blood, bile, and feces increase the risk
of cholesterol stones, damage the intestinal epithelium, and induce
excessive proliferation of undifferentiated cells, leading to a
premalignant state.

The metabolites of certain gut microorganisms contain
secondary bile acids and SCFA, which play a role in cell
proliferation. These microbial metabolites can promote colonic
cell proliferation at low concentrations and inhibit cell
proliferation at high concentrations. Bile acids, although
synthesized in the liver, have direct or indirect antibacterial
effects, thereby modulating the composition of the microbiota,
which in turn regulates the size and composition of the bile acid
pool (Liu et al., 2020). Patients with liver diseases such as fatty liver,
fibrosis, cirrhosis, and hepatocellular carcinoma frequently
exhibited intestinal dysbiosis characterized by a significant
increase in aerobic and pro-inflammatory bacteria such as
Enterobacter, Enterococcus, and Clostridium, which can accelerate
production from secondary bile acids. Cholalic acid-fed mice, with a
significant decrease in Firmicutes, the primary SCFA producer, from
the gut. Chic acid-induced micro-dysbiosis impaired intestinal
barrier function and induced low-grade intestinal inflammation,
activating the transcription pathway’s IL-6 signal transducer and
activator and promoting tumor progression (Wang et al., 2019).
Increased bile acid levels induced by a high-fat diet promoted an
increase in 7 α-dehydroxylated bacteria and increased secondary bile
acids with tumor-promoting activity in the colon, particularly
deoxycholic acid (Ocvirk and O’Keefe, 2017). Studies have shown
that members of the Lachnospiraceae Family (Phylum Firmicutes,
Class Clostridia) were significantly increased in the gut microbial
community of the ursodeoxycholic acid-treated group
(Figure 1). Bile acids bind to the receptor to regulate organisms’
physiological response (Winston et al., 2021). Ursodeoxycholic acid
can activate farnesoid X-activated receptor and Takeda G-protein
coupled receptor 5 receptors and regulate the host’s innate immune
response (Winston et al., 2020). Obercholic acid, a novel farnesoid
X-activated receptor agonist, combined with the β-catenin inhibitor
nitazoxanide, can inhibit CRC progression (Yu et al., 2021).

3.2 Dietary

The species and abundance of gut flora varied between CRC and
healthy individuals. The intestinal flora is closely linked to food
intake. Young women with high consumption of sugary drinks were
substantially associated with increased publication rates of colorectal
adenomas (particularly rectal adenomas) (Joh et al., 2021). Mice fed
a high-fructose diet exhibited increased intestinal permeability, a

lower proportion of Bacteroidetes in the gut microbiota, and a
significantly increased proportion of Proteobacteria susceptible to
colorectal tumors; diet feeding with fructose removal and
supplementation could reverse tumor progression (Do et al.,
2018; Nishiguchi et al., 2021). Starch-rich diet can increase the
sulfur mucin content in the intestine and have a protective effect on
the intestinal mucosa (Gabrielli and Tomassoni, 2018). The gut
microbiota can ferment dietary fiber to produce SCFA, such as
acetate, propionate, and butyrate, essential for maintaining intestinal
homeostasis and intestinal epithelial cell health (Wu et al., 2018).

Regarding protein, the intake of red meat and industrially
processed meat raises the risk of CRC in people (Farvid et al.,
2021). In a pooled analysis of data from extensively prospective
studies of Japanese men and women, meat subtype and sex were
associated with CRC risk, and increased beef consumption was
associated with an increased risk of CRC (women) and distal CRC
(men) (Islam et al., 2019). Heme iron is a crucial component of red
meat, and dietary heme influences the microbiota composition and
its diversity, thus leading to dysbiosis. A heme diet reduced the gut
flora α-diversity and altered the gut microbiota composition, with
reduced Firmicutes and increased Proteobacteria (Seiwert et al.,
2020).

A high-fat diet will increase the dietary fat in the intestine, and
the intestinal dietary fat can further regulate the intestinal flora by
screening fatty acid degradation genes and replacing the compound
medium with the fat medium, significantly reducing the overall
abundance of Clostridium (Budu et al., 2022). Microdysbiosis can
activate the monocyte chemoattractant protein-1/C-C motif
chemokine receptor 2 axis, promote the recruitment and
polarization of M2 tumor-associated macrophages, and reduce
SCFA content, leading to intestinal tumor cell proliferation
(Martin-Gallausiaux et al., 2021). A high-fat diet increases the
bile acid levels in the body, stimulates secondary bile acids levels
with tumor-promoting activity in the colon, activates the bile acids-
farnesoid X-activated receptor axis, stimulates the colon, and
increases Wnt family member 2 B expression in fibroblast cells,
thus promoting the formation of tumor immunosuppressive
microenvironment (Zeng et al., 2019).

Furthermore, trace elements in the diet, such as iron, selenium,
magnesium, and calcium, can regulate intestinal microbes and
affect the occurrence or progression of CRC. Iron-deficiency
anemia is a common complication of CRC. Studies have shown
that in patients treated with oral iron, their extratemporal
microbiome is rich in Bacteriaceae and Bacteroides. In contrast,
the intratumoral microbiome is rich in Nocardiaceae,
Intrasporangiaceae, and Brevibacteriaceae families and Prevotella
9, Nocardioides, Kocuria, Brevibacterium, Veillonella, and
Catenibacterium genera (Phipps et al., 2021). Populations with a
high in vivo selenium status have a lower risk of CRC.
Selenoproteins can affect various signaling pathways related to
the pathogenesis of CRC, and play antitumor effects (Peters et al.,
2018). Studies demonstrated that selenium can modulate the
intestinal flora and that the intestinal flora can also influence
the absorption of selenium. Intestinal flora can produce
selenomethionine from metabolizing biological selenium
compounds (Peters and Takata, 2008; Takahashi et al., 2017).
Magnesium intake was associated with the risk of colorectal
adenoma and CRC. Studies showed that high magnesium intake
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may reduce the incidence of CRC in women (Larsson et al., 2005).
During short-term magnesium deficiency, the content of
Bifidobacteria and Lactobacilli in the intestine is low, leading to
increased intestinal permeability and inflammation. Mice that
were fed a regular magnesium-containing diet showed no signs
of inflammation in the intestine (Pachikian et al., 2010). Calcium is
an effective chemopreventive agent for colorectal adenoma
(Huang et al., 2020; Emami et al., 2022). Calcium consumption
can reduce the risk of death in CRC patients (Yang et al., 2019).
Studies have shown that a low calcium diet can lead to intestinal
microbiota dysbiosis, and high calcium supplement can restore the
ecological imbalance of intestinal flora, increase the abundance of
L. reuteri, Lactobacillus plantarum, Firmicutes, Lactobacillus
bulgaricus, Streptococcus thermophilus, and Lactobacillus, and
play an antitumor role (Gomes et al., 2015; Hua et al., 2019).

4 Conclusion

This paper summarized the complex interactions between
antitumor agents and the gut microbiota in CRC (Figure 1).
Clinicians and clinical pharmacists must realize that
antineoplastic drugs affect the types and abundance of
microorganisms in the gut microbiota; gut microbes can also
change the effects of drugs, leading to impaired health outcomes.
Simultaneously, the discipline of pharmaceutical microbiology is
emerging, and clinical trials in this area have already underway.
Understanding how the microbiota metabolizes drugs or
improves the efficacy of anticancer therapy will significantly
impact the clinical practice of drugs and generate novel ideas
for regulating the intestinal microbiota and enhancing the
efficacy of drug therapy.
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