AUTHOR=Wu Leilei , Chen Yonglin , Duan Kangying TITLE=A novel non-linear approach for establishing a QSAR model of a class of 2-Phenyl-3-(pyridin-2-yl) thiazolidin-4-one derivatives JOURNAL=Frontiers in Pharmacology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1263933 DOI=10.3389/fphar.2023.1263933 ISSN=1663-9812 ABSTRACT=
In this investigation, we aimed to address the pressing challenge of treating osteosarcoma, a prevalent and difficult-to-treat form of cancer. To achieve this, we developed a quantitative structure-activity relationship (QSAR) model focused on a specific class of compounds called 2-Phenyl-3-(pyridin-2-yl) thiazolidin-4-one derivatives. A set of 39 compounds was thoroughly examined, with 31 compounds assigned to the training set and 8 compounds allocated to the test set randomly. The goal was to predict the IC50 value of these compounds accurately. To optimize the compounds and construct predictive models, we employed a heuristic method of the CODESSA program. In addition to a linear model using four carefully selected descriptors, we also developed a nonlinear model using the gene expression programming method. The heuristic method resulted in correlation coefficients (