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In this investigation, we aimed to address the pressing challenge of treating
osteosarcoma, a prevalent and difficult-to-treat form of cancer. To achieve
this, we developed a quantitative structure-activity relationship (QSAR) model
focused on a specific class of compounds called 2-Phenyl-3-(pyridin-2-yl)
thiazolidin-4-one derivatives. A set of 39 compounds was thoroughly
examined, with 31 compounds assigned to the training set and 8 compounds
allocated to the test set randomly. The goal was to predict the IC50 value of these
compounds accurately. To optimize the compounds and construct predictive
models, we employed a heuristic method of the CODESSA program. In addition to
a linear model using four carefully selected descriptors, we also developed a
nonlinear model using the gene expression programming method. The heuristic
method resulted in correlation coefficients (R2) of 0.603, 0.482, and 0.107 for R2

cv

and S2, respectively. On the other hand, the gene expression programming
method achieved higher R2 and S2 values of 0.839 and 0.037 in the training
set, and 0.760 and 0.157 in the test set, respectively. Both methods demonstrated
excellent predictive performance, but the gene expression programming method
exhibited greater consistency with experimental values. The successful nonlinear
model generated through gene expression programming shows promising
potential for designing targeted drugs to combat osteosarcoma effectively.
This approach offers a valuable tool for optimizing compound selection and
guiding future drug discovery efforts in the battle against osteosarcoma.
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1 Introduction

Osteosarcoma is a malignant tumor that arises from mesenchymal tissue and is
characterized by the direct production of bone or osteoid tissue by rapidly proliferating
tumor cells (Ghashghaeinia et al., 2019; Yang et al., 2023). It is the most common primary
malignant bone tumor and exhibits a high degree of malignancy, rapid growth, and early
metastasis. Unfortunately, early diagnosis of osteosarcoma is challenging, and the prognosis
is generally poor. The statistical incidence is estimated to be around 4–5 cases per 1 million
individuals. Osteosarcoma primarily affects individuals in their teenage years, with the
average median age of diagnosis being 15 years. The highest occurrence is observed between
the ages of 15 and 20, with 60% of cases occurring in individuals below the age of 25. Patients
over the age of 40 with osteosarcoma are commonly associated with Paget’s disease of bone
or have a history of radiotherapy. Conventional osteosarcomas, known as classic
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osteosarcomas, predominantly originate in the bone marrow and
account for approximately 80% of all osteosarcoma cases. They are
further classified into sub-types including osteogenic (50%),
chondrogenic (25%), and fibrogenic (25%). Additionally, there
are rare subtypes of osteosarcoma such as capillary dilatation,
small cell, parabone, periosteal, highly malignant surface
osteosarcoma, low malignant central osteosarcoma, multicenter
osteosarcoma, and secondary osteosarcoma (associated with
Paget’s disease). Traditional osteosarcomas mainly occur in the
long bones of the extremities, particularly around the knee joint,
such as the distal femur and proximal tibia. Approximately 91% of
cases are located in the metaphysis (near the growth plate), while 9%
occur in the diaphysis (shaft of the bone). Atypical osteosarcomas
can also affect non-long bones such as the skull, pelvis, mandible,
and vertebrae, and their incidence tends to increase with age. The
common initial symptoms of osteosarcoma include pain, swelling,
the presence of a painful mass, and inflammatory reactions. As the
disease progresses, there may be varying degrees of joint movement
limitation and the occurrence of pathological fractures.

Currently, the standard treatment approach for osteosarcoma
involves a combination of preoperative neoadjuvant chemotherapy,
surgical resection, and postoperative adjuvant chemotherapy. The
primary first-line chemotherapy drugs utilized for osteosarcoma
include methotrexate (MTX) (Azadian et al., 2023), doxorubicin
(ADM) (Hua et al., 2023), cisplatin (DDP) (Kucan et al., 2023),
ifosfamide (IFO) (Almesned et al., 2023), vincristine (VCR),
epirubicin (EPI) (Esparragosa Vazquez et al., 2023),
cyclophosphamide (CTX) (Zhang et al., 2023), and etoposide
(VP-16) (Wang et al., 2010), among others. Among these, MTX,
ADM, DDP, and IFO are the most commonly employed drugs.
However, in the clinical practice of osteosarcoma chemotherapy, it
has been observed that these drugs often come with significant side
effects. For instance, methotrexate and cisplatin can lead to kidney
damage, doxorubicin can cause cardiac inhibition, and
chemotherapy drug resistance is a common issue. Therefore,
there is an urgent need to develop and design new, more
effective drugs specifically for osteosarcoma that can overcome
these limitations and minimize adverse effects.

In vitro studies using osteosarcoma cell lines have demonstrated
the cytotoxic effects of 2-Phenyl-3-(pyridin-2-yl) thiazolidin-4-one
derivatives (Deng et al., 2022). These compounds have shown potent
antiproliferative activity, promoting apoptotic cell death and
inhibiting tumor cell migration and invasion. Furthermore, in
vivo studies utilizing osteosarcoma xenograft models have shown
promising results, with reduced tumor growth and improved
survival rates following treatment with these derivatives.

The potential advantages of 2-Phenyl-3-(pyridin-2-yl)
thiazolidin-4-one derivatives for osteosarcoma therapy include
their ability to target multiple pathways involved in tumor
progression and their favorable toxicity profiles compared to
conventional chemotherapeutic agents. However, challenges
remain in terms of optimizing their pharmacokinetic properties,
understanding their precise molecular targets, and investigating
potential drug resistance mechanisms.

Quantitative structure-activity relationship (QSAR) (Feng et al.,
2023; Karaduman and Kelleci Celik, 2023) is a method of drug
research that uses mathematical models to describe the relationship
between molecular structure and certain biological activities of

molecules. This method has been widely used in drug activity
prediction and the development of new drugs. 2D QSAR is a
computational approach used in drug discovery to establish a
relationship between the chemical structure of a molecule and its
biological activity. It involves the analysis of molecular descriptors,
which are numerical representations of various structural and
physicochemical properties of molecules, and their correlation
with the observed biological activities or properties. In 2D QSAR,
the focus is primarily on two-dimensional representations of
molecules, such as molecular graphs or simplified molecular
input line entry system (SMILES) notations. By focusing on two-
dimensional molecular descriptors such as logP, molecular weight,
and various counts of atoms and functional groups, 2D QSAR
provides a computationally efficient approach that does not
require the three-dimensional structure of the molecules. This
makes it especially useful for handling large datasets and
exploring vast chemical spaces. Additionally, the simplicity of 2D
QSAR allows for easier interpretation and visualization of the
relationships between structural features and activity, aiding in
the understanding of underlying mechanisms. While it might not
capture the full complexity of molecular interactions, the speed,
simplicity, and interpretability of 2D QSAR make it a valuable tool
in early-stage drug discovery, virtual screening, and prioritization of
compounds for further experimental analysis. This 2D QSAR model
will help for further new 2-Phenyl-3-(pyridin-2-yl) thiazolidin-4-
one derivatives finding. To found the more prediction QSAR model,
non-linear method was used in our work.

Gene Expression Programming (GEP) (Ipek et al., 2022) stands out
as a nonlinear approach for QSAR modeling, offering significant
advantages. Its automated feature generation capability unveils
intricate descriptor-activity relationships often overlooked by manual
selection. GEP adeptly captures nonlinear interactions among
descriptors, enabling the modeling of complex molecular behaviors.
This method’s adaptability to noisy data ensures robustness in handling
complex biological responses. Additionally, GEP’s capacity to
incorporate domain knowledge and apply regularization reduces
overfitting risks, enhancing predictive accuracy. Furthermore, the
interpretability of the evolved expressions provides insights into
molecular mechanisms. GEP’s versatility, scalability, and potential for
scientific discovery make it a powerful choice for QSAR modeling,
addressing the limitations of linear methods and offering a
comprehensive tool for understanding complex molecular activities.

2 Methods

The study referenced in literature involved a dataset of
39 compounds, along with their corresponding IC50 values (Deng
et al., 2022). To simplify the analysis, the logarithm of these values
was calculated. The structures of all the compounds, along with their
log (IC50) values and the predicted values, are presented in Table 1.
To assess the predictive performance of the model, the dataset was
randomly divided into two subsets: a training set comprising
31 structures used for constructing the model, and a test set
containing 8 structures used to evaluate the model’s prediction
capabilities. This division allowed for the validation of the
model’s effectiveness in predicting the IC50 values of unseen
compounds.
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TABLE 1 Experimental and calculated log(IC50) of 28 compounds (HM and GEP).

2a-o

Compd R2 R1 X IC50(nM)

2a 3-F H S 32.4

2b 2-F H S 34.1

2c 3-CF3 H S 29.1

2d H H S 15.9

2e 3-CH3 H S 93.2

2f 2-OCH3 CH3 S 45.1

2g 2-OC2H5 CH3 S 71.6

2 h 3-F-2-OCH3 H S 26.2

2i 5-F-2-OCH3 H S 71.1

2j 2,4-Di-OCH3 H S 8.8

2 k 2-OCH3-5-CH3 H S 90.4

2L 2-OCH3-5-CH3 H S 300.2

2o 3-F H O 319.6

5a-f

Compd. R2 R3 R1 n IC50(nM)

5b 3-cyclopropyl H H 3 298.8

5c 4-cyclopropyl H H 3 217.1

5f 3-ethynyl H H 3 149.2

5g 3-ethynyl-5-OCH3 H H 1 291.6

5 h 2-OCH3 H 2 40.8

(Continued on following page)
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TABLE 1 (Continued) Experimental and calculated log(IC50) of 28 compounds (HM and GEP).

2a-o

5i 2-OCH3 H 3 23.5

5j 2-OCH3 F H 3 40.9

5 k 2-OCH3 CH3 H 3 16.2

5L 4-cyclopropyl H CH3 3 191.3

5 m 3-cyclopropyl H CH3 3 294.1

6a-h,7a-k,8a-c

Compd. A R3 R1 C IC50(nM)

6c H H 109.7

6g H H 19.7

6 h H H 14.2

7a H 78.6

(Continued on following page)
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TABLE 1 (Continued) Experimental and calculated log(IC50) of 28 compounds (HM and GEP).

2a-o

7c H CH3 931.9

7e H H 285.5

7f H H 46.0

7i H H 91.7

7j H H 97.3

7 k H H 298.5

8b H H 429.5

8c H H 60.3

(Continued on following page)
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The initial step involved plotting the structures of the
39 compounds using ChemDraw software. Subsequently, these
structures were imported into HyperChem software (Froimowitz,
1993) for geometry optimization, employing the MM + molecular
mechanical force field and semi-empirical AM1 approaches. The
optimization process aimed to refine the molecular geometry and
ensure its stability. Afterwards, the MOPAC6.0 (Gieseking, 2021)
program was utilized to generate the. arc, .end, and. mno files for
each compound. These files contain important information about

the molecular properties and characteristics. To further analyze and
predict the properties of the compounds, the exported files were then
submitted to the CODESSA software (Katritzky et al., 2006). This
software allowed for the computation and classification of various
molecular descriptors, which were categorized into three classes:
electrostatic, topological, and quantum mechanical descriptors.
These descriptors provide numerical information about specific
features of the molecular structure. By establishing an equation
based on these molecular descriptors, subsequent predictions could

TABLE 1 (Continued) Experimental and calculated log(IC50) of 28 compounds (HM and GEP).

2a-o

8f-i

Compd. A IC50(nM)

8f 105.4

8g 36.4

8 h 33.2

8i 19.6
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be made. The derived equation allowed for the correlation between
the chemical structure and the desired properties, facilitating the
prediction of important characteristics for the compounds under
investigation.

2.1 The linear model by heuristic method

The heuristic method employed an optimal multiple linear
regression approach to create a linear model, establishing
correlations between the descriptors calculated by CODESSA and
the biological activity of the compounds. The primary objective was
to pinpoint the descriptor that best represents the relationship
between the chemical structure and biological activity. To gauge
the model’s accuracy, several statistical parameters were utilized.
The regression coefficient (R2) was employed to evaluate the
goodness of fit, indicating the proportion of variation in the
biological activity that can be explained by the model. Cross-
validation regression coefficients (R2) were used to assess the
model’s performance on unseen data, providing an estimate of its
predictive ability. Additionally, the standard deviation (S2) was
calculated to estimate the data dispersion around the fitted line.
The linear model generated by the heuristic method involved four
descriptors, which are detailed in Table 2. Descriptor selection
processes using heuristic algorithms typically involve the
following steps: Start with a pool of available descriptors that can
be calculated for the given dataset of chemical compounds. Define a
scoring function or criterion that quantifies the relevance or
importance of each descriptor in relation to the property or
behavior you are trying to predict or analyze. Begin with an
initial subset of descriptors. This subset can be chosen randomly,
using domain knowledge, or through other methods. Use a heuristic
algorithm, such as a genetic algorithm, simulated annealing, or
particle swarm optimization, to iteratively refine the descriptor
subset. This involves selecting a subset of descriptors, evaluating
their performance using the scoring function, and then modifying
the subset to improve the score. If using a genetic algorithm, employ
crossover and mutation operations to create new descriptor
combinations based on the existing ones. This introduces
diversity and explores different combinations. Evaluation:
Calculate the fitness or score of each descriptor subset using the
defined scoring function. This indicates how well the selected
descriptors predict the property of interest. Based on the fitness
scores, select promising descriptor subsets for the next iteration.
Heuristic algorithms often favor subsets with higher scores, but they
might also allow some lower-scoring subsets to maintain diversity

and explore different options. Define stopping conditions, such as a
maximum number of iterations, reaching a desired level of
performance, or observing diminishing improvements. Once the
algorithm terminates, the final selected descriptor subset is obtained.
This subset is expected to contain a limited number of relevant
descriptors that effectively capture the underlying patterns in the
data. These descriptors were selected based on their strong
correlation with the biological activity, as determined by the
multiple linear regression analysis.

2.2 The nonlinear model by gene expression
programming

GEP is a computational method that incorporates five essential
elements (Lakshmi et al., 2022). The first element is the termination
condition, which determines the stopping criterion for the
algorithm’s search for solutions. It defines when the algorithm
should halt its iterative process.

The second element is the fitness function, which assesses and
quantifies the quality or performance of each individual in the
population. The fitness function serves as the evaluation metric
for determining the reproductive success of individuals.

The third element is the functional set, which consists of
mathematical functions like subtraction (−), division (/), and a
set of mathematical constants (Q). These functions and constants
are used in constructing expression trees, which are a key
component of GEP.

The fourth element is the controlling parameter, which
encompasses various parameters that influence the behavior and
characteristics of the algorithm. Examples of controlling parameters
include population size, mutation rate, and selection pressure. These
parameters guide the evolution process and impact the exploration
and exploitation balance within the population.

The fifth and final element is the terminating set, which is
represented by letters (a, b, c, etc.). This set defines the variables or
terminal symbols used in the expression trees. Terminal symbols are
the building blocks of the expression trees and represent the inputs
or variables in the mathematical equations.

The GEP algorithm starts by generating chromosomes
randomly, which represent the genetic information. These
chromosomes are then transformed into expression trees (ETs),
and their fitness or health is evaluated using the fitness function.
Superior individuals are selected for reproduction, and their genetic
material is combined through processes like crossover and mutation
to create new chromosomes in subsequent generations.

TABLE 2 Selected descriptors and statistical parameters.

Descriptor Physical-chemical meaning Coefficient T-test

Constant — −9.023 3.528

MSA Molecular surface area −1.095e-03 4.136

ANRIFN Avg nucleoph. react. index for a N atom 8.299 4.278

FFPQC FPSA-2 Fractional PPSA (PPSA-2/TMSA) [Quantum-Chemical PC] 6.249e-02 3.551

TM2RE Tot molecular 2-center resonance energy 4.720 2.719

Frontiers in Pharmacology frontiersin.org07

Wu et al. 10.3389/fphar.2023.1263933

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1263933


The iterative process continues until a satisfactory solution,
determined by the termination condition, is found. During the
decoding phase of GEP, each character in the gene is read from
left to right and based on the grammar rules defined by the
functional set and terminating set, gene maps are generated to
construct the corresponding expression trees. These expression
trees represent the mathematical equations that form the
solutions sought by the GEP algorithm.

3 Results

3.1 The linear QSAR model of HM

In order to determine the optimal number of descriptors that
effectively describe the activity log (IC50) value of compounds, a
heuristic method was employed. The process involved incrementally
adding descriptors from 1 to 8 and evaluating the resulting statistical
outcomes. It was observed that upon adding an additional descriptor,
there were no significant changes in the statistical results, indicating that
the appropriate number of descriptors had been reached. A total of
590 descriptors were calculated using the CODESSA project. Figure 1
depicts the relationship between the number of descriptors and the
values of R2 and R2

CV. It can be observed that as the number of
descriptors increased, both R2 and R2

CV exhibited a steady upward
trend. Additionally, the value of S2 decreased, indicating improved
model performance. It is important to note that in QSAR studies, the
number of molecular descriptors typically should not exceed 1/5 of the
sample size. Based on the results obtained from the heuristic method,
four descriptors with higher correlations were selected for further
analysis. To ensure the independence of these descriptors, their
pairwise correlation coefficients were examined and presented in
Table 3. It was found that the coefficient between any two

descriptors was lower than 0.8, indicating their independence and
suitability for the model. The linear model constructed using these
four descriptors is illustrated in Figure 2, providing a visual
representation of the relationships between the descriptors and the
activity log(IC50) values of the compounds.

With the increase in the number of descriptors, the performance
metrics of the QSAR model display distinct patterns. Progressing
from a single descriptor to four descriptors, the model witnesses
incremental improvements in both crossvalidated R2 and R2 values,
while simultaneously observing a decrease in both the F-statistic and
s2 values. In the end, the utilization of four descriptors leads to a
significant performance improvement, resulting in crossvalidated R2

and R2 values of 0.482 and 0.603, respectively. These values reflect
the model’s enhanced ability to explain and predict the observed
outcomes. Additionally, a consistent F-statistic of 10.80 underscores
the robustness of the model, while the residual variance (s2)
decreases to a notable 0.107. These outcomes underscore the
effectiveness of the four selected descriptors in substantially
enhancing the model’s predictive accuracy and explanatory
power. The following equation highlights the representation of
the optimal model based on the integration of these four descriptors.

log IC50( ) � −9.023 − 1.095e − 03MSA + 8.299ANRIFN + 6.249e

− 02FFPQC + 4.720TM2RE

FIGURE 1
Influence of the number of descriptors on the R2, R2

CV, and S2.
With number of descriptors increasing, R2 and R2

CV increasing, at the
same time, S2 decreasing. Combine R2, R2

CV, and S2, the four
descriptors were chosen for future study.

TABLE 3 Correlation matrix of the descriptors in the model.

MSA ANRIFN FFPQC TM2RE

MSA 1.000 −0.072 0.474 −0.720

ANRIFN −0.072 1.000 0.071 −0.104

FFPQC 0.474 0.071 1.000 −0.702

TM2RE −0.720 −0.104 −0.702 1.000

FIGURE 2
Plot of experimental and predicted log(IC50) values by heuristic
method. Red line is measured values of all compounds, blue line is
predicted values of HM of all compounds.
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3.2 The non-linear QSAR model of GEP

The training set and test set were utilized as input in the automatic
problem solver (APS, 3.0 2050, http://www.gepsoft.com/support/
request.asp) program, utilizing the four selected descriptors as
parameters. The APS program employed the training data to model
the function and underwent multiple rounds of evolution to optimize
the solution. This process led to the establishment of a nonlinear model
for log(IC50), as illustrated in Figure 3. Using the GEP algorithm, the
expression tree for the four parameters was computed. The expression
tree was then transformed into a nonlinear mathematical equation,
which can be expressed as follows:

log IC50( ) � (FFPQC + (((1/ MSA( ))* tan(MSA))/(1/(19.840)))))
+ (((1/((tan −2.954( ) − FFPQC))) + 0.153)
+ (tan (((2MSA)*(9.984/ −9.910 + TM2RE( )))
+ (1/((8.277/(MSA/( FFPQC/ANRIFN( ) − (1/ ANRIFN( )))))))
+ (1/((MSA* tan((((MSA/d 2[ ])*ANRIFN) + (1/ MSA( )))))))

In the context of this GEP model, the best fitness and maximum
fitness scores were determined to be 962.835 and 1000, respectively.
The chosen functions for this model encompass addition,
subtraction, multiplication, division, tangent tan, and inverse.
The configuration entailed 100 chromosomes, each comprising
5 genes. The head size was set at 8, with a gene size of 26, and
the chosen linking function was addition. Other parameters were
maintained at their default values. The most optimal GEP model
yielded R2 values of 0.839 for the training set and 0.760 for the test
set. Correspondingly, the associated S2 values for the training and
test sets were calculated as 0.037 and 0.157, respectively.

3.3 Validation of compound with protein

The 2j in Table 1 shows the lowest IC50 value, so this compound
was selected for the future research and development. To explain
relationship between the compound with osteosarcoma target (PDB
code: 4JT5) and cancer, we have done docking study. In our study, we
used suflex-dock method of software SYBYL-X 2.1.1 for docking
work. Suflex-dock is a flexible docking program based on genetic
algorithms. The 2j compound has higher dock score (9.112), and an
H-bonds has found which is animo acid VAL-2240. Therefore, 2j
compound can against osteosarcoma and cancer (Figure 4).

4 Discussion

During the evaluation of the QSAR model, commonly used
indicators include the R2 and S2. In the GEP model, the R2 values
for the training set are 0.839, and for the test set, they are 0.760. The
corresponding S2 values for the training and test sets are 0.037 and
0.157, respectively. In comparison, the linear model constructed using
the HM method yields R2 values of 0.603 and S2 values of 0.107.

The GEP model demonstrates higher correlation coefficients for
both the training and test sets compared to the HM model.
Furthermore, the GEP model exhibits lower average errors in both
the training and test sets compared to theHMmodel.When examining
the curves of log (IC50) fitted by the two algorithms (Figures 2, 3), it
becomes apparent that the GEP method provides superior fits for

certain experimental values. The GEP model demonstrates a more
pronounced ability to fit the data than the HM model.

Molecular surface area refers to the total surface area of a molecule,
which includes both its external and internal surfaces. It is an important
physical property that plays a role in various molecular processes, such
as solubility, permeability, and interactions with other molecules. A
negative coefficient for molecular surface area in our QSAR model
implies that larger molecules, with a greater surface area, are associated
with lower activity. This may be due to factors such as reduced
solubility, decreased permeability, or limited interaction with
biological targets (Tomalia et al., 1990).

The average nucleophilic reaction index for a nitrogen (N) atom
(Hudson, 2010)is a descriptor that quantifies the nucleophilicity of a
nitrogen atom in a molecule. It represents the tendency of the
nitrogen atom to donate electrons in a chemical reaction. A positive
coefficient associated with the average nucleophilic reaction index
suggests a positive correlation between the nucleophilicity of the
nitrogen atom and the activity of interest. This implies that higher
nucleophilicity of the nitrogen atom is linked to decreased activity of
the specific QSAR model.

FPSA-2 (Fractional PPSA) (Zhang et al., 2013) is a molecular
descriptor used in quantitative structure-activity relationship
studies. It represents the ratio of PPSA-2 (Partial Polar Surface
Area of atom type 2) to TMSA (Total Molecular Surface Area) and is
calculated using quantum-chemical calculations. The FPSA-2
descriptor can be utilized to assess the relationship between the
fractional polar surface area and the activity or property of interest
in a QSAR analysis. This positive correlation implies that as the
fractional polar surface area contributed by atom type 2 increases
relative to the total molecular surface area, the activity or property of
interest tends to increase as well. It indicates that the presence and
exposure of polar functional groups associated with atom type 2may
be associated with decrease activity or more favorable properties.

The “Total molecular 2-center resonance energy” is a descriptor
that quantifies the degree of resonance stabilization within a molecule

FIGURE 3
Predicted log(IC50) values versus experimental values by the gene
expression programming. Red line is measured values of all
compounds, blue line is predicted values of HM of all compounds.
Most compounds have good predicted log(IC50) which agree
with measured log(IC50) values.
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(Kobayashi et al., 2019). This descriptor reflects the energy associated
with the redistribution of electron density resulting from the
delocalization of π bonds or lone pairs within a molecule. In the
context of a QSAR model, a positive coefficient associated with the
“total molecular 2-center resonance energy” suggests a direct positive
correlation between the resonance energy and the activity being studied.
This implies that as the resonance energy of the molecule increases, the
activity or property of interest tends to decrease. This outcome indicates
that the presence of delocalized π bonds or lone pairs, which contribute
to resonance stabilization, may lead to lower activity in the molecule.
Resonance phenomena can influence various factors, including
electronic distribution, charge density, and molecular stability, all of
which can impact molecular interactions and reactivity. Therefore,
understanding the role of resonance energy in a QSAR model can
provide valuable insights into the relationships between molecular
structure and activity.

Total 39 compounds were chosen from literature. ANRIFN is
one of four descriptors which were selected in this work. All
39 structures were joined in descriptors finding. Descriptor has
the highest efficient, so it has the great influence for activity. Based
on the absolute values of the coefficients in the equation, the impact
on the model can be ranked in the following order: ANRIFN >
TM2RE > FFPQC > MSA. This ranking suggests that ANRIFN has
the most significant effect on the model, followed by TM2RE,
FFPQC, and MSA.

Both the HM and GEP algorithms have demonstrated strong
predictive capabilities. However, upon conducting a
comparative analysis of the results, it has been determined
that GEP is better suited for the task at hand. The QSAR
model developed using GEP incorporates nonlinear functions,
allowing it to capture more complex relationships when
compared to the linear functions generated by HM. While
implementing the GEP algorithm may involve additional

complexity due to genetic mutation and inversion of
functional operations, it has yielded satisfactory results.
Despite the challenges associated with GEP, it has proven to
be capable of establishing a more accurate prediction model
compared to HM. The statistical quality of the QSAR models,
including their robustness and predictability, has been
rigorously evaluated using various statistical methods. These
results have yielded favorable results, indicating that the models
exhibit desirable qualities in terms of accuracy, reliability, and
their ability to predict the activity or properties of compounds.
Detailed information and methodologies concerning the
statistical analysis can be found in the referenced study.

5 Conclusion

Upon comparing the performance of HM and GEP, it becomes
evident that GEP has constructed a significantly more accurate
prediction model. The results show that HM achieved values of
0.603, while GEP achieved notably higher values of 0.839 and 0.760,
respectively. These superior values indicate the advanced predictive
capability of the GEP model. Through the application of the
nonlinear GEP model, crucial elements that directly influence the
IC50 value have been identified. These elements play a vital role in
the selection of new molecules for further investigation. The study
highlights the molecule’s significant impact on determining its IC50

value, allowing for potential modifications of the molecular structure
to influence the IC50 value accordingly. In comparison to HM, the
GEPmodel excels in terms of accuracy, enabling the identification of
key elements that influence the IC50 value. This newfound
understanding empowers researchers to make targeted
modifications to molecular structures and thus manipulate the
IC50 value. As a result, these findings contribute to the efficient

FIGURE 4
Compound 2j binding with osteosarcoma target (PDB code: 4JT5). The docking score (9.112), and an H-bonds of 2j compound with amino acid
residue VAL-2240.
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utilization of resources and lead to a reduction in testing efforts,
ultimately enhancing the drug discovery process.
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