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Background: Colorectal cancer (CRC) is one of the most prevalent cancer types
globally. A survival paradox exists due to the inherent heterogeneity in stage II/III CRC
tumor biology. Ferroptosis is closely related to the progression of tumors, and
ferroptosis-related genes can be used as a novel biomarker in predicting cancer
prognosis.

Methods: Ferroptosis-related genes were retrieved from the FerrDb and KEGG
databases. A total of 1,397 samples were enrolled in our study from nine
independent datasets, four of which were integrated as the training dataset to
train and construct the model, and validated in the remaining datasets. We
developed a machine learning framework with 83 combinations of
10 algorithms based on 10-fold cross-validation (CV) or bootstrap resampling
algorithm to identify themost robust and stablemodel. C-indice and ROC analysis
were performed to gauge its predictive accuracy and discrimination capabilities.
Survival analysis was conducted followed by univariate and multivariate Cox
regression analyses to evaluate the performance of identified signature.

Results: The ferroptosis-related gene (FRG) signature was identified by the
combination of Lasso and plsRcox and composed of 23 genes. The FRG signature
presentedbetter performance thancommonclinicopathological features (e.g., age and
stage), molecular characteristics (e.g., BRAF mutation and microsatellite instability) and
several published signatures in predicting the prognosis of the CRC. The signature was
further stratified into a high-risk group and low-risk subgroup, where a high FRG
signature indicated poor prognosis among all collected datasets. Sensitivity analysis
showed the FRG signature remained a significant prognostic factor. Finally, we have
developed a nomogram and a decision tree to enhance prognosis evaluation.

Conclusion: The FRG signature enabled the accurate selection of high-risk stage
II/III CRC population and helped optimize precision treatment to improve their
clinical outcomes.
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Introduction

Colorectal cancer (CRC) is a common and deadly disease with
147,950 new cases estimated in 2020 (Siegel et al., 2020; Mi et al., 2023).
Early detection through regular screening, effective treatment options
such as adjuvant chemotherapy and targeted therapies, and promoting
healthy lifestyle choices can all help reduce the CRC recurrence risk and
improve survival rates (Dekker et al., 2019). The pathological staging at
the time of diagnosis is a crucial determinant of both the recurrence risk
and survival (Jeffery et al., 2019).Meanwhile, stage II/III CRC represents
a significant proportion, accounting for about 70% of all CRC cases (Liu
et al., 2022). Unfortunately, even with curative resection, 30–40% of the
patients will experience recurrence, which can significantly impact their
survival rates (Jeffery et al., 2019). More importantly, a survival paradox
exists for patients with stage IIB/IIC and IIIA CRC, which cannot be
well explained by traditional clinicopathological features or molecular
signatures (Kim et al., 2015; Kim et al., 2019). Meanwhile, evidence in
previous studies showed that patients who routinely received adjuvant
chemotherapy after surgery did not respond equally even with the same
stage (Shiovitz et al., 2014). Therefore, there is still a need to establish a
novel recurrence-related prognostic model to identify the high-risk
population of stage II/III CRC for clinical decision-making.

Recent studies have brought light to various molecular features in
CRC that have been highly correlated with the prognosis and therapy
response. Notably, these features include CMS classification, genomic
alterations such as TP53, KRAS, and BRAF mutation, microsatellite
instability (MSI), and tumor mutational burden (TMB), which have
been recognized as relatively reliable biomarkers (Dienstmann et al.,
2017; Dienstmann et al., 2019; Chong et al., 2022). The
immunohistochemistry technique, particularly the multiplex
immunohistochemistry or immunofluorescence (mIHC/IF) method,
is frequently used to aid in pathology diagnosis as it reduces inter-
observer variability and has the ability to label multiple markers per
tissue section. However, it is important to point out that one potential
disadvantage of mIHC is that the number of markers that can be
simultaneously labeled is typically limited, usually between 3 and 7,
which may not capture the full complexity of the biomolecular
interactions underlying the disease pathology (Tan et al., 2020). It is
worth mentioning that the CMS classification, which employs bulk
RNA-seq data to stratify CRC patients into four subtypes, has emerged
as a highly effective tool for identifying strong prognostic effects for both
recurrence and survival, warranting further attention and analysis
(Guinney et al., 2015; Stintzing et al., 2019).

Several molecular models have been developed to predict the
recurrence and survival of stage II/III CRC, including lncRNA,
hallmark-based, immune-based, methylation-based, and
epithelial–mesenchymal transition (EMT)-related signatures, among
others (Li et al., 2020a; Chong et al., 2021; Liu et al., 2022; Ren et al.,
2022; Li et al., 2023). Ferroptosis plays a critical role in the development
of CRC through several mechanisms, such as the build-up of lipid
peroxides, disruption of the balance between glutathione and
glutathione peroxidase 4, and disturbances in iron homeostasis
(Song et al., 2023). Accumulating evidence has shown that the
induction of ferroptosis in CRC successfully eliminates cancer cells

resistant to other modes of cell death (Wang et al., 2022a). Several
studies also established ferroptosis-related gene (FRG) or lncRNA
signatures to predict stage II/III CRCs recurrence or prognosis (Wu
et al., 2021; Yu et al., 2021; Du et al., 2022). However, the performance of
these molecular models in prediction was different, and several studies
did not emphasize sufficient validation with multiple datasets and
attempt at the multiple modeling algorithm. The modeling
algorithm combination should be further fine-tuned, and the
validation procedure for the signature should be intensified to
improve the credibility of the model.

Accordingly, the aim of the present study was to construct an
mRNA expression signature using FRGs to identify patients at risk of
relapse via a 10-fold and bootstrap machine learning framework. The
constructed signature was also validated in five independent datasets
and compared with clinical traits and molecular features and published
signatures. Sensitivity analysis was performed to test the performance of
the signature. A nomogram and decision tree, which integrated clinical
and molecular features with the signature, were established to improve
clinical outcomes and guide clinical practice.

Materials and methods

Data collection and preprocessing

The overall workflow of the study is shown in Figure 1. Gene
expression data and corresponding clinical features of stage II/III CRC
samples were collected from publicly available datasets of the NCBI
GEO (https://www.ncbi.nlm.nih.gov/geo/), cBioPortal (https://www.
cbioportal.org/), and TCGA (https://cancergenome.nih.gov/)
database. Seven microarray datasets from GEO (GSE14333,
GSE37892, GSE39582, GSE103479, GSE29621, GSE92921, and
GSE12945) were sequenced by using Affymetrix HG-U133 Plus 2.
0 Array, and TCGA (the combination of TCGA-COAD/READ) and
MSK-READ datasets were produced from Illumina high-throughput
sequencing platform. A total of 1,397 samples enrolled in the
establishment and validation of the model met the following criteria:
1) primary tumor in colorectum; 2) with clinical information and gene
expression data; and 3) stage II/III in the AJCC staging system.

Four cohorts (GSE14333, GSE37892, GSE39582, and TCGA-
CRC, 1,000 samples) of the total patients were combined as the
training dataset. The other five cohorts were used as independent
validation datasets. The combined gene expression data in the
training dataset was collected from the study of Guinney et al.
(2015). Careful data preprocessing before the merge was
implemented to address the batch effect among datasets due to
the different platforms, labs, and time points. The raw data of the
four GEO validation datasets were processed by the robust
multiarray averaging (RMA) algorithm with ‘affy’ package, and
the duplicate probes were merged via the median number. TCGA
RNA FPKM format sequencing data were curated from UCSC Xena
(https://xenabrowser.net/datapages/). TCGA-COAD/READ data
were merged after removing the batch effect by Combat
algorithm via “sva” package. Then, they were converted into
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TPM format and further log-2 transformed. The log-2 transformed
RNA-seq data from theMSK dataset were collected from cBioPortal.
All gene expressions were transformed into Z-score among samples
when training the model.

Acquisition and screening of ferroptosis-
related genes

We obtained FRGs from the public databases FerrDb (http://
www.zhounan.org/ferrdb/current/) and KEGG. A total of 846 RNAs
were obtained, including those from the driver, suppressor, marker,
and unclassified categories (Supplementary Table S1). After

removing duplicates, a total of 546 RNAs remained. Since low-
expressed or non-varying genes usually represent noise, the
transcriptome data in the training dataset were downloaded with
nearly 6,000 genes by the largest median absolute deviation (MAD).
These genes were measured by at least one probeset in all datasets,
and each gene was represented by the probeset with the largest MAD
(Guinney et al., 2015). We took the intersection of the curated FRGs
andMAD-filtered genes as the variable features in the training meta-
cohort and performed univariate Cox regression analysis to screen
out disease-free survival (DFS)-associated genes. A total of
80 representative recurrence-related ferroptosis genes were
enrolled in the machine learning framework as initial variables
(Supplementary Table S2).

FIGURE 1
Workflow of the study.
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Construction of a prognostic gene signature

A total of 10 separate machine learning algorithms and their
combinations composed the machine learning framework. The
10 algorithms included random survival forest (RSF), elastic
network (ENet), least absolute shrinkage and selection operator
(Lasso), ridge, stepwise Cox proportional hazards regression
(Stepwise Cox), CoxBoost (Boosting Cox’s proportional
hazards regression), generalized boosted regression modeling
(GBM), supervised principal components (SuperPC), partial
least squares regression for Cox (plsRcox), and survival
support vector machine (survival-SVM). Six algorithms,
including Lasso, RSF, CoxBoost, ridge, ENet, and stepwise Cox,
could be used to perform feature selection. Within this
framework, we utilize six specific algorithms for feature
selection: Lasso, RSF, CoxBoost, ridge, ENet, and stepwise Cox.
These algorithms play a fundamental role in the preliminary
phase of gene screening, working synergistically with other
algorithms. Both individual algorithms and combinations of
two algorithms contribute to this comprehensive framework.
To optimize the performance of each algorithm, we employed
either 10-fold cross-validation (CV) or bootstrap resampling
techniques. These approaches assist us in evaluating and
honing the models. Finally, a total of combined 83 algorithms
based on 10-fold CV or bootstrap resampling were utilized to
select the optimistic performance model. The implementation of
machine learning algorithms framework and corresponding
hyperparameter optimization function are shown in
Supplementary Table S3. The Harrell’s concordance index
(C-index) was calculated among all datasets. The algorithm
with the highest average C-index across all validation datasets
was regarded as the optimal model to generate the FRG signature.
The samples were categorized into high and low risk based on the
optimal thresholds for signature scores determined by the surv_
cutpoint function of the R package “survminer”.

Collection of published signatures

To further assess our identifiedmodel’s performance, we curated
five previously published mRNA signatures (Supplementary Table
S4). These signatures were constructed by using diverse
computational algorithms and curated from various biological
processes, including hypoxia and the tumor microenvironment.
To evaluate the performance of each signature, we employed
univariate Cox regression analysis and computed the C-index
across all cohorts.

Construction and validation of the
nomogram

A novel nomogram for predicting relapse in patients with stage
II/III CRC was established by the “rms” package. We integrated
common clinical and molecular features in the nomogram with our
signature to compose a comprehensive model applying Cox
proportional hazards regression. The samples in the training
meta-cohort, which had these relevant variables (632 samples),

were enrolled in the analysis. The calibration curve was used to
visualize the relationship between the predicted probability
generated by the nomogram and the actual observations. The
decision curve analysis (DCA) results could be performed to
obtain the clinical net benefit of different models, and all and
none strategies (Van Calster et al., 2018). Finally, we employed
recursive partitioning analysis with the R package “rpart” to
construct a decision tree model for DFS, aiming to refine risk
stratification.

Additional bioinformatic analysis

The deconvolution approach xCell algorithm was selected to
exhibit molecular features regarding immunology between risk
groups by ‘xCell’ packages (Newman et al., 2015; Aran et al.,
2017). xCell could utilize bulk RNA-seq data to infer infiltrating
immune and stromal cell subsets. The correlation coefficients
between the signature scores and each gene expression acquired
were calculated. The sorted correlation coefficients were used as
the ranked gene list input to perform gene set enrichment
analysis (GSEA) via the “clusterProfiler” package against
KEGG and REACTOME reference gene set (Subramanian
et al., 2005).

Statistical analysis

The data processing, statistical analysis, and plotting were
generated in the R 4.2.2 software. The heatmap of genes enrolled
in the signature with clinical annotations was generated using the R
package “ComplexHeatmap.” Correlations between two continuous
variables were evaluated via Spearman correlation coefficients. The
Wilcoxon rank-sum test or t-test was applied to compare the
difference between two groups for quantitative data. Two-sided
Fisher exact tests were used to analyze categorical variables. The
Cox proportional hazards model and Kaplan–Meier analysis were
performed with the ‘survival’ or ‘rms’ package. Receiver operating
characteristic curves (ROCs) were used to evaluate the prognostic
classification performance of the signature with the ‘timeROC’
package. The C-index comparisons between clinical and
molecular traits and the risk score were implemented by the
“compareC” package. All statistical tests were two-sided. p <
0.05 was considered as statistically significant. The length of error
bars represented 95% confidence intervals. The
Benjamini–Hochberg method was applied to control the false
discovery rate (FDR) for multiple hypothesis testing in
appropriate conditions.

Results

Development of machine learning-based
ferroptosis-related gene signature

The meta-cohort of the four datasets (GSE14333, GSE37892,
GSE39582, and TCGA-CRC) was regarded as the training
dataset, and the principal component analysis showed no
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significant batch effects within the meta dataset (Supplementary
Figure S1A). The expression profiles of the 80 ferroptosis-related
prognostic genes were subjected to the machine learning-based

modeling framework. We fitted 83 kinds of prediction models via
10 machine learning algorithms based on the 10-fold cross-
validation or bootstrap resampling algorithm to optimize the

FIGURE 2
Identification and construction of the best performance signature. (A) C-indices of 83 combinations of machine learning prediction models in five
validation cohorts. (B) Determination of the optimal lambda was obtained when the partial likelihood deviance reached the minimum value and further
generated the gene features with non-zero coefficients. (C) Lasso coefficient profiles of the candidate genes for FRG signature construction. (D)
Determination of the optimal number of components when the iAUC reached themaximumvalue. (E)Categories and coefficients of 23 genes finally
obtained in plsRcox regression.
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model parameter in the training meta-cohort. The C-indices were
calculated exclusively in the five validation cohorts of all models,
and the model that exhibited the highest average C-index was
deemed the optimal solution. The most robust model with the
highest mean C-index in the five validation datasets was the
combination of Lasso and plsRcox (Figure 2A). Using Lasso

regression and 10-fold CV, we found that 23 FRGs had non-
zero Lasso coefficients and were associated with recurrence in
stage II/III CRC. The regression partial likelihood deviance
reached its minimum value, indicating that these FRGs are
important predictive features for recurrence (Figures 2B, C).
The chosen features underwent a 10-fold cross-validation

FIGURE 3
Evaluation indicators and prognostic value of the FRG signature. (A) Time-dependent ROC analysis for predicting DFS at 1-, 3-, and 5-year across the
trainingmeta-cohort and all validation datasets. (B)C-indices of the signature across all datasets. (C) Kaplan–Meier survival curve of DFS between patients
with a high-signature score and with a low-signature score in the training meta-cohort and five validation datasets. (D) Kaplan–Meier survival curve of
DFS between patients in stage II vs. stage III patients and with respect to the stage and the identified gene signature of the meta-cohort.
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plsRcox to build a predictive model with the optimal number of
components. The incremental area under the curve (iAUC) value
reached its maximum at nine components (Figure 2D), so the
model used components 0–9 to obtain fit statistics using both the
Akaike information criterion (AIC) and Bayesian information
criterion (BIC) (Supplementary Figure S1B). Finally, the risk
score for each patient was calculated using the expression of
23 gene features multiplied by their corresponding coefficients to
generate the FRG signature (Figure 2E).

The predictive and prognostic value of FRG
signature

We used ROC analysis to measure the DFS discrimination of
the signature, with 1-, 3-, and 5-year AUCs of 0.682, 0.738, and
0.720 in the training meta-cohort; 0.697, 0.649, and 0.707 in
GSE103479; 0.875, 0.716, and 0.660 in GSE12945; and 0.707,
0.775, and 0.760 in GSE92921, respectively (Figures 3A, B). The
3-year AUC of GSE103479 and the 1-year AUC of
GSE29621 were 0.670 and 0.739, respectively. The model had
an overall certain decent degree of 3-year AUCs across all
independent datasets. Both the training meta-cohort and
validation datasets also showed stable C-indices around 0.7
(Figure 3C).

In our independent datasets, we divided the samples into
high- and low-risk groups using the optimal cutoff for the
predicted signature risk score. By analyzing the expression
patterns of the 23 identified genes, we observed clear
differences between the high- and low-risk groups
(Supplementary Figure S1C). Specifically, genes such as
ZFP36, KLF2, PML, PTPN18, MAPK3, SMPD1, SLC2A3,
RARRES2, CAV1, and SAT1 were found to be highly
expressed in the high-risk group. On the other hand, other
genes showed predominant expression in the low-risk
group. These findings suggest that these genes may play a
significant role in distinguishing different risk groups in stage
II/III CRC. Patients in the high-risk group had significantly
shorter DFS compared to the low-risk group in the training
meta-cohort (p < 0.0001), and similar trends were also
observed in the validation datasets such as GSE103479 (p =
0.00012), GSE92921 (p = 0.0031), and MSK-READ (p =
0.00043) (Figure 3D). The results of Kaplan–Meier survival
analysis in two cohorts, GSE29621 and GSE12945, reached a
marginal statistical significance (p = 0.083 and 0.085,
respectively), considering the smaller sample size. Meanwhile,
the discriminatory power of the FRG signature scores was similar
to the hazard obtained through pathological staging. In both
stage II and stage III subgroups, patients with high signature
scores had significantly shorter DFS (p < 0.0001) (Figure 3E). In
addition, we integrated patients into a pooled cohort containing
the training and validation cohorts to revalidate the prognostic
value. The pooled cohort still showed a significant difference in
DFS between the high- and low-risk groups (p < 0.0001), and this
difference was also observed within both stage II and stage III
subgroups (p < 0.0001) (Supplementary Figures S2A–C). Totally,
the FRG-based model provided the promising potential in
predicting the recurrence risk of stage II/III CRC.

The comparisons with other features and
collected signatures

Apart from selecting the most suitable model combination,
we also compared the C-index of the signature with clinical
characteristics and other molecular features in all the datasets
included in our study. The clinical characteristics included
demographic information, such as age, race, and gender, as
well as tumor histology data such as AJCC stage, pT, pN,
grade, tumor size, and chemotherapy response. Molecular
features were specific to several mutational alterations (KRAS
mutations, BRAF mutations, and microsatellite state) and
molecular classification (such as CMS classification). These
characteristics are commonly used in clinical evaluation of
patients (Ng et al., 2019; Timar and Kashofer, 2020;
Battistuzzi et al., 2021; Chen et al., 2021). The FRG signature
score basically had the highest C-index compared to these clinical
and molecular features in the training and validation cohorts,
demonstrating the survival prediction capability of our signature
(Figure 4A). Furthermore, our FRG signature achieved the
highest C-index among five published molecular signatures in
four datasets (Figure 4B). The multifaceted evaluation
demonstrated that the FRG signature performed well in
identifying stage II/III CRC patients with distinct clinical
outcomes.

Sensitivity analysis

Table 1 summarized the distribution of demographics,
tumor-related clinical characteristics, and molecular features
of the four cohorts in the training meta-cohort, which
included 1,000 patients identified as the high-risk group (N =
307) or low-risk group (N = 693) with the FRG signature. We
recognized that stage, pN status, KRAS mutation, and CMS
classification were significantly differentially distributed
between high- and low-risk groups. To further inspect the
robustness of the model, clinicopathological and molecular
features, together with the identified signature, were assessed
in univariate and multivariate models (Figures 5A, B).
Importantly, only pT stage, KRAS mutation, and signature
scores were independent recurrence prognostic factors in
multivariable models. Gender, AJCC stage, and pN stage did
not significantly improve prognosis prediction over pT stage and
KRAS mutation when the FRG signature was considered.
Sensitivity analysis showed that the FRG signature was still
robust within the subgroups of clinicopathological and
molecular annotation variables of interest, including pT4 and
KRAS mutation (Figure 5C).

Potential molecular processes associated
with FRG signature

To explore possible underlying molecular mechanisms for the
FRG signature, we utilized the xCell method to analyze the immune
infiltration landscape with our signature. A total of 14 immune
infiltrating cells were correlated with the FRG signature
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(Supplementary Figure S3A). Representative cells, T cells and B cells,
scored significantly higher in the low-risk group than in the high-
risk group, while the levels of endothelial cells and epithelial cells
were significantly higher in the high-risk group. To gain the
comprehensive biological mechanisms of the FRG signature, we

used the correlation coefficients between two major gene sets
(KEGG and REACTOME) and signatures to perform GSEA. The
extracellular matrix, cell adhesion processes, and elastic fiber
formation were found positively correlated with the signature
score. On the contrary, base excision repair, cell cycle, and RNA

FIGURE 4
Comparisons of clinical and molecular characteristics, and published signatures with the FRG signature. (A) C-index comparisons between clinical
andmolecular variables and signature in the trainingmeta-cohort and validation datasets. (B)C-index comparisons between signature and five published
signatures. * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.
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processes were found negatively correlated with the signature
(Supplementary Figure S3B). In addition, the expression of key
ferroptosis-related genes was also compared. We found DHFR and
CYB5R1 were highly expressed in low- and high-risk groups,
respectively (Supplementary Figure S3C).

Establishment of predictive nomogram and
decision tree

To provide potential clinical tool for recurrence prediction, we
attempted to establish a nomogram together with the clinical and
molecular features, and our signature. Age, gender, and stage status
are considered primary characteristics that are routinely obtained in
clinical practice. In addition, the results of a multivariate Cox
regression analysis demonstrated that the FRG signature, pT, and
KRAS mutation remained statistically significant even after
adjusting for other factors. As a result, these specific
characteristics were utilized in the development of a nomogram
model (Figure 5D). In the calibration analysis of the nomogram, the
prediction lines for 1-, 3-, and 5-year survival probability were
closely aligned with the ideal reference line, indicating the favorable
performance of the nomogram (Figure 5E). The DCA showed that
the predictive model with the FRG signature yielded a higher net
benefit compared to traditional prognostic factors enrolled in the
nomogram (Figure 5F). In order to refine risk stratification, a
recursive partitioning analysis was conducted on the
1,000 patients with the known tumor stage and FRG signature,
resulting in a classifier decision tree (Figure 5G). The corresponding
complexity parameter (CP) value with a minimum CV error at the
first level was used to prune the decision tree (Supplementary Figure
S4). In this analysis, the stage and FRG signature were identified as
key determinants. Specifically, patients with stage II and a low FRG
signature were categorized as the new low-risk group, while those
with stage III and a high FRG signature were labeled as the new high-
risk group. Patients who failed to align with these specific
classifications were assigned to the intermediate-risk
group. Overall, this approach helped to optimize risk
stratification for each patient based on their unique characteristics.

Discussion

The tumor AJCC stage is still the most widely used biomarker in
clinical practice to provide guidance for treatment (Yoshihara et al.,
2013). CRC shows apparent tumor heterogeneity in prognosis and
therapy response, even with the same stage (Srdjan et al., 2016). In
addition, the five-year postoperative recurrence rate for patients
with stage II/III CRC is approximately 10–30% (Osterman et al.,
2020; Xu et al., 2020; Benson et al., 2021). It is controversial to give
all of them identical adjuvant therapies, regardless of the tumor
genetic and molecular heterogeneity. Ferroptosis is a regulated form
of cell death that is driven by iron-dependent lipid peroxidation. It
plays a critical role in various physiological and pathological
processes (Cui et al., 2020). There is emerging evidence
suggesting that ferroptosis may be involved in cancer progression
and treatment response, which has led to the interest in exploring its
potential as a prognostic biomarker (Zuo et al., 2022). Accordingly,
it is reasonable for us to use comprehensive FRG signature to
develop the prognosis model and recognize high-risk
subpopulations.

Several ferroptosis signatures for CRC have been developed,
demonstrating the prognostic significance. However, these
signatures primarily rely on Lasso and multivariable Cox
regression analyses, without considering the combination of

TABLE 1 Distribution of clinicopathological characteristics with low- and high-
risk groups in the identified signature.

Variables Level Low High p-
value

N 693 307

Age (Sd) 67.380 (12.934) 66.897 (12.906) 0.6036

Gender (%)

Female 318 (45.89) 138 (44.95) 0.8373

Male 375 (54.11) 169 (55.05)

Stage (%)

II 428 (61.76) 130 (42.35) <0.0001

III 265 (38.24) 177 (57.65)

pT (%)

1/2 22 (4.16) 5 (2.23) 0.232

3 431 (81.47) 179 (79.91)

4 76 (14.37) 40 (17.86)

pN (%)

0 320 (60.61) 99 (45.21) <0.0001

1 141 (26.70) 55 (25.11)

2/3 67 (12.69) 65 (29.68)

MSI status (%)

MSI 85 (17.31) 27 (11.84) 0.0765

MSS 406 (82.69) 201 (88.16)

CIMP (%)

High 90 (19.48) 34 (17.71) 0.6528

Low 117 (25.32) 55 (28.65)

Negative 255 (55.19) 103 (53.65)

KRAS mutation (%)

No 310 (68.43) 110 (55.84) 0.0027

Yes 143 (31.57) 87 (44.16)

BRAF mutation (%)

No 388 (88.58) 159 (88.83) 1

Yes 50 (11.42) 20 (11.17)

CMS label (%)

CMS1 113 (17.94) 42 (15.11) <0.0001

CMS2 297 (47.14) 84 (30.22)

CMS3 90 (14.29) 35 (12.59)

CMS4 130 (20.63) 117 (42.09)
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FIGURE 5
Interaction and combinations of the FRG signature with clinical and molecular features. Univariate Cox regression analysis (A) and multivariate Cox
regression analysis (B) of prognostic factors for DFS for the training meta-cohort. (C) Subgroup analysis of the identified signature in clinical and
molecular markers. (D) Prognostic nomogram predicting the probability of 1-, 3-, and 5-year DFS. (E) Calibration plot of the nomogram for 1-, 3-, and 5-
year DFS prediction. Model performance is shown by the plot, relative to the 45-degree line, which represents perfect prediction. (F) DCA curve of
the FRG signature and established risk factors in terms of DFS in the training cohort. The x-axis indicates the threshold probability, and the y-axis
represents the net benefit. (G) A decision tree classifies patients into low-risk, intermediate-risk, and high-risk according to the probability of recurrent
disease. * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.
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multiple algorithms to determine the optimal solution and
performing thorough evaluations of the models on the validation
set to assess their performance (Shao et al., 2021; Wang et al., 2022b;
Du et al., 2022; Feng et al., 2022). To address this limitation, it is
important to consider the combination of multiple algorithms and
perform thorough evaluations of the models on the validation sets to
assess their performance. This can help identifying the optimal
solution and improve the robustness and generalizability of the
prognostic signature. Machine learning algorithms have the
advantages in making accurate predictions based on bulk data
and using these predictions to guide future research efforts
(Greener et al., 2022). Therefore, we were able to maximize the
predictive accuracy of our model while also ensuring rigor and
reproducibility. Additionally, the use of multiple independent
validation datasets allowed us to evaluate the generalizability of
the model and its performance in diverse population groups.
However, while machine learning algorithms have shown great
potential in making accurate predictions, selecting the optimal
algorithm for model fitting can be challenging. Simply relying on
researcher preference may not yield the best results and can lead to
inefficiencies. One approach to address this issue is to use
standardized methods for algorithm selection and model fitting.
In our study, we took advantage of the strengths of machine learning
and curated 10 different algorithms commonly used in survival
analysis to generate an FRG signature for predicting stage II/III CRC
prognosis. Rather than relying on a single algorithm or researcher
preference, we utilized a combination of algorithms to create a
framework and highlighted the importance of careful validation in
this process. We calculated the C-index in multiple independent
validation datasets to identify the best-performing model for
predicting CRC recurrence.

In our study, we recognized 23 ferroptosis-related prognostic
genes determined by the combination of Lasso and plsRcox with the
highest average C-indices in validation datasets. The identified gene
signature includes several FRGs associated with different aspects of
cancer development. SAT1 plays a key role in immune regulation
and metabolic signaling pathways, and it has been closely associated
with chemoradiotherapy resistance and disease recurrence (Mou
et al., 2022). MAPK3, a component of the RAS/MAPK pathway, may
promote ferroptosis while potentially inhibiting antitumor
immunity (Sun et al., 2022). NR1D2 is a transcriptional repressor
that has been implicated in the epithelial–mesenchymal transition
(EMT), a process that is crucial for cancer metastasis (Tong et al.,
2020). Its knockdown could potentially slow down cancer
progression by inhibiting EMT. CAV1 is a protein that plays a
role in various cellular processes, including endocytosis and signal
transduction. It has been identified as a suppressor of ferroptosis, a
form of regulated cell death, and its high levels have been associated
with the poor prognosis in cancer patients. Therefore, targeting
CAV1 could potentially enhance the effect of ferroptosis and inhibit
cancer progression (Lu et al., 2022). PTPN18 stabilizes the MYC
protein level, leading to the activation of the MYC-CDK4 axis and
promoting CRC development (Li et al., 2021). YTHDC2 is a tumor
suppressor gene that is typically expressed at high levels in normal
tissues and at low levels in tumor tissues. It has been associated with
immune infiltrating levels, suggesting a role in the immune response
to cancer (Li et al., 2020b). PAQR3 has been shown to induce
apoptosis and inhibit proliferation and invasiveness of cancer cells

when its expression is restored (Yu et al., 2015). Therefore, strategies
to restore PAQR3 expression could potentially have therapeutic
benefits in cancer treatment. Overall, these findings highlight the
complex interplay between identified FRG genes and proteins in
cancer progression.

In addition to the AJCC stage, several current and emerging
clinically relevant biomarkers, such as BRAF mutations,
HER2 overexpression and microsatellite state, were utilized to
guide therapy in stage II/III CRCs (Sveen et al., 2020). To further
validate the performance of the model, we compared C-index
between the common clinical and molecular features (e.g., age,
gender, T, N, AJCC stage, TMB, microsatellite state, and TP53,
KRAS, or BRAF mutations) and our signature. Aging, male gender,
and late stages are considered risk factors of CRC (Baraibar et al.,
2023). TMB, KRAS, BRAF, and TP53 mutations were associated
with worse prognosis, while high microsatellite instability (MSI-H)
is a favorable prognostic biomarker and has been suggested as the
predictors of immunotherapy response (Ganesh et al., 2019;
Koncina et al., 2020). Our signature had high C-index levels in
our comparisons with these common features, and the AUC of the
1- or 3-year relapses survival was robust across all datasets.
Importantly, these markers of interest were found to be
significant for recurrence in the univariate test, and the signature
remained strongly predictive even after adjusting for them in the
multivariate model. Moreover, our model demonstrated consistent
predictive performance across subgroups with different clinical and
molecular characteristics, further highlighting the robustness of the
FRG signature as a prognostic tool. Collectively, these findings
demonstrated that our signature could be a promising biomarker
for predicting the high-risk recurrence population of stage II/III
CRC in clinical practice.

The remarkable potential of the FRG signature score lies in its
ability to precisely stratify patients into distinct high- and low-risk
subgroups. This consequential stratification provides tailored and
timely guidance regarding adjuvant therapy, specifically for stage II/
III CRC patients. The FRG signature emerges as an effective tool in
identifying stage II/III patients who are particularly susceptible to
recurrence. Patients classified as stage III with a high FRG signature
exhibited markedly decreased prognosis in comparison to those in
stage II with a low FRG signature, while the intermediate-risk group
comprising high-risk stage II and low-risk stage III patients shows
similar outcomes.

The relevant biological activities of the extracellular matrix and
cell adhesion and endothelial and epithelial cells were enriched in
the high-risk group. They have been implicated in fibrosis,
inflammation, thrombosis, cell division, and metastasis (Lin et al.,
2021; Matthews et al., 2022). Several tumor suppressor pathways
(e.g., base excision repair and cell cycle) were also enriched in the
low-risk group. Alterations in iron metabolism and oxidative stress,
key processes involved in ferroptosis, can be influenced by ECM
remodeling and cell adhesion. Changes in iron import, export, and
storage, as well as the presence of reactive oxygen species, can be
regulated by ECM-related signals and cell adhesion molecules,
thereby affecting the occurrence and progression of ferroptosis
(He et al., 2023). Among the FRGs that we have identified in the
signature, CAV1 plays a crucial role in the efficient deposition of
ECM by fibroblast-derived exosomes, ultimately promoting tumor
invasion. The activation of SIRT1 has a positive impact on the
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expression of the major ECM components and helps to regulate
ECM organization (Albacete-Albacete et al., 2020; Smith et al.,
2022). T cells and B cells were found highly infiltrated in the
low-risk group. T cells have emerged as powerful allies in the
fight against cancer, while B cells play a crucial role by
presenting tumor-associated antigens to T cells. Recent studies
have revealed that activated CD8+ T cells can enhance
ferroptosis-specific lipid peroxidation in tumor cells, and this
increased ferroptosis contributes to the antitumor efficacy of
immunotherapy (Wang et al., 2019). KLF2 in the FRG signature
is a transcription factor that has been demonstrated to play a crucial
role in regulating the quiescence and trafficking of T lymphocytes.
SATB1 directs lineage-specific transcriptional programs in the
thymus, thereby influencing the development of the primary
T-cell pool (Kakugawa et al., 2017; Wittner and Schuh, 2021). In
addition, B cells can produce antibodies that enhance antigen
presentation to T cells or directly target and kill tumor cells. This
dynamic cooperation between T cells and B cells has a positive
clinical impact (Waldman et al., 2020; Fridman et al., 2021). We
found DHFR and CYB5R1, critical genes in ferroptosis, were highly
expressed in low- and high-risk groups, respectively. Blockade of
DHFR, either genetically or pharmacologically, enhances the
effectiveness of GPX4 inhibition in triggering ferroptosis (Zheng
and Conrad, 2020). Ferroptosis can also be induced by incidental
electron transfer facilitated by POR/CYB5R1 oxidoreductase (Yan
et al., 2021). This suggests that therapeutic approaches targeting
ferroptosis induction may achieve favorable outcomes in the high-
risk group. Overall, the underlying molecular mechanism suggested
the biological plausibility and reliability in predicting the prognosis
of the signature.

The nomogram we finally built present excellent performance. The
capability of the FRG signature was validated with the calibration curve
and DCA. The DCA curve demonstrated that incorporating the FRG
signature yielded greater net benefit improvement compared to the
conventional prognostic evaluation system. The prediction lines of the
calibration curve for 1-, 3-, and 5-year survival probability were also
fitted with the ideal reference line. In decision tree analysis, the
intermediate-risk group regrouped stage II patients with a high
signature and stage III patients with a low signature, thus enhancing
the rationalization of risk groupings for stage II/III CRC patients. These
results reinforced the potential for the FRG signature to guide
personalized treatment decisions, improve outcomes for patients
with CRC, and exhibit usability in daily routine practice.

Some limitations must be underscored with the current study even
though the results of our investigation were profound. First, although a
total of 1,397 patients were included with both microarray and RNA-seq
platforms, they were all from retrospective cohorts. The signature should
be further validated in a prospective study. Second, our study concentrated
on the scope of ferroptosis-related mRNAs. Using the combination of
lncRNA andmRNAmight generate amore robust signature, which could
be explored in future research. Last, the nomogram has been developed
and validated in a computational model. However, it requires further
clinical trials to confirm its effectiveness in real-world clinical settings and
to evaluate its cost-effectiveness.

Identifying specific molecular targets involved in ferroptosis
opens up avenues for developing novel therapeutic interventions.
By targeting these genes or biological pathways in the FRG signature,
it may be possible to modulate or inhibit ferroptosis, leading to

improved treatment strategies for CRC. This could include
developing small-molecule inhibitors or therapeutic agents that
selectively target ferroptosis-related pathways. Moreover,
integrating these FRGs and pathways with other omics data, such
as proteomics and metabolomics, has the potential to uncover novel
biomarkers and therapeutic targets. By combining multiple layers of
molecular information, we can further gain insights into the
complex interplay between different biological processes and
identify key molecular players that can be targeted for
therapeutic intervention.

In conclusion, our analysis established a stable and powerful
ferroptosis-related signature based on consensus machine learning
algorithms by sequencing the data of genes. The performance of the
signature has been validated in multiple independent datasets and in
comparison with the common clinical and molecular features.
Furthermore, the model had great implications in the prognosis,
even in subgroup analyses and after adjusting for common clinical
and molecular markers. Finally, the developed nomogram, utilizing
the common features and the signature, can potentially be a valuable
tool to categorize high-risk patients. These findings indicate that the
FRG signature shows promise in aiding clinical decision-making
and facilitating personalized therapy for stage II/III CRC patients.
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