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Introduction: Mulberry leaf (ML) is known for its antibacterial and anti-
inflammatory properties, historically documented in “Shen Nong’s Materia
Medica”. This study aimed to investigate the effects of ML on enterovirus 71
(EV71) using network pharmacology, molecular docking, and in vitro experiments.

Methods: We successfully pinpointed shared targets between mulberry leaves
(ML) and the EV71 virus by leveraging online databases. Our investigation delved
into the interaction among these identified targets, leading to the identification of
pivotal components within ML that possess potent anti-EV71 properties. The
ability of these components to bind to the targets was verified by molecular
docking. Moreover, bioinformatics predictions were used to identify the signaling
pathways involved. Finally, the mechanism behind its anti-EV71 action was
confirmed through in vitro experiments.

Results: Our investigation uncovered 25 active components in ML that targeted
231 specific genes. Of these genes, 29 correlated with the targets of EV71.
Quercetin, a major ingredient in ML, was associated with 25 of these genes.
According to the molecular docking results, Quercetin has a high binding affinity to
the targets ofML and EV71. According to the KEGGpathway analysis, the antiviral effect
of Quercetin against EV71 was found to be closely related to the NF-κB signaling
pathway. The results of immunofluorescence and Western blotting showed that
Quercetin significantly reduced the expression levels of VP1, TNF-α, and IL-1β in
EV71-infected human rhabdomyosarcoma cells. The phosphorylation level of NF-
κB p65was reduced, and the activation of NF-κB signaling pathwaywas suppressed by
Quercetin. Furthermore, our results showed that Quercetin downregulated the
expression of JNK, ERK, andp38 and their phosphorylation levels due to EV71 infection.

Conclusion: With these findings in mind, we can conclude that inhibiting the NF-
κB signaling pathway is a critical mechanism through which Quercetin exerts its
anti-EV71 effectiveness.
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1 Introduction

Hand, foot, and mouth disease (HFMD) stands as a prevalent
childhood infectious ailment primarily attributed to more than
20 enteroviruses. The prognosis for HFMD is generally optimistic,
characterized by self-limiting symptoms that typically abate within a
week (Zhang et al., 2022). However, certain neurological complications
such as encephalomyelitis, brainstem encephalitis, and aseptic meningitis
(Gonzalez et al.,2019) can rapidly lead to neurogenic pulmonary edema
(Wang et al.,2019) and, in severe cases, even death. Enterovirus type 71
(EV71)is themost common viral culprit behind these severe complications
(Yang et al., 2022). Currently, no clinically effective drugs exist, and
symptomatic treatment remains the primary approach (Liu et al., 2015).
HFMD has experienced multiple outbreaks worldwide, posing significant
public health concerns and imposing substantial life safety risks
and economic burdens on many countries (Solomon et al., 2010).

Chinese medicine considers virus infections as the invasion of
cold and malevolent energy into the body. When the body’s
defense is weak, this energy can easily invade. However, if the
body’s defense is strong, it can resist such invasion (Li et al., 2020).
Traditional Chinese medicine, with a history spanning five
thousand years, has been routinely used to treat pandemics and
endemic diseases, forming a comprehensive theoretical system for
the prevention and treatment of deadly epidemics, referred to as
“plagues” in ancient China (Qi and Tang, 2021). Traditional
Chinese medicine is widely employed for antiviral purposes
(Wu t al. 2021) by restoring the body’s overall balance to
counteract the harmful effects of viral infections (Chen and Ye,
2022). Numerous traditional Chinese medicines have been proven
to possess antiviral properties (Guan et al., 2020; Kang et al., 2021;
Lee et al., 2021; Cui et al., 2022) capable of directly acting on
viruses and stimulating the immune system to induce interferon
production, thereby indirectly inactivating viruses (Huang et al.,
2022).

Mulberry leaves (ML), derived from the Moraceae plant, are
known for their antibacterial and antiviral effects (Chen et al., 2021).
However, their potential anti-EV71 virus effect remains unexplored.
This study aimed to investigate the potential of mulberry leaves in
EV71 virus infection by predicting key target genes and signaling
pathways involved in ML-mediated antiviral mechanisms through
network pharmacology, bioinformatics, in vitro experiments, and
medical statistics.

2 Materials and methods

2.1 Screening active components and target
genes of ML

To screen the active components and target genes of ML, we
employed the traditional Chinese medicine database TCMSP (https://
old.tcmsp-e.com/). The screening criteria were defined as oral availability
(OB) ≥ 30 and drug-likeness (DL) ≥ 0.18 (Cui et al., 2021). These criteria
allowed us to identify the critical active ML ingredients and retrieve their
target information. The target information was standardized using the

Uniprot database to obtain the Gene name. Finally, we employed
Cytoscape (V3.9.1) software to visualize the network diagram
illustrating the connections between the “Chinese medicine-active
ingredient-target gene.”

2.2 Construction of a protein interaction
network diagram for target genes in ML

For the analysis of target genes in ML, we employed the STRING
database (https://string-db.org/). The biological species “Homo sapiens”
was specifically chosen, and the minimum interaction score was set at a
medium confidence level (0.400). The resulting protein-protein
interaction (PPI) network diagram was thoroughly examined, and the
Cytoscape (V3.9.1) software was utilized to enhance the clarity of the PPI
network by emphasizing the interaction scores.

2.3 Retrieval of EV71 virus genes and
screening of Anti-EV71 related genes in ML

The GENECARDS database (https://www.genecards.org) and
NCBI database (https://www.ncbi.nlm.nih.gov) were queried using
“EV71”to retrieve the relevant genes associated with the EV71 virus.
With the help of the VENN graph, we compared target genes of ML
and EV71 viruses to identify potential anti-EV71 genes for ML.
(http://jvenn.toulouse.inra.fr/app/example.html). Cytoscape (V3.9.
1) was used to visualize potential target genes and their
corresponding active components.

2.4 Molecular docking

Based on the research mentioned above, we identified the main
components of ML and its target genes. The top ten target genes were
retrieved from the PDB protein database (https://www.rcsb.org/) in
PDB format, using “Homo sapiens” and “A≤2.5”as the specified
settings. These PDB files underwent preprocessing, including water
and residue removal, using the MOE 2019.0102 software. The CID
numbers corresponding to the top ten active ingredients with antiviral
effects in ML were obtained from the TCMSP database. These CID
numbers were then retrieved from the PubChem database to retrieve
the SDF file containing their 3D molecular structures (https://
pubchem.ncbi.nlm.nih.gov/). Subsequently, utilizing the MOE
2019.0102 software, a small molecule library was constructed
based on the obtained SDF files. Finally, molecular docking was
performed between the processed macromolecule receptors and the
ligands in the small molecule library.

2.5 GO functional enrichment and KEGG
pathway analysis

An analysis was conducted using the DAVID database to
explore the potential genes implicated in the anti-EV71 activity
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of Quercetin, the primary component of ML (https://david.ncifcrf.
gov/home.jsp). Enrichment analysis of Gene Ontology (GO)
functions and KEGG signaling pathways was performed,
considering a significance threshold of p < 0.05. The top
15 enriched GO functions and KEGG signaling pathways were
selected based on the obtained p values. The resulting enriched
information was visualized on the MICROBIOTIC website (http://
www.bioinformatics.com.cn/).

2.6 In vitro experimental study of quercetin
against EV71 virus

2.6.1 Cytotoxicity assay of quercetin and virus
TCID50 assay

A stock solution of Quercetin (Sigma-Aldrich Cat. No.:
CAS6151-25-3) was meticulously prepared at a concentration of
200 mM in DMSO, subsequently undergoing filtration through an

TABLE 1 ML’s active ingredients with anti-EV71 effects.

MOL ID Compound name OB DL Number of targets

MOL001771 poriferast-5-en-3beta-ol 36.91 0.75 2

MOL002218 scopolin 56.45 0.39 2

MOL002773 beta-carotene 37.18 0.58 22

MOL003842 Albanol 83.16 0.24 0

MOL003847 Inophyllum E 38.81 0.85 9

MOL003850 26-Hydroxy-dammara-20,24-dien-3-one 44.41 0.79 0

MOL003851 Isoramanone 39.97 0.51 3

MOL003856 Moracin B 55.85 0.23 7

MOL003857 Moracin C 82.13 0.29 6

MOL003858 Moracin D 60.93 0.38 14

MOL003859 Moracin E 56.08 0.38 11

MOL003860 Moracin F 53.81 0.23 2

MOL003861 Moracin G 75.78 0.42 4

MOL003862 Moracin H 74.35 0.51 4

MOL003879 4-Prenylresveratrol 40.54 0.21 17

MOL000433 FA 68.96 0.71 3

MOL000729 Oxysanguinarine 46.97 0.87 5

MOL000098 quercetin 46.43 0.28 154

MOL000358 beta-sitosterol 36.91 0.75 38

MOL000422 kaempferol 41.88 0.24 63

MOL000449 Stigmasterol 43.83 0.76 31

MOL001439 arachidonic acid 45.57 0.2 38

MOL001506 Supraene 33.55 0.42 0

MOL003759 Iristectorigenin A 63.36 0.34 22

MOL003975 icosa-11,14,17-trienoic acid methyl ester 44.81 0.23 0

MOL006630 Norartocarpetin 54.93 0.24 5

MOL007179 Linolenic acid ethyl ester 46.1 0.2 2

MOL007879 Tetramethoxyluteolin 43.68 0.37 32

MOL013083 Skimmin (8CI) 38.35 0.32 4

The presented table catalogs a series of active ingredients demonstrating anti-EV71 (Enterovirus 71) effects. Each row corresponds to a distinct compound. Compound name: This column

contains the names of the active ingredients. OB (Oral Bioavailability): Oral bioavailability measures the extent to which an orally administered drug is absorbed into the systemic circulation. A

higher numerical value indicates better absorption. DL (Drug-likeness): Drug-likeness shows a molecule’s potential to possess drug-like properties. A value closer to 1 suggests that the molecule

has favorable drug-like attributes. The number of targets denotes how many target molecules each compound interacts with. In drug discovery, drugs often interact with multiple molecules to

achieve their therapeutic effects.
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organic microporous membrane. Human rhabdomyosarcoma (RD)
cells were uniformly seeded within 96-well plates, achieving a
density of 2 × 105 cells/mL. Each well received 100 μL of the cell
suspension. To minimize the cytotoxicity of DMSO, it was diluted at
a ratio of 1:1000. Quercetin stock solution was further diluted using
10% FBS in DMEM (Nissui Cat. No.: 05900) to a maximum
concentration of 200 μM, with subsequent equal-fold dilutions. A
200 μL volume of the diluted solution was introduced into each well,
where a monolayer of RD cells had been established. The cells were
subsequently incubated at 37°C with 5% CO2 for 24, 48, and 72 h.
Cell viability assessment was performed using the CCK8 assay
(Beyotime Cat. No.: C0039), aimed at identifying the non-toxic
concentration (TC0) of Quercetin concerning RD cells. The
EV71 virus was diluted with a 2% FBS maintenance solution
(Beyotime Cat. No.: C0232) and used to infect RD cells at
concentrations ranging from 10−1 to 10−8. The TCID50 of the
EV71 virus was calculated using the Reed-Muench method.

2.6.2 Evaluation of Quercetin’s inhibitory effect on
EV71 virus-infected RD cells

To assess the impact of Quercetin on EV71 virus-infected RD
cells, we determined the maximum non-toxic concentration of
Quercetin and prepared dilutions in equal increments. RD cells
were infected with 100 TCID50 of the virus as the infection
concentration. Quercetin concentrations of 25, 12.5, 6.25, and
3.125 μM were prepared using DMEM with 2% FBS as the
solvent. Cells were treated with 100 μL of the EV71 virus and
Quercetin simultaneously for 2 h. Subsequently, the Quercetin
and virus were removed, the cells were washed once with PBS,
and 200 μL of DMEM containing 2% FBS was added. The inhibitory
effect of Quercetin on the EV71 virus was assessed at 48 h using the
CCK-8 assay. In addition, varying concentrations of Quercetin were

co-administered with EV71 to RD cells. After 48 h, the viral
supernatant was harvested and underwent three freeze-thaw
cycles to release EV71 from the RD cells. Subsequently, the
mixture was centrifuged at 3,500 rpm for 15 min, and the
supernatant was collected. Finally, the TCID50 value of the
EV71 virus was quantified in the presence of distinct
concentrations of Quercetin.

2.6.3 Immunofluorescence analysis of Quercetin’s
effect on EV71 virus-infected RD cells

RD cells were seeded at 1 × 105 cells/mL concentration on 24-
well plates and specialized cell slides. Upon reaching 80%
confluency, a concentration of Quercetin, known for its
significant anti-EV71 effect, was added to the cells, along with
100 TCID50 of EV71. After 48 h, the cells were fixed with 4%
paraformaldehyde for 15 min and permeabilized with 0.2%
TritonX-100 (diluted in PBS) for 10 min at room temperature. A
blocking solution containing 1% BSA, 3% donkey serum, and 0.1%
TritonX-100 in PBS was applied at room temperature for 45 min.
The primary antibodies (VP-1, Invitrogen Cat. No.: WD3250882A,
Abnova Cat. No.: MAB1255-M08, p-NF-κB p65, Santa Cruz Cat.
No.: sc-135769, TNF-α, Cell Signaling Cat. No.: D2D4, IL-1β, Santa
Cruz Cat. No.: sc-52012) diluted in blocking buffer were added and
incubated overnight at 4°C. The secondary antibodies (Alexa Fluor
488-labeled Goat Anti-Rabbit IgG and Alexa Fluor 488-labeled Goat
Anti-Mouse IgG, Beyotime Cat. No.: A0423, A0428, (Alexa Fluor
594-labeled Goat Anti-Rabbit IgG and Alexa Fluor 594-labeled Goat
Anti-Mouse IgG ZSGB-BIO Cat. No.: ZF-0516, ZF-0513) diluted in
PBS were then incubated with the cells for 30–40 min at room
temperature. DAPI staining was performed for 5 min, followed by
mounting with an anti-fluorescence quenching mounting solution.
Confocal microscopy was used to capture images of the cells using

FIGURE 1
Target genes of ML. (A) “ML-active ingredient-target” network diagram. The orange oval in the outer circle of the figure is the target gene, the green
diamond is the active ingredient of ML, and the purple “V” shape is the traditional Chinese medicine ML. (B) PPI network diagram of mulberry leaf-related
genes. The larger the circle and the darker the color, the larger the node degree.
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wavelengths of 405 nm, 561 nm, and 488 nm. The fluorescence
intensity and expression of VP1, p-NF-κB p65, IL-1β and TNF-α
were analyzed and quantified using the Image-Pro-Plus 6.0 image
analysis system.

2.6.4 Western blot detection of NF-κB and MAPK
signaling pathway-related proteins

RD cells were treated with Quercetin and EV71 for 48 h,
followed by harvesting and lysing in radioimmunoprecipitation
assay (RIPA) lysis buffer (Beyotime Biotechnology, P0013C)
containing a protease inhibitor cocktail. The lysates were
centrifuged at 15,000 rpm for 15 min at 4°C. The protein
concentration was determined using the bicinchoninic acid
reagent (Beyotime Biotechnology Co., Ltd.), and the proteins
were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis. The electrophoresis products were then
transferred to polyvinylidene fluoride membranes (Merck,
Darmstadt, Germany). Subsequently, the membranes were
incubated with primary antibodies in 5% BSA in TBST (TBS
with 0.05% Tween-20) overnight at 4°C. Afterward, the
membranes were washed three times with TBST for 10 min each
and then incubated with secondary antibodies at 37°C for 1 h. After
this, the membranes were washed three times with TBST for 10 min
each time. Finally, chemiluminescent detection was performed using
specific antibodies for the targeted proteins (ERK1/2, Santa Cruz
Cat. No.: sc-514302; p-ERK, Santa Cruz Cat. No.: sc-7383; JNK,
Santa Cruz Cat. No.: sc-7345; p-JNK, Santa Cruz Cat. No.: sc-6254;
p38, Santa Cruz Cat. No.: sc-271120; p-p38, Santa Cruz Cat. No.: sc-
7973; NF-κB p65, Santa Cruz Cat. No.: sc-515045, p-NF-κB p65,
Santa Cruz Cat. No.: sc-135769). In the Western blotting analysis, it

was observed that JNK exhibited strong signals at 54 kDa, with only
a faint signal detected at 46 kDa. Similarly, ERK displayed strong
signals at 42 kDa, with a weak signal at 44 kDa. This variance might
be attributed to the antibodies’ specificity, prompting us to focus our
analysis on the protein bands displaying strong signals.

2.7 Statistical analysis

The data analysis and visualization were performed using
GraphPad Prism version 8.0 software (GraphPad Software, San
Diego, CA, United States). The data are presented as mean ± SD.
The data from in vitro experiments were analyzed using a one-way
ANOVA analysis of variance, followed by the Tukey test for multiple
comparison tests. A p-value of <0.05 was considered statistically
significant.

3 Results

3.1 The active ingredients and target genes
of ML

Utilizing the TCMSP database, we retrieved the active
ingredients of ML, resulting in 269 unique compounds. Through
a screening process, we identified 29 key active ingredients, and their
respective target information was extracted from the database. The
target information was then mapped to gene names using the
UniProt database, resulting in 498 related target genes (Table 1).
After removing duplicate entries, we obtained 231 potential target

FIGURE 2
Prediction of potential anti-EV71 target genes in ML. (A) Venn diagram of disease drug targets. The green part is the target gene related to the
EV71 virus, and the blue part is the target gene associated with ML. (B) Network diagram of common genes and active components of ML. The orange
ellipse in the outer circle is the potential target gene of mulberry leaf resistance to EV71, the green diamond in the inner circle is the active ingredient of
traditional Chinese medicine corresponding to these potential target genes, and the “V” shape in the middle is the traditional Chinese medicine
mulberry leaf.
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genes associated withML. Using Cytoscape software, we constructed
a network diagram to visualize the association between ML active
ingredients and target genes (v3.9.1) (Figure 1A).

3.2 The PPI network of mulberry leaf target
genes was constructed

The relevant target genes associated with ML were obtained
from the STRING protein database, specifically focusing on Homo
sapiens species. The resulting protein-protein interaction (PPI)
network diagram comprised 221 nodes and 4001 edges,
representing mulberry leaf-related target genes. The average
node degree in the network was 36.2. To visualize the network
diagram, Cytoscape software (V3.9.1) was utilized, and the
CytoNCA program package within the software was employed
to arrange the graph based on node degree, determining the size
and color of the nodes. The top 10 genes with the highest node

degrees were akt1, alb, il-6, tp53, tnf, ctnnb1, hsp90aa1, fos, egfr,
and il-1b (Figure 1B).

3.3 Potential target genes for anti-EV71
action of ML

Through the GENECARDS and NCBI databases, a search with
“EV71”as the query resulted in the obtaining of 233 EV71-related
genes. These genes were then compared with the mulberry leaf-
related target genes using the Jvenn online tool, resulting in
29 common genes (Figure 2A). We consider these 29 common
genes as potential genes for ML in resisting the EV71 virus. The
identified genes are: hspb1, chrm2, odc1, akt1, il10, egfr, ikbkb, map,
casp3, mapk1, chuk, vcam1, ifng, il6, cxcl8, ccl2, bcl2, ccnd1, bax,
cxcl10, ptgs2, icam1, il1b, nos3, hmox1, mapk14, tnf, il2, and g6pd.

3.4 Quercetin is a key component of ML in
the fight against EV71

The prediction of potential target genes of ML against
EV71 yielded 29 genes. Further screening was conducted to
identify the active ingredients of ML associated with these target
genes. Utilizing Cytoscape software (V3.9.1), a network diagram
illustrating the interplay between the potential target genes and
active ingredients of ML was generated (Figure 2B). Significantly,

FIGURE 3
Molecular docking. (A)Docking and binding ability of target gene
and small molecule library molecule. (B) Molecular docking model.
Red is alkyl conjugation, and green is van der Waals interaction.

FIGURE 4
GO and KEGG enrichment analysis. (A) Functional enrichment of
GO molecules. (B) KEGG metabolic pathway enrichment analysis.
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25 out of the 29 common targets were found to be closely associated
with Quercetin, highlighting its pivotal role as the critical
component in ML for combating EV71.

3.5 Strong affinity between critical
components of ML and EV71 target genes

We employed the String database to import twenty-five
common targets of Quercetin and EV71. Meticulous analysis
successfully identified the top ten interacting genes: akt1, ccnd1,
ptgs2, tnf, casp3, hmox1, mapk8, il1b, il6, and nos3. Our objective
was to pinpoint key components in ML that hold potential
therapeutic efficacy against EV71. Ten key ingredients were
selected from the potential components of ML against EV71:
beta-sitosterol, arachidonic acid, tetramethoxyluteolin, Moracin
D, Quercetin, beta-carotene, stigmasterol, kaempferol, Moracin
E, and iristectorigenin A. These active ingredients were organized
into a small molecule library, and molecular docking was
performed with the top ten target genes to obtain binding
energy values. A heatmap was generated to display the
binding energy results (Figure 3A). The results demonstrated
that the binding energies between the target genes and the active
components in the small molecule library were all ≤ −4.25 kcal mol−1,
indicating a strong interaction between the main active ingredients of
ML and the macromolecular protein against EV71, specifically
involving key residues. Quercetin exhibits a remarkable affinity
towards the target mentioned above genes, thus enabling us to
conduct a preliminary assessment of its efficacy in combating
EV71. The results with strong binding ability were visualized using
MOE 2019.0102 software (Figure 3B).

3.6 NF-κB signaling pathway is the primary
mechanism of Quercetin anti-EV71

Quercetin assumes a pivotal role in the efficacy of ML against
EV71. We conducted an in-depth analysis to identify 25 target genes
associated with Quercetin’s action against EV71, followed by
performing an enrichment analysis utilizing the DAVID database.
This analysis yielded 402 enriched Gene Ontology (GO) items,
encompassing 268 biological processes (BP), 75 cellular components
(CC), and 59 molecular functions (MF) (Figure 4A). Additionally,
KEGG pathway analysis identified 66 enriched signaling pathways
(Figure 4B). We selected the top 15 items based on their p values to
investigate these findings further and visualized them using R
4.2.1 software. The enriched terms encompass diverse functions,
including negative regulation of transcription from RNA polymerase
II promoter, positive regulation of GTPase activity, cytosol, extracellular
exosome, protein binding, and identical protein binding. In parallel,

FIGURE 5
Quercetin improves survival of EV71-infected RD cells. (A)
Detection of Quercetin on RD cytotoxicity. Quercetin was serially
diluted in media containing 2% FBS at concentrations of 0, 0.78125,
1.5625, 3.125, 6.25, 12.5, 25, 50, 100, and 200 μM, and no
quercetin was considered as a normal RD cell control. Subsequently,
the cytotoxicity of Quercetin on RD cells was determined by the CCK-
8 assay. Measure the absorbance at 450 nmusing amicroplate reader.
The TC0 value was calculated as the maximum non-toxic
concentration of the drug. Data are presented as mean values from
three independent experiments. (B) Inhibitory effect of Quercetin on
EV71 replication. Quercetin was diluted in DMEM with 2% FBS to 0,
1.5625, 3.125, 6.25 and 12.5 μM. No quercetin was considered in the
EV71-infected control group, and the antiviral effect of Quercetin was
tested. Data are represented as means from three independent
experiments, SD, and analyzed by one-way ANOVA, compared with
the NC group (***p < 0.001). (C)Inhibitory effect of quercetin on
EV71 virus TCID50. RD cells were infected with EV71 and treated with

(Continued )

FIGURE 5 (Continued)
Quercetin. The replication ability of EV71 was significantly
weakened upon quercetin treatment. These findings highlight the
potent inhibitory effect of Quercetin on EV71 virus replication.
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KEGG analysis revealed relevant pathways such as the NF-κB signaling
pathway, IL-17 signaling pathway, and TNF signaling pathway. These
comprehensive findings strongly suggest that Quercetin, the primary

active ingredient in ML, may exert its antiviral effect against
EV71 through involvement in these signaling pathways, mainly via
the NF-κB signaling pathway.

FIGURE 6
Quercetin inhibited the co-localization staining of NF-κB signaling pathway-related proteins and VP-1 in EV71-infected RD cells. (A) VP-1 and p-NF-
κB p65 protein levels in RD cells. (B) VP-1 and TNFα protein levels in RD cells. (C) VP-1 and IL-1β protein levels in RD cells. (immunofluorescence, 600×,
scale bar: 20 μm). Comparison with normal control group, **p < 0.01. Comparison with EV71-infected group ##p < 0.01.
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3.7 Quercetin improves survival of EV71-
infected RD cells by inhibiting the NF-κB
signaling pathway

The CCK-8 assay was conducted to assess the cytotoxicity of
different concentrations of Quercetin on RD cells at 24 h, 48 h, and
72 h. It was determined that the maximum non-toxic concentration
(TC0) of Quercetin on RD cells was 12.5 μM (Figure 5A).
Additionally, we employed GraphPad Prism version 8.0 software
to compute the drug’s EC50 (78.69 μM) and IC50 (291.2 μM) at the
48-h mark. Subsequently, we determined the selection index (SI) to
be 3.7. The cytopathic effects of the virus on RD cells were observed,
and the TCID50 of the EV71 virus was calculated using the Reed-
Muench method as 10−4.5/mL. For subsequent experiments, a
concentration of Quercetin below TC0 (12.5 μM) and
100 TCID50 (10

−2.5/mL) of EV71 virus were selected for a 48-h assay.
The effectiveness of different concentrations of Quercetin

against the EV71 virus was assessed using the CCK-8 method.
The results revealed that 12.5 M Quercetin exhibited the most
significant anti-EV71 virus effect. Compared to the cell control
group (100% survival rate), the survival rates were 53.86% at 25 μM,
76.11% at 12.5 μM, 63.20% at 6.25 μM, 52.82% at 3.125 μM, 47.02%
at 1.5625 μM, and 35.51% in the virus group (Figure 5B). The
TCID50 detection results demonstrated a notable decrease in the
virus replication capability of EV71 treated with Quercetin
compared to RD cells infected with regular EV71. This
observation exhibited a correlation with the varying
concentrations of Quercetin utilized (Figure 5C).

VP1 of the EV71 virus was co-stained with p-NF-κBp65, TNF,
and IL-1β. Co-localization of VP1 with p-NF-κBp65, TNF, and IL-
1β proteins was observed. The levels of p-NF-κBp65, TNF, and IL-
1β were significantly higher compared to the control group. In the
quercetin treatment group, p-NF-κBp65, TNF, and IL-1β levels
showed a dose-dependent reduction (Figure 6). These findings
suggest that the anti-EV71 virus mechanism of Quercetin may
involve the inhibition of the NF-κB signaling pathway. The
Western blot results corroborated the findings observed in the
Immunofluorescence analysis (Figure 7).

3.8 Quercetin inhibits the MAPK signaling
pathway

JNK, ERK, and p38 are proteins related to the MAPK signaling
pathway. The Western blotting results showed that the EV71 virus
could cause overactivation of the MAPK pathway in RD cells, with
increased expression and phosphorylation levels of JNK, ERK, and
p38. Quercetin demonstrated a downregulation in the expression
and inhibition of JNK, ERK, and p38 phosphorylation caused by
EV71. Quercetin inhibited the MAPK signaling pathway activated
by EV71 (Figure 8).

4 Discussion

HFMD is a highly contagious viral illness primarily caused by
enteroviruses, notably coxsackievirus A16 (CV-A16) and
enterovirus 71 (Aswathyraj et al., 2016; Xing et al., 2014). Among

them, EV71 is associated with the most severe symptoms and
highest mortality rate (Yang et al., 2009; Zhang et al., 2010; Li
et al., 2017). Unfortunately, no specific drugs are currently available
for the treatment of these viruses (Ng et al., 2015). Extensive research
efforts have been dedicated to developing anti-EV71 drugs over the
past 50 years (Wang et al., 2023). Traditional Chinese medicine has
revealed promising monomers, such as glycyrrhizic acid, baicalin,

FIGURE 7
Quercetin inhibited activation of the NF-κB signaling pathway in
EV71-infected RD cells. (A) Western blot analysis was performed to
evaluate the effect of Quercetin on the expression of proteins related
to the NF-κB signaling pathway in EV71-infected RD cells. It was
observed that EV71 infection triggered activation of the NF-κB
signaling pathway. However, subsequent treatment with Quercetin
resulted in attenuated activation of NF-κB. (B) After actin
normalization, we assessed the ratio of related proteins within the NF-
κB signaling pathway. Our statistical analysis showed that compared
with the EV71 group, the difference was statistically significant (*p <
0.05, **p < 0.01, ***p < 0.001).
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indigo root, Quercetin, kaempferol, and apigenin, which possess
anti-EV71 effects (Tsai et al., 2011; Yang et al., 2012; Wang et al.,
2013; Zhang et al., 2014; Li et al., 2015; Wang et al., 2016; Yao et al.,
2018; Dai et al., 2019). Some of these components are already
utilized in clinical practice. While Western medicines exhibit
satisfactory inhibitory effects on EV71 replication, their
mechanisms often target a single aspect and carry a risk of

carcinogenesis (Friedman et al., 2009; Brambilla et al., 2010). In
contrast, traditional Chinese medicine embraces a holistic approach,
exerting antiviral effects through overall balance. Chinese medicine
is distinguished by its multifaceted components and targets,
affordability, low toxicity, and minimal cancer risk (Csikós et al.,
2021; Zhu et al., 2022). Its antiviral properties are achieved through
antioxidant, immune regulatory effects (Colunga Biancatelli et al.,
2020), inhibition of viral-induced inflammatory responses (Lim
et al., 2018; Saeedi-Boroujeni and Mahmoudian-Sani, 2021), and
suppression of virus replication by inhibiting oxidative stress (Chen
et al., 2022).

ML, a traditional Chinese medicine, has significant medicinal
value and has shown efficacy in treating metabolic disorders such as
diabetes, dyslipidemia, obesity, atherosclerosis, and hypertension
(Zhang et al., 2022; Cheng et al., 2022). Furthermore, ML has been
identified as a potential treatment option for viral diseases (Pronin
et al., 2021). Our research was primarily dedicated to unraveling the
antiviral attributes of mulberry leaves (ML), identifying multiple
active constituents with potent antiviral effects. An extensive body of
research has effectively showcased the antiviral prowess of
compounds such as Quercetin, kaempferol, and beta-carotene
(Sheehan et al., 2012; Ding et al., 2018; Shen et al., 2021; Chen
et al., 2022; Shokry et al., 2023). Furthermore, stigmasterol has
demonstrated its multifaceted potential, encompassing antioxidant,
antiviral, antifungal, antibacterial, and anticancer properties,
achieved through immune regulation and anti-inflammatory
mechanisms (Petrera et al., 2014). Iristectorigenin A possesses
antioxidant and anti-inflammatory effects (Al-Qudah et al., 2015;
Lim et al., 2017). Moracin D and Moracin E exhibit antioxidant
effects and hold substantial medicinal value in antiviral and
anticancer research (Yoon et al., 2021; Mohan Kumar et al.,
2022). These active constituents of ML exert antiviral effects
through diverse mechanisms, highlighting the potential of ML in
countering the EV71 virus. Furthermore, the collective antiviral
impacts of these active constituents might demonstrate synergistic
properties.

By examining 29 common targets shared by ML and EV71, we
predicted the potential function of these genes in ML anti-E71 virus
through network pharmacology studies. A number of these genes
are involved in oxidative stress, inflammation, vascular permeability,
and immune function. For example, AKT1 activation promotes cell
proliferation and suppresses cell apoptosis, making it a significant
participant in EV71’s immune-inflammation mechanism (Shi et al.,
2013). IL-6, IL-1B, and TNF-α exhibit immunomodulatory and pro-
inflammatory effects (Luo et al., 2019; Yi et al., 2020). MAPK1 is
crucial in the inflammatory response (Xu et al., 2023). Inhibiting
CASP3 activity reduces EV71 virus protein expression and
replication and can trigger pyroptosis as an alternative to
apoptosis, thereby hindering EV71 infection (Song et al., 2018).
HMOX1 contributes to the host’s resistance to the virus through the
oxidative stress defense system (Zhang et al., 2022). In summary,
these target genes of ML employ diverse mechanisms to inhibit
EV71 virus infection and exert their influence at various stages of
disease development.

To elucidate the mechanism of ML against the EV71 virus, we
conducted GO enrichment analysis on the key targets of Quercetin,
the primary anti-EV71 component of ML, and performed KEGG
enrichment analysis to predict associated signaling pathways

FIGURE 8
Quercetin inhibits the activation of the MAPK signaling pathway
in EV71-infected RD cells. (A) UsingWestern blot analysis, we assessed
the effect of Quercetin on the expression of proteins within the MAPK
signaling pathway in EV71-infected RD cells. Our findings suggest
that EV71 infection triggers the activation of the MAPK signaling
pathway. Subsequent quercetin treatment produced results
consistent with the inhibitory effects observed in the NF-κB signaling
pathway. (B) After actin normalization, we assessed the proportion of
associated proteins within the MAPK signaling pathway. Our statistical
analysis showed that compared with the EV71 group, the difference
was statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001).

Frontiers in Pharmacology frontiersin.org10

Liu et al. 10.3389/fphar.2023.1260288

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1260288


responsible for the antiviral effect. The KEGG database
encompasses diverse biological domains, furnishing extensive
data and insights spanning genomics, proteomics,
metabolomics, and more. This encompassing repository
facilitates the identification of promising targets associated with
drugs and ailments, along with pertinent signaling pathways and
biological functions (Lu, et al., 2020). Rigorous procedures have
been implemented to ascertain the dependability of our KEGG
enrichment analysis outcomes. In this process, data sources are
carefully reviewed, statistical significance is evaluated, cross-
validation is carried out thoroughly, and the biological
relevance of the data is carefully interpreted. The findings
suggest a potential relationship between Quercetin and the NF-
κB signaling pathway. This pathway, comprising canonical and
non-canonical pathways, plays a vital role in various biological
processes, including the regulation of B and T-cell immunity (Lu
et al., 2021). Many viruses activate or evade antiviral immune
responses through this pathway (Struzik and Szulc-Dąbrowska,
2019; Khatiwada et al., 2017). EV71 triggers NLRP3 inflammasome
activation via the NF-κB pathway, and inhibiting this pathway aids
the host’s defense against EV71 infection in the central nervous
system (Gong et al., 2022). Severe EV71 infection is associated with
significantly elevated TNF levels (Duan et al., 2014; Sun et al.,
2018). The TNF-α-mediated NF-κB pathway is essential for
inflammatory responses, and the 2C protein of EV71 promotes
NF-κB activation via TNF-α. The activation of NF-κB can be
triggered by the TNF-α-related factor 2, the MEK kinase 1, the
IKKα, or the IKKβ (Zheng et al., 2011).

To validate the antiviral effect and mechanism of ML, we
conducted in vitro experiments to verify the antiviral activity of
Quercetin, the primary active compound derived from ML.
Immunofluorescence analysis was performed to assess the
expression of essential proteins in the NF-κB signaling
pathway. The results demonstrated that Quercetin exhibited
significant inhibition against the EV71 virus. Pretreatment of
the virus with Quercetin weakened its toxicity and directly killed
it, leading to its antiviral effect in cell experiments.
Immunofluorescence analysis revealed reduced protein levels
of p-NF-κB p65, TNF-α, and IL-1β in the quercetin-treated
group compared to the EV71 group. The NF-κB signaling
pathway is crucial in the inflammatory response
(Oeckinghaus et al., 2011). TNF-α activates the non-canonical
NF-κB pathway, leading to an inflammatory response (Yu et al.,
2020). Downstream kinase IKKα is activated by TNF-α,
promoting NF-κB phosphorylation (Sun, 2011). IL-1β induces
NF-κB inhibitor phosphorylation, translating NF-κB to the
nucleus and transcription of cytokine and chemokine genes
(Cheng et al., 2019). The mammalian NF-κB family
comprises five distinct proteins: p50, p52, p65 (also
recognized as RelA), RelB, and c-Rel. These NF-κB family
constituents engage in diverse combinations of homo- and
heterodimeric associations with each other, culminating in
the formation of biologically active protein complexes.
Among these, the p65-p50 heterodimer is the prevailing form
within cellular contexts (Chen, et al., 1998). Notably, the
p65 protein garners substantial attention among the five NF-
κB family members due to its extensive scrutiny. This heightened
focus is partly attributable to its role as an activating component

within the p65-p50 heterodimeric complex (Lecoq, et al., 2017).
Upon infection with a pathogen, the activation of the
predominant p65-p50 heterodimer of NF-κB occurs, leading
to the translocation of p65 and p50 into the nucleus (Medina
et al., 2002). Additionally, the phosphorylation of IκBα,
mediated by IκB induced by TNF-α, results in its
ubiquitination. This process ultimately leads to the nuclear
translocation of NF-κB and the regulation of target gene
transcription (Papa et al., 2009). The nuclear translocation of
NF-κB p65 and NF-κB p50 has been observed in the mouse liver
following infection with the Dengue virus (DENV) (Sreekanth
et al., 2020). This study investigated p65 and phosphor-p65 in
the cytoplasm and nucleus of whole-cell lysates. Separate studies
on these fractions would provide more insight into Quercetin’s
role in regulating nuclear translocation of p65. The inhibitory
effect of Quercetin on the NF-κB signaling pathway and its
ability to decrease the synthesis of pro-inflammatory cytokines,
specifically TNF-α and IL-1β, as observed in the study conducted
by (Bezzi et al., 2001), aligns with the findings of the current
investigation, suggesting that this mechanism may contribute
significantly to Quercetin’s antiviral activity against EV71.

Moreover, our investigation into the conduction of the
MAPK signaling pathway unveiled that Quercetin’s impact on
this pathway parallels that of the NF-κB signaling pathway.
Notably, the inhibitory effect of Quercetin on both pathways
follows a dose-dependent pattern. The MAPK signaling pathway
employs at least three activation routes to transmit extracellular
signals to the nucleus. These include the classical MAPK
pathway, MAPK/ERK, the JNK/MAPK signaling pathway, and
the p38/MAPK signaling pathway. The MAPK/ERK signaling
pathway is activated by signals from cell surface receptors like
receptor tyrosine kinases (RTKs) or G protein-coupled receptors
(GPCRs) (Delire and Stärkel, 2015). The process of ERK
activation entails phosphorylation by activated RAF,
subsequently activating MEK, resulting in the direct
phosphorylation of ERK (Liu et al., 2018). It has been
documented that garlic extract inhibits reticuloendotheliosis
virus (REV) replication by suppressing ERK expression
(Wang et al., 2017). DNA viruses, including Herpes Simplex
Virus 1 (HSV-1), exploit the MAPK/ERK pathway for
intercellular dissemination (DuShane and Maginnis, 2019;
Watanabe et al., 2021). JNK, also recognized as stress-
activated protein kinase (SAPK), represents a subfamily
within the canonical MAPK signal transduction cascade
(Zeke, et al., 2016; Pua, et al., 2022). JNK proteins promptly
respond to various cellular stimuli, including inflammatory
cytokines, growth factors, ultraviolet radiation, bacterial and
viral infections, heat shock, and osmotic and genotoxic stress
(Kusumaningrum, et al., 2018). The promotion of Duck Plague
Virus (DPV) proliferation has been documented through the
inhibition of the immune interferon (IFN) signaling pathway
and inflammatory pathways by JNK, as reported by Wu, et al.
(2022). Furthermore, the activation of JNK plays a crucial role in
Varicella-Zoster Virus (VZV) protein expression and
replication, as highlighted by Kurapati et al. (2017).
p38 mitogen-activated protein kinases form a class of
evolutionarily conserved serine/threonine kinases. They
function as intermediaries, connecting extracellular signals to
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intracellular processes that regulate a multitude of cellular
functions (Falcicchia, et al., 2020; Romero-Becerra, et al.,
2020). Various extracellular stimuli can phosphorylate
p38 through the classical MAPK kinase (MAP3K)–MAP
kinase kinase (MKK) pathway. Phosphorylated p38, in turn,
activates an array of transcription factors, protein kinases,
cytoplasmic and nuclear proteins, and substrates downstream
of this phosphorylation encompass the regulation of
inflammatory responses, cell differentiation, apoptosis, and
more (Yao, et al., 2020; García-Hernández, et al., 2021;
O’Neil, et al., 2018). Indeed, recent studies have demonstrated
that infection with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) can induce the activation of
p38/MAPK, resulting in an upregulation of proinflammatory
cytokines and an enhanced replication of the virus (Bouhaddou
et al., 2020). It has been observed that inhibiting the p38/MAPK
signaling pathway can effectively mitigate the Influenza virus
(IV) replication and the excessive production of
proinflammatory mediators (Yang et al., 2022). Additionally,
the infection of Newcastle Disease Virus (NDV) has been shown
to induce the activation of p38/MAPK/Mnk1 signaling,
facilitating the efficient synthesis of viral proteins (Zhan
et al., 2020). Previous research has indicated that inhibiting
the MAPK signaling pathway has significant implications in the
context of viral infections (Sun et al., 2023). The infection caused
by EV71 is closely linked to the signaling pathways of JNK and
p38 MAPK, which in turn activate the MAPK pathway,
increasing virus production and releasing proinflammatory
cytokines (Peng et al., 2014). EV71 triggers the activation of
the ERK MAPK pathway through the induction of c-Src-
mediated epidermal growth factor receptor (EGFR) activation
(Wong et al., 2005; Tung et al., 2011). Inflammation occurs as a
result of the activation of the MAPK pathway downstream of the
NF-κB signaling pathway (Roth Flach et al., 2015; Ramalingam
et al., 2020). In contrast, an overabundance of phosphorylation
in downstream proteins of MAPK has the potential to induce the
release and nuclear translocation of NF-κB, thereby intensifying
the inflammatory response (Schulze-Osthoff et al., 1997; Papa
et al., 2009; Sreekanth et al., 2020; Liu et al., 2022). Our research
findings underscore that Quercetin orchestrates the modulation
of the inflammatory response through these three MAPK
pathways. This influence encompasses the phosphorylation of
p65 by inhibiting the MAPK signaling pathway. Quercetin
further curtails the inflammatory response by inhibiting the
NF-κB signaling pathway, thus presenting a multifaceted
mechanism for mitigating inflammation.

5 Conclusion

In conclusion, this study employed network pharmacology and
in vitro experiments to investigate the mechanism of action of ML
against EV71 virus infection. The findings reveal that ML exerts a
substantial pharmacological effect against EV71 virus infection
through a multi-component, multi-target, and multi-pathway
approach. Quercetin, as the primary active component of ML,
plays a pivotal role in inhibiting EV71 virus infection by
targeting the NF-κB signaling pathway. These results provide

valuable insights into the therapeutic mechanism of ML in the
treatment of EV71 virus infection.
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