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Over the past two decades, Next-Generation Sequencing (NGS) has
revolutionized the approach to cancer research. Applications of NGS include
the identification of tumor specific alterations that can influence tumor
pathobiology and also impact diagnosis, prognosis and therapeutic options.
Pharmacogenomics (PGx) studies the role of inheritance of individual genetic
patterns in drug response and has taken advantage of NGS technology as it
provides access to high-throughput data that can, however, be difficult to
manage. Machine learning (ML) has recently been used in the life sciences to
discover hidden patterns from complex NGS data and to solve various PGx
problems. In this review, we provide a comprehensive overview of the NGS
approaches that can be employed and the different PGx studies implicating the
use of NGS data. We also provide an excursus of the ML algorithms that can exert
a role as fundamental strategies in the PGx field to improve personalized
medicine in cancer.
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1 Introduction

Pharmacogenetics is a branch of molecular biology and pharmacology that studies the
relationships between the genetic background of individuals and the effects of a particular
treatment (Nebert, 1999). In recent years, thanks to rapid access to high-throughput
sequencing technologies, commonly referred to as Next-Generation Sequencing (NGS),
pharmacogenetic studies have seen an upsurge in the identification of variants associated
with differential patient response to drugs, leading to an evolution from pharmacogenetics
to pharmacogenomics (Auwerx et al., 2022). Although these terms have subtle differences,
they are generally used as synonyms and will be referred to as PGx in the following.

In many clinical trials, the primary endpoint is not met because of inadequate patient
cohort selection, stratification criteria, or genotype and phenotype characterization, which
in turn can introduce confounding factors and reduce the statistical power of the study
(Fogel, 2018). Despite demonstrated benefit for a few patients, failure to meet the primary
endpoint may reduce success rates of anticancer drugs entering clinical practice, with only
about 5% of drugs approved by the Food and Drugs Administration (FDA) (Harrison,
2016). These issues are critical in cancer therapy because drugs can be ineffective for a
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variety of reasons, including altered expression of target genes by
cancer cells and development of resistance to treatment, as well as
inappropriate selection for clinical study design. As a result, many
patients with advanced disease may lose access to potentially
effective treatments. For these reasons, identifying the genetic
factors responsible for drug response and resistance in cancer is
mandatory for better patient management and treatment.

The Human Genome Project is considered a milestone in the
context of sequencing experiments, and has contributed to an
upsurge in both the genetic characterization of tumors and the
development of sequencing technologies where NGS has become
mainstream. The application of NGS technology has enabled the
detection of multiple genetic mutations or altered gene expression in
many samples and in a few runs, providing a large amount of data in
a short turnaround time and at a competitive cost (Hussen et al.,
2022). In addition, NGS allows researchers to identify somatic and
germline variants within the same experiment, both of which are
important in the context of cancer, drug response, and drug toxicity.
Somatic variants are mutations that arise de novo in tissue-specific
cells due to environmental stress and errors in DNA replication, and
are divided into driver and passenger mutations. Driver mutations
have the effect of conferring proliferative advantages, whereas
passenger mutations occur in cells that already carry a driver
mutation and are a consequence of genomic instability (Bozic
et al., 2010). In contrast, germline mutations are inherited
changes that affect reproductive cells and are present in all
somatic cells; they may be common or rare in a given
population. Of note, not only are somatic variants important for
cancer treatment and mainly used as molecular targets, but germline
mutations may also contribute, at least in part, to tumor
development, progression, and resistance (Chen X et al., 2023;
Wang et al., 2023).

Genetic variations in genes related to pharmacokinetic processes
(PK, i.e., absorption, distribution, metabolism and excretion), or in
genes related to pharmacodynamics (PD, mechanisms of action and
post-target signaling), can lead to drug inefficacy or toxicity, making
treatment unavailable to patients. The most commonly inherited
genetic variants include single nucleotide polymorphisms (SNPs),
insertions/deletions (INDELs), copy number variations (CNVs) and
a variable number of tandem repeats (Ismail and Essawi, 2012; Yu
et al., 2021). The frequency of these variants also plays a role in
adverse drug reactions and inefficacy, as not only common variants,
but also low-frequency and rare variants should be considered for
drug-specific functional alterations (Lauschke et al., 2018).
Processing the high-throughput data obtained by NGS in PGx
approaches is challenging. To cope with this huge amount of
omics data, numerous bioinformatics pipelines have
been developed.

Machine learning (ML) is a branch of artificial intelligence based
on statistical learning that is able to predict a response or recognize
relationships between complex data structures. Thanks to its
flexibility, ML is also used in medical and biological sciences
(Handelman et al., 2018). So far, many efforts have been made to
improve ML algorithms for cancer diagnosis, prognosis
and treatment.

Existing reviews mainly address the use of omics data in cancer
and pharmacogenomics, but to our knowledge very few of them
focus on the use of machine learning in cancer pharmacogenomics.

For these reasons, although the topics covered here are quite
extensive and are not addressed in detail, this review aims to
highlight emerging research trends and underlying critical issues
that may be encountered by new researchers approaching ML and
pharmacogenomics in cancer. In this review, we provide a
comprehensive overview of NGS applications and PGx studies in
personalized medicine. The first chapters are dedicated to
sequencing applications (e.g., genome, exome, transcriptome),
with a focus on targeted and whole sequencing approaches. We
also provide an overview of omics data generated by NGS in cancer
research and its application to PGx studies, focusing on targeted
therapy, efficacy, and toxicity. We next analyze the types of ML
algorithms and their application in cancer research. Finally, we
discuss about the challenges faced by the ML approach in PGx
studies and make suggestions for further improvements.

2 NGS approaches

It is widely acknowledged that NGS has been groundbreaking in
cancer research. Over the past two decades, many NGS technologies
have been developed to meet multiple needs and have become even
more sophisticated. Figure 1 provides an overview of NGS
technologies and strategies for investigating the molecular
background of cancer.

2.1 Whole genome, whole exomes and
whole transcriptome sequencing

From a theoretical standpoint, characterization of the entire
genetic background of the tumor should be considered the most
comprehensive strategy to gain insight into tumor biology. Whole
genome sequencing (WGS) and whole exome sequencing (WES) are
NGS approaches in which virtually the entire genome (WGS) or the
protein-coding regions (exons) of the genome (WES) are sequenced.
Both approaches can be used in cancer research to sequence normal
tissue (e.g., blood) and tumor tissue to discover new targets for
therapies and biomarkers of cancer stage, predisposition, and
response to therapy. In addition, sequencing of paired tumor and
normal tissues allows unambiguous identification of individual
germline and somatic variants as well as loss of heterozygosity
and the “second hit” mutations (Mandelker and Ceyhan-
Birsoy, 2020).

In the clinical setting, somatic and germline variants can be
identified using both WGS and WES approaches but some
important aspects should be highlighted. There are two main
advantages of WGS: first, the discovery of novel genomic
variants, including single nucleotide variants (SNVs) and
structural variants (SVs) such as CNVs, INDELs, variable
stretches in tandem repeats and balanced chromosomal
translocations; second, the sequencing result includes coding,
non-coding and mitochondrial DNA (Sims et al., 2014). On the
other hand, WES highlights coding variants that are easier to study
and whose phenotypic effects are more functional to assess.

Although it could be considered an advantage to sequence the
whole genome at once, since different types of variants can be found
with the same sequencing library, some limitations should be
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considered. First, we need to distinguish between two key
parameters in sequencing, coverage depth and coverage itself.
Coverage depth is a measure of how often a particular base in a
sequence is seen during sequencing and can be an indicator of the
reliability of the results, while coverage is the percentage of the
genome that is sequenced during the experiment. These parameters
are closely related and must be weighed when researchers define the
goal of their studies (Sims et al., 2014; Meienberg et al., 2016).
Although the coverage of WGS is higher than that of WES, the
average depth of coverage in WGS experiments may be low. In
contrast, WES has a higher average depth of coverage compared to
WGS because WES only covers the exons that account for about 2%
of the genome. Another limitation is related to the data generated by
sequencing, as WGS data are very huge, and processing and storing
such amount of data requires adequate computational resources,
which may be a limit in some contexts. Finally, the cost of WGS

experiments is usually higher than WES, especially in
clinical settings.

For these reasons, WES has long been considered the gold
standard for detecting genetic variants. However, comparative
WGS and WES studies have recently shown that WGS is more
powerful than WES in exome variant detection, providing broader
coverage and better variant detection, and costs are now decreasing
(Belkadi et al., 2015). In addition, the latest WGS library preparation
methods are PCR-free, while the WES library preparation methods
still rely on PCR amplification. This could lead to GC content bias
and misidentification of variants (Meienberg et al., 2016). In
addition, WES does not really cover the whole exome, so some
deleterious coding SNVs might be missed. As mentioned earlier,
WES is not validated for the detection of structural variants,
including CNVs and translocations, and finally, by definition, it
does not include non-coding intron regions. Therefore, WGS has

FIGURE 1
Omic data. Overview of NGS technology and applications in cancer research. Abbreviation: Ac, acetylation; ADP-ribo, ADP ribosylation; CNV, copy
number variation; Glyco, glycosylation; Lipid, lipidation; lncRNA, long non-coding RNA; Me, methylation; miRNA, microRNA; ncRNA, non-coding RNA;
OH, oxidrylic group; P, phosphorylation; SNV, single nucleotide variants; S-S, disulphide; Sumo, Sumoylation; TFs, transcription factors; Ub,
ubiquitination.
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become more attractive than WES for diagnostic purposes in recent
years (Belkadi et al., 2015; Lionel et al., 2018; Hou et al., 2022).

Whole transcriptome sequencing (WTS) is an RNA-based
sequencing strategy that captures the transcriptome repertoire,
and its applications include quantification of gene expression,
detection of alternative transcripts resulting from splice variants,
detection of chromosomal rearrangements leading to chimeric gene
fusions, and identification of the ever-growing family of non-coding
RNAs (Lakhotia et al., 2020; Li and Wang, 2021). Depending on the
research interest, total RNA extracted from samples should be
treated to remove unwanted RNA species, which may be a
limitation, especially in terms of time. On the other hand, the
loss of valuable reads and the management of background noise
are problems faced when no depletion is performed. Bulked WTS
has been used in cancer research to identify pathways and genes
involved in cancer development and, thanks to spatial
transcriptomics and single-cell sequencing, also to understand
tumor organization and interactions with the microenvironment
(Chen TY et al., 2023).

2.2 Whole vs. targeted sequencing

Many companies that have developed high-throughput
technologies have now launched numerous tumor-specific panels
to study cancer. Targeted panels sequence only a small part of the
genome because they are designed with probes targeting specifically
regions of interest, such as sets of genes, in a specific/custom fashion.
Depending on the size of the panel, they can achieve the depth of
coverage required to highlight specific pathogenic variants (Lenahan
et al., 2023). Targeted panels offer many advantages over WGS and
WES approaches, including reduced hands-on time, ease of
translation of raw data, profiling of specific tumor-associated
genes and customization of the panel. These advantages can
support the therapeutic decision-making process while reducing
the time required (Bewicke-Copley et al., 2019).

For their part, WGS and WES approaches can be extremely
useful in exploratory research and clinical trials, as they do not
require “a priori” knowledge of disease mechanisms and can reveal
novel molecular biomarkers. In this sense, the COGNITION study
has shown that comprehensive molecular profiling using WGS and
WES identifies a genomic signature in a subset of breast cancer
patients at high risk of recurrence after neoadjuvant treatment, for
whom targeted therapy solutions may be available (Pixberg
et al., 2022).

On the other hand, targeted panels can also be employed in
clinical trial design. In this case, panels could be used for many goals.
First, to stratify the cohort according to known biomarkers, as in the
case of the REGISTRI phase II clinical trial, in which a customized
DNA panel was developed to specifically identify KIT/PDGFRA
wildtype GIST patients eligible for regorafenib therapy (Martin-
Broto et al., 2023); second, to support the discovery of new specific
positive biomarkers, associated with response to therapy, as in the
RELAY phase III trial, in which a targeted approach was used to
assess ctDNA mutations and EGFR mutation dynamics after
erlotinib with or without ramucirumab treatment in NSCLC
patients (Garon et al., 2023); and finally, to identify actionable
tumor alterations and candidate genes for molecular targeted

therapies, as demonstrated in the MATCH study (Parsons et al.,
2022). Of note, many targeted panels, known as PanCancer panels,
are designed to cover many cancer-related genes, so the applications
of these panels are widespread for many different goals.

Whole and targeted sequencing approaches can also be
combined in clinical trials, as in the EVOLVE phase II study in
which WES of tumor tissue and a targeted panel of cell-free DNA
from blood were matched to discover novel genomic alterations
responsible for resistance to PARP inhibitors in high-grade serous
ovarian cancer (Lheureux et al., 2023).

In the clinical setting, things are different, as the cost of analysis
is one of the limiting factors for sequencing. In this scenario, targeted
panels are preferred because they have a lower cost per sample and
an easier data management (Bewicke-Copley et al., 2019). Targeted
panels are often designed to provide information on known
biomarkers such as genomic instability score (GIS), loss of
heterozygosity (LOH), microsatellite instability (MSI), and tumor
mutation burden (TMB). The latter biomarker is of great interest in
clinical practice, as pembrolizumab is the first FDA-approved
agnostic cancer therapy that can be used in tumors with high
TMB (Marcus et al., 2021); however, the sequencing method
used to assess TMB may impact clinical outcomes, by excluding
patients who might otherwise benefit from this treatment. Indeed,
WGS, WES, and targeted-based panels have been used to measure
TMB in cancer patients, with not only primary tumors but also
circulating DNA in blood proposed as an alternative source material.
In this context, WES of tumor and paired normal tissues is currently
considered the most accurate approach to determine TMB, although
this approach is both costly and time-consuming in the clinical
setting (McGrail et al., 2021). On the other hand, an approach that
uses targeted sequencing assays enriched in genes known to be
involved in cancer appears to be more feasible in the clinic,
particularly because these assays do not require paired tumor and
normal samples to determine TMB. However, the type of cancer
tested and the type of panel used to assess TMB can significantly
affect the outcome (Merino et al., 2020). Among the many examples
of targeted panels used in the clinical setting there are MyeloSeq, a
40-gene targeted panel used to determine variant and allele
frequencies in patients with suspected hematologic malignancies
(Barnell et al., 2021), the Oncomine Precision Assay, which tests
45 cancer-related genes (such as EGFR, KRAS, ALK, RET, BRAF,
and others) used in screening for genomic alterations that can be
treated with targeted therapy in NSCLC, colorectal cancer,
melanoma, breast cancer, and other malignancies (Werner et al.,
2022; Nindra et al., 2023), and other targeted panels such as the
TruSight Oncology, the AmpliSeq, the FusionPlex, the QIASeq
Multimodal Lung, which have demonstrated expertise in
identifying genetic variants, and the NTRK gene fusion panel
used to identify tumors sensitive to larotrectinib, an NTRK
inhibitor (Drilon et al., 2018; Stockley et al., 2023).

In addition, there is also an ethical aspect to consider, as
sequencing a larger portion of the genome may lead to the
identification of unsolicited findings that should be better
communicated to physicians and patients (Schoot et al., 2021).
Targeted panels therefore have a lower chance of discovering
new unsolicited findings, which facilitates clinical reports.

In summary, although WGS and WES sequencing are accurate
and do not require “a priori” knowledge of disease mechanisms,
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their introduction into clinical practice may not be feasible, mainly
because of coping with the volume of data and the cost per sample.
On the other hand, targeted sequencing may facilitate the
introduction of bulk sequencing into routine clinical practice
where testing of multiple molecular biomarkers has become
common practice, as has been the case with TMB and NTRK
gene fusions. Again, the best choice between the two strategies
must be balanced between cost and application.

2.3 Epigenomics

Epigenomic sequencing has proliferated in recent years.
Epigenetics is a branch of biology that studies the causal
interactions between genes and their products. Basically,
epigenetics studies all changes and phenotypes in gene expression
that cannot be attributed to genetic causes. The most important
changes can occur directly at the DNA, e.g., cytosine methylation, or
at the chromatin proteins, e.g., acetylation, methylation,
phosphorylation, and others (Kouzarides, 2007). The
consequence of these changes is the modulation of the
accessibility of the DNA sequence to enzymatic complexes, which
determines the state of gene activation.

Sequencing of epigenetic modifications (epigenomics) identifies
specific cancer signatures involved in tumorigenesis as well as cancer
metastasis and recurrence (Huang et al., 2018; Malta et al., 2018;
Sengupta et al., 2021). In particular, some histone modifications,
such as reduced lysine acetylation and methylation, may act as
prognostic biomarkers in breast cancer (Elsheikh et al., 2009; Zhou
et al., 2022) or they may predict response to treatment, as in the case
of immunotherapy (Peng et al., 2015; Hoffmann et al., 2023). In
addition, dysregulation of genes involved in chromatin remodeling
can also be a hallmark of a particular tumor. This is the case with
mutations of histone deacetylase (HDAC) in multiple myeloma and
lymphoma. HDAC inhibitors and DNA methylation inhibitors are
anticancer drugs developed to target the aberrant activity of these
molecules (Blumenschein et al., 2008; Galanis et al., 2009).

2.4 Proteomics and metabolomics

Proteomics and metabolomics are high-throughput screening of
protein expression and metabolite abundance, respectively.
Proteomics data can be considered a readout of the
transcriptome, but it has been reported that only 40% of protein
expression can be explained by a corresponding gene expression
profile (Ideker et al., 2001; Vogel et al., 2010). Proteomic studies take
pictures of the cellular protein repertoire that include protein
abundance and turnover, post-translational modifications,
subcellular localization, interactions with other proteins and
structures, and finally protein involvement in metabolic pathways
(Altelaar et al., 2013).

On the other hand, metabolomics studies investigate the
presence of metabolites, their concentration and their interactions
with biological systems. Unlike other “omics” approaches,
metabolomics can reflect the actual biochemical activity and the
state of cells and determine the true cellular phenotype (Patti et al.,
2012; Tan et al., 2012).

In cancer research, proteomics and metabolomics strategies
have been used not only to identify novel biomarkers involved in
tumor resistance and signature that predicts treatment outcome
(Dytfeld et al., 2016; Shrestha et al., 2021; Robles et al., 2022), but
also to uncover cancer metabolic pathways and oncometabolites that
may drive tumorigenesis and sustain tumor progression (Xu et al.,
2011; Drusian et al., 2018).

3 Omics data in cancer
personalized therapy

Over the past 20 years, molecular assessment of tumors has
entered routine clinical practice and has been incorporated into the
WHO classification criteria for tumor diagnosis, grading and
prognosis (Organisation mondiale de la santé and Centre
international de recherche sur le cancer, 2020; Sbaraglia et al.,
2020; Louis et al., 2021).

As a result, the treatment of patients shifted mainly towards
tailored therapies, and the development of new classes of anticancer
drugs increased, defining the beginning of the molecular era of
targeted therapy. The so-called “targeted therapy” refers to drugs
that are aimed at interfere with specific molecular target that is
thought to play an important role in tumor development and
progression. One of the first and most successful examples of
targeted therapy is imatinib, a small molecule receptor tyrosine
kinase (RTK) inhibitor that targets a variety of RTKs. The use of
imatinib in tumors harboring activating mutations of RTKs (e.g.,
gastrointestinal stromal tumors, dermatofibrosarcoma protuberans)
or oncogenic RTK fusion proteins (e.g., chronic myeloid leukemia
positive for the BCR::ABL fusion, myelodysplastic/
myeloproliferative disorders associated with PDGFR gene
rearrangements), leads to increased life expectancy for patients
whose prognosis was previously very poor (Druker et al., 1996;
Druker et al., 2001; Demetri et al., 2002).

The specificity of targeted therapies usually gives these drugs
particularly high efficacy while reducing off-target toxicity to normal
cells, but it is also responsible for mechanisms of tumor resistance. It
is noteworthy that not only the presence of a mutated drug-
responsive gene, but also the type of mutation on the same gene
can play a role in drug response. The EGFR gene in particular can
serve as an example. Most glioma tumors are dependent on EGFR
signaling, making approved drugs targeting this gene attractive for
precision oncology of gliomas. However, most clinical trials have
failed to demonstrate the benefit of EGFR-targeted therapies in
gliomas, as approved EGFR therapies have mainly focused on
NSCLC EGFR gene alterations that are, however, distinct from
those driving gliomagenesis (Lin et al., 2022). On the other hand,
secondary resistance occurs when a fraction of cancer cells develops
new acquired mutations or alterations in antigen presentation,
which can also drastically affect the efficacy of targeted therapies.
Transcriptional deregulation and de-repression of alternative RTK
are also common strategies to facilitate adaptive evasion signaling,
which is likely promoted by epigenetic changes (Jun et al., 2012;
Akhavan et al., 2013). The presence of resistant cells forces clinicians
to dose escalate with the risk of increased toxicity or to switch
molecular targets with the risk of no new therapeutic options
being available.
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FIGURE 2
Personalizedmedicine and PGx studies. (A) Aims of personalizedmedicine. Patient data frommultiple sources (health records, medical imaging and
omics data) are combined to identify a patient-specific fingerprint that determines response to therapy, efficacy and toxicity. (B) PGx study design
strategy. Three drug phenotypes will be identified (responders, non-responders and toxicity) and different populations will be studied to identify the
genetic traits involved in particular drug phenotype. The strategies are divided into candidate genes, GWAS and NGS. The aim of PGx studies is to
stratify the population based on genetic background to maximize drug efficacy and reduce toxicity. Abbreviations: GWAS, Genome-wide Association
Study; NGS, Next-Generation Sequencing.
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In the scenario of personalized cancer therapy, the assessment of
the individual status of the tumor immune system also plays an
important role and has led to the development of nanoparticles,
monoclonal antibodies, and chimeric antigen receptor T-cell
therapies (CAR-T) as well as antibody-drug conjugates. Some
examples include the generation of third-generation CAR-T cells
against the oncoembryonic antigen ROR1 (Meng et al., 2023) and
the study of the chemokine expression signature that correlates with
the characteristics of T-cell inflammation and potential response to
immune checkpoint inhibitors in various cancers (Romero
et al., 2023).

Another goal of precision medicine is to identify new molecular
biomarkers that can monitor both disease stage and the efficacy of
selective therapies. In this context, tumor molecules secreted in the
bloodstream, such as microRNAs, non-coding RNAs, exosomes,
and circulating tumor DNAs (ctDNAs) are of particular interest and
can be detected without invasive procedures thanks to liquid biopsy.
For example, the expression of circulating miR-221/222 correlates
with response to and resistance to tamoxifen in the luminal subtype
of breast cancer patients (Patellongi et al., 2023), circRNA_
047733 can be used as a biomarker for risk assessment of lymph
node metastasis in patients with oral squamous cell carcinoma
(Deng et al., 2023), and baseline ctDNA mutation frequency can
be used as a prognostic marker in patients with metastatic colorectal
cancer (Bachet et al., 2023). In addition, measurement of ctDNA at
specific time points by liquid biopsy can also be used as a biomarker
of efficacy and toxicity to guide the dose and schedule of
radiotherapy in cancer patients (McLaren and Aitman, 2023).

Finally, several cancer hospitals have interdisciplinary teams of
experts, called molecular tumor boards, that recommend a patient-
specific therapeutic strategy based on data from NGS profiling. A
retrospective study of biliary tract tumor patients showed that
comprehensive genomic profiling along with molecular targeted
therapy discussed by the molecular tumor board resulted in a higher
response rate and better overall survival for patients who received
the recommended treatment (Zhang D et al., 2023). In addition,
these molecular tumor boards can bridge the gap between research
and the clinic by recruiting patients early for clinical trials (Weiss
et al., 2023).

As discussed in the following section, various genetic
polymorphisms that can be studied using omics experiments and
that are located in genes associated with drugs PK and/or PD, can
influence efficacy and toxicity.

3.1 Omics data in PGx studies

In addition to targeted therapy, NGS approaches can support the
concept of personalized medicine by being included in PGx studies
and linked to drug safety profiles (Figure 2A). Sequencing results can
thus be associated with the identification of novel biomarkers related
to drug efficacy and toxicity.

The three main research strategies for PGx biomarker discovery
are candidate gene studies, Genome-Wide Associated Studies
(GWAS), and NGS (Figure 2B). Candidate gene studies are based
on genotyping or sequencing of genes known to be involved in PK
and PD processes to uncover potential variants; this is the main
approach taken so far. This approach is based on “a priori”

knowledge, as genes are selected based on their membership in
specific pathways (Malta et al., 2018; Kwok et al., 2022; Maeda et al.,
2023). A limitation of this approach is that polymorphisms that are
part of unexplored pathways and may alter the phenotype of the
drug response are not detected. However, this approach may have
higher statistical power than other approaches even with few
samples (Chan et al., 2019).

On the contrary, GWAS discovers millions of SNPs across the
genome and has the potential to find variants in unexplored genes
and intergenic regions not previously thought to affect drug
response (Uffelmann et al., 2021). One example is the germline
variants in the PRUNE2 and BARD1 genes, which have prognostic
potential in advanced colorectal cancer and ovarian cancer,
respectively. In addition, the variants in the AGAP1 gene may
affect patient response to bevacizumab (Quintanilha et al.,
2022b). Moreover, most of the SNPs detected are not the causal
variants responsible for the observed phenotype, but are instead
associated with the presence of functional variants in high linkage
disequilibrium in a given population (Bei et al., 2010). One of the
major limitations of this technique is the low statistical power in
detecting associated signals for rare polymorphisms and thus the
inability to find variants with small effect sizes, especially when a
drug effect trait is not directly associated with drug effect or is
population/region specific (Wang et al., 2019).

Finally, NGS approaches offer the possibility of generating a
large amount of information on novel, common, or rare variants
potentially associated with drug response, such as GWAS, but suffer
less from the requirement of a large number of samples to achieve
statistical power, overcoming the drawbacks of the other two SNP
approaches (Sharma et al., 2014; Auwerx et al., 2022). However,
NGS is not a panacea for identifying all inheritance patterns in PGx.
The lack of standardization of NGS techniques and limitations in
sample quality or quantity are issues that should be addressed to
achieve comprehensive and robust detection and association of
somatic and germline variants involved in individual drug
response (Mu et al., 2019).

Although candidate gene studies, GWAS, and NGS enable the
identification of variants potentially involved in individual drug
response, the results obtained in these studies require internal and
external validation before they can be adopted in clinical practice.
Validation strategies include case/control studies, cross-validation
based methods, and an independent series of patients to confirm
results. In addition, orthogonal technical validation using low-
throughput methods is required, with real-time PCR with
TaqMan assay and pyrosequencing often being the first choice
(Arbitrio et al., 2021; Hertz et al., 2021).

3.1.1 PGx in drug response: focus on efficacy
The efficacy of a drug is related to its plasmatic concentration,

which is a surrogate for measuring the percentage of the
administered dose that can reach the molecular target. Genetic
variants in genes involved in PK or/and PD can affect the
efficacy of a drug, as discussed below. Although much of the
variation is due to PK (Roden et al., 2019), PD variations may
also be important for treatment efficacy.

Classic examples of PGx in drug response involving PK
mechanisms include glutathione S-transferase, cytochrome P450
genes and MDR1 gene polymorphisms. Glutathione S-transferase
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(GST) is a class of metabolic enzymes that conjugates glutathione to
xenobiotics for detoxification purposes. GST substrates include
anthracyclines and cyclophosphamide, anticancer drugs used in
breast cancer protocols. In particular, the GG genetic variant in
the GSTP1 gene (c.313A>G) appears to be associated with a lower
risk of chemoresistance in breast cancer patients treated with
doxorubicin (Romero et al., 2012) and a lower risk of death in
patients treated with cyclophosphamide compared to patients with
proficient-GST (Sweeney et al., 2003). One possible mechanism to
explain these observations is that decreased GST activity leads to an
increase in the systemic dose of active metabolites, which in turn
results in a better therapeutic effect, even if this increases the risk
of toxicity.

Cytochrome P450 is one of the most important enzyme classes
involved in the metabolism of xenobiotics. This group includes the
enzyme CYP2D6, which is involved in the conversion of tamoxifen
to its more active metabolites, 4-hydroxytamoxifen and endoxifen.
Genetic variants in the CYP2D6 gene (*4, *5, *10 and *41) result in
impaired enzyme activity, leading to lower production of active
tamoxifen metabolites and shorter overall survival in cancer patients
taking tamoxifen (Schroth et al., 2007).

Genetic variants affecting transporters may also play a role in
altered drugs response. A silent polymorphism in the MDR1 gene,
one of the best-known efflux pump proteins involved in drug
resistance mechanisms, has been shown to affect the timing of
MDR1 mRNA translation into folded protein, thereby reducing
total protein levels (Kimchi-Sarfaty et al., 2007).

Novel PK-related genetic variants have also been discovered.
Germline polymorphisms in the NT5C2 gene (e.g., rs72846714)
were recently discovered in a GWAS study, and some of them have
been linked to 6-mercaptopurine (6-MP) metabolism in patients
with acute myeloid leukemia, as they are responsible for differential
activation of 6-MP and thus its bioavailability (Jiang et al., 2021).

At PD, it can be speculated that any variant (germline or
somatic) that affects the accessibility of the drug to its target or
the affinity of the drug binding may result in altered drug efficacy.
These scenarios include variants that alter the amino acid sequence
at the core binding site between the drug and the target, thereby
affecting binding affinity, variants that alter the spatial conformation
of the protein and may lead to partial misfolding, and alterations in
weakly bound bridges between individual nucleic bases. In NSCLC
patients treated with the EGFR inhibitor gefitinib, patients with
specific in-frame indel mutations in the EGFR gene were more
sensitive to gefitinib, as these mutations increase the tumor’s
dependence on growth factor signaling, compared to patients
without such mutations. Therefore, patients with these mutations
respond better to gefitinib than patients who have other mutations
(Lynch et al., 2004).

In glioblastoma, EGFR mutations and amplifications account
for at least 50% of molecular alterations (Brennan et al., 2013).
The EGFR variant III (EGFRvIII) is the product of the most
common deletion in GBM, resulting from the deletion of exon 2-
7 of the extracellular domain (ECD). This alteration occurs
predominantly in cancer cells and in approximately one-third
of GBM, making this variant an ideal epitope for
immunotherapy. Rindopepimut is a peptide-based cancer
vaccine that targets EGFRvIII. Although EGFRvIII is an
extremely attractive therapeutic target, tumor cells escape this

immune-mediated therapy by losing the EGFRvIII expression as
a resistance mechanism (Binder et al., 2018).

Epigenetic changes may also affect PGx. Hypermethylation of
MLH1, which is involved in the mismatch repair system, may affect
the response to cancer therapy targeting this pathway (Wu F et al.,
2015; Bukowski et al., 2020; Loukovaara et al., 2021). In addition,
altered histone modifications that may occur during tumorigenesis
and other pathological conditions may lead to heterogeneous
expression of drug efflux proteins and thus affect PK (Kondo
and Issa, 2004; Baker et al., 2005; Wu L-X et al., 2015). In
particular, demethylation of the ABCB1 gene in cancer cells can
lead to a reduction in the accumulation of anticancer drugs in cancer
cells, resulting in the acquisition of a resistant phenotype (Toth
et al., 2012).

3.1.2 PGx in drug response: focus on toxicity
Drug toxicity refers to a variety of adverse effects associated with

the use of a particular drug. The mechanisms of drug toxicity can
vary widely and include four main aspects: on-target toxicity, off-
target toxicity, hypersensitivity reactions and idiosyncratic reactions
(Guengerich, 2011). Genetic polymorphisms may enhance or
attenuate these reactions.

On-target toxicity refers to the adverse effect of a particular drug
depending on its mechanism of action. This phenomenon is related
to the binding of the drug to its therapeutic receptor, but in a
different body compartment. Polymorphisms that enhance this type
of response include rs9501929 of the TUBB2A gene, which encodes
the β-tubulin protein. Although there are conflicting opinions about
its clinical utility, rs9501929 may alter the toxicity profile of
paclitaxel, an antimitotic drug that binds specifically to β-tubulin
to arrest cell cycle progression. Patients carrying this variant have a
higher risk of developing paclitaxel-induced neuropathy, a disease
characterized by abnormal aggregation of microtubules in neurons
(Abraham et al., 2014). This effect can be explained by the fact that
β-tubulin is also targeted by paclitaxel in normal neurons, which is,
by definition, an on-target toxicity. The lack of a selective and
specific target for cancer cells is one of the major limitations of
conventional chemotherapy such as paclitaxel.

Off-target toxicity refers to the adverse effects of a drug that
binds to both its therapeutic and nontherapeutic receptors and is
also related to mechanisms that are independent of the mechanisms
of action (Rudmann, 2013). Some of these issues can be addressed in
the preclinical stages of drug development by altering the structure
of the drug to modulate its affinity to undesirable receptors. In
addition, local administration, if applicable, may also partially help
(Li M et al., 2022). Hypersensitivity reactions and idiosyncratic
reactions depend on the activation of the immune system and the
intrinsic characteristics of patients, respectively (Doña et al., 2014).

The best characterization of adverse reactions involves genes
from PK processes. Individual variants in transporters and
metabolic enzymes are responsible for most differences in drug
response. In particular, polymorphisms in the gene SLCO1B, which
encodes the OATP1B1 transporter responsible for cellular uptake of
multiple substrates, can impair the availability of irinotecan and lead
to drug toxicity (Nozawa et al., 2005; Di Martino et al., 2011). In
addition, part of irinotecan is oxidized by CYP3A4, while another
part of irinotecan is activated to SN-38 and its glucuronide conjugate
SN-38G. These reactions are catalyzed by carboxylesterase and
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UGT1A1, respectively. The genetic variantUGT1A1*28 is associated
with decreased glucuronidation activity, which in turn prolongs the
mean half-life of the metabolite SN-38 and increases patient
susceptibility to gastrointestinal and hematologic toxicity (Iyer
et al., 2002; Innocenti et al., 2004; Peeters et al., 2023). Similar
toxicities to irinotecan have been noted in patients carrying
polymorphisms in the ETS1 and ABCG2 genes, which encode
carboxylesterase and a membrane transporter, respectively (De
With et al., 2023). The UGT1A1*28 polymorphism, together with
the UGT1A1*60, UGT1A1*6, and UGT1A1*27 polymorphisms is
associated with the metabolism of several anticancer drugs such as
belinostat, an HDAC inhibitor, nilotinib and pazopanib, two RTK
inhibitors. Thus, loss-of-function alleles are responsible for
increased toxicities, such as neutropenia, thrombocytopenia and
prolonged QTc intervals in patients treated with belinostat (Goey
et al., 2016; Balasubramaniam et al., 2018).

Another example is 5-fluorouracil (5-FU), an antimetabolite
that has long been used to treat tumors of the stomach, colon and
rectum. Approximately 80% of 5-FU is converted to the inactive
metabolite 5,6-dihydrofluorouracil by the rate-limiting enzyme
DihydroPYrimidine Dehydrogenase (DPYD). Genetic mutations
in the DPYD gene associated with lower DPYD activity, such as
*2A, *13 and rs67376798, can lead to fluoropyrimidine toxicity
(Caudle et al., 2013; Glewis et al., 2023; Lešnjaković et al., 2023).

Germline mutations in the TPMT gene, as well as in the
NUDT15 gene, may otherwise affect the metabolism of the
thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG).
In thiopurine metabolism, TPMT is a key enzyme that converts 6-
MP and 6-TG to their inactive metabolites. Patients with loss of
function alleles have higher circulating thiopurines levels, which
increases the risk for developing myelosuppression, a common
adverse effect of these drugs. In these patients, a lower starting
dose is recommended to minimize toxicities (Wang et al., 2010). The
same precautions should be observed in patients with loss-of-
function alleles of the gene NUDT15, which is also involved in
the metabolism of thiopurines (Moriyama et al., 2016). Genetic
testing for TPMT and NUDT15 genes has entered clinical practice
and is strongly recommended for cancer patients who are to receive
thiopurine therapeutics (Relling et al., 2019).

Some of the classic gene polymorphisms such as cytochrome
P450, DPYD, UGT, TPMT, and HLA have already entered clinical
practice. Panels of specific genes are routinely used to determine the
optimal therapeutic window in cancer patients and their utility has
been demonstrated. A recent multicenter implementation study
evaluated a panel of 12 genes for pharmacogenetic testing in
several European countries. The most important finding of this
study, in addition to demonstrating that genotyping of this 12-gene
panel leads to a reduction in the incidence of relevant adverse drug
reactions, is the cross-national feasibility of these genetic tests, which
paves the way for harmonization of genotyping (Swen et al., 2023).

In summary, PGx testing offers a number of benefits, including
enhancing intended treatment benefits, reducing the likelihood of
adverse effects and risk of dependence, reducing healthcare
expenditures and the need for hospitalization in the event of
severe adverse events, and shortening the time to achieve
therapeutic effect. Although researchers and clinicians are
increasingly aware of the importance of genetic testing for
personalized oncology, global clinical implementation is still

lacking, in part due to the need for standard procedures, cost
reduction, but also support from healthcare systems, especially in
less affluent countries.

4 Machine learning in cancer research

Machine learning (ML) is a subfield of artificial intelligence that
aims to make predictions and inferences within a certain range of
accuracy by analyzing multiple variables in input data, such as
clinical and/or molecular data (Mitchell, 2013). In addition, without
explicitly programming, ML can find hidden patterns and identify
relationships between multiple variables to correctly predict
the outcome.

Machine learning has indeed proven to be a powerful tool in
cancer research, as it has the potential to improve cancer diagnosis,
classification and prognosis (Kourou et al., 2015; Cui et al., 2022a).
An example of the use of ML in cancer research is the study of
medical imaging, where large amounts of data are available that are
difficult to analyze. In particular, the emerging field of radiomics
uses images routinely produced in clinical settings to evaluate
patients undergoing treatment to develop a ML approach to
disease detection (Lambin et al., 2012). Another example is
radiogenomics, where key features extracted from radiological
images can be linked to the genetic profile of the tumor. Thanks
to the linkage of image and genotype highlighted by ML,
radiogenomics offers the possibility of becoming a noninvasive
surrogate for genetic testing (Meißner et al., 2022).

Other important approaches of ML in cancer research focus on
treatment. Predicting how a particular tumor will respond to
therapy, or which patient characteristics better predict response
to therapy, is a fundamental goal of modern oncology that should
ultimately lead to tailored treatment. For example, genetic profiles
and clinical information of breast cancer patients from a complete
study dataset were used to train a ML algorithm to predict the 5-year
survival rate of these patients who underwent a specific medication
(Tabl et al., 2019). In this context, genomic profiling can provide
information about the role of biological pathways in cancer cells and
their relationship with a specific medication, thus helping clinicians
to tailor treatment for patients based on their molecular background.

4.1 Machine learning at a glance

A detailed description of ML is beyond the scope of this review;
however, we provide here an overview of the main features of the
algorithms of ML.

Supervised learning, unsupervised learning and reinforcement
learning are three main types of machine learning approaches (Van
Der Lee and Swen, 2023). Amore classical classification based on the
model built using this approach is divided into supervised,
unsupervised and semi-supervised models based on the type of
input data, i.e., whether it is labeled, unlabeled or a combination of
both (Koteluk et al., 2021; Naik et al., 2023). A graphical
representation of the concept is shown in Figure 3A.

In supervised models, which account for the majority of
published ML methods, each data point contains an associated
label (correct/expected response) for which a ML model must be
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FIGURE 3
Machine learning algorithms. (A) ML main classification based on input data labels and possible outputs. (B) Trade-off between accuracy and
interpretability for MLmodels grouped by supervised, unsupervised or both types of algorithms (C)ML fusion modeling. The light blue box represents the
input data (health records, medical imaging and omics data), the green box represents the type of ML fusion: early fusion (top) computes a single ML
model; intermediate ML fusion (middle) computes two or more ML models, with the final model using the output of previous model as input; late
fusion (bottom) creates multiple MLmodels and then fuses the outputs of eachmodel to produce the data output. The light red box represents examples
of the outputs obtained through ML, from the top to the bottom: Classification, Decision Tree, Regression, Clustering. Abbreviation: LVM, latent variable
model; SVM, support vector machine.
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developed. Typically, the data is split into two subsets: the training
data and the testing data. The training data is used to tune and train
the model (Shahin et al., 2023). The testing data is used to evaluate
the generality of the model. In addition, supervised learning can be
used to solve regression and classification problems. In regression
problems, the labels are continuous values, while in classification
problems labels are discrete values. Finally, the metrics used to assess
the quality of the model depend on the nature of the problem and
the type of application (Boyd, 2010; Sra et al., 2012; Orozco-Arias
et al., 2020; Woodman and Mangoni, 2023).

In unsupervised models, the output label measurement is usually
not available. In this case, the algorithm learns relationships from
data structures to provide latent patterns that need to be evaluated
for utility. However, this process still requires human intervention to
validate the output variable. In general, unsupervised methods deal
with clustering and dimensionality reduction, leading to the
identification of subgroups with common features, which is one
of the main applications of unsupervised ML (Sajda, 2006;
Handelman et al., 2018).

Reinforcement learning is a type of learning where an agent
learns to make decisions by interacting with an environment.
The agent receives feedback in the form of rewards or penalties
for its actions and learns to maximize the cumulative reward
over time (Woodman and Mangoni, 2023). Unlike supervised
and unsupervised learning, reinforcement learning does not
require labeled data or a training set. This type of learning is

often compared to a scenario where an agent learns through trial
and error (Shahin et al., 2023). Reinforcement learning can be
used to solve problems that deal with complex dynamics that are
influenced by changing stimuli and conditions, such as in the
real clinical world (Eckardt et al., 2021; Ryan et al., 2023). In
particular, reinforcement learning could help physicians to
select the right therapeutic regimens for a patient, and it is
able to correct its predictions based on the observation of the
adverse reaction resulting from the interaction between the
agent and the environment (Niraula et al., 2021; Ryan
et al., 2023).

Semi-supervised approach is a method in which there is a
mixture of labeled and unlabeled data (Ge et al., 2020; Shi et al.,
2021; Roy et al., 2022). There have been significant developments in
the field of semi-supervised learning, as researchers have proposed
various techniques to make effective use of the combination of
labeled and unlabeled data. These techniques aim to overcome the
challenges posed by the limited amount of labeled data and the
growing volume of unlabeled data (Eckardt et al., 2022; Dou
et al., 2023).

In ML it is important to note the differences between prediction
and inference. These two terms, often used as synonyms, are used
differently in ML algorithms. Prediction is about estimating or
predicting unknown outcomes, while inference is about
understanding the factors and relationships that contribute to
those predictions. Both aspects are crucial in ML, as prediction

TABLE 1ML algorithms in cancer research in the last 2 year. In this table, we summarize themost important research topics in cancer research usingML. For
each publication, we describe the type of the ML algorithm used and the research outcome of the selected study. Publication years: 2021–2023.

Research topic ML
algorithm

Outcome References

IC50 value NN In silico model that estimates IC50 values Ma et al. (2022)

Structure-activity
relationship

Decision tree Analysis of SAR of HDAC1 inhibitors Li et al. (2023)

Drug target prediction SVM Ligand- and structure-based identification of novel CDK9 inhibitors Zhang et al. (2022)

Synergistic effect RF Synergistic drug combinations in CRC tumors using metabolomic data Lv et al. (2022)

Pathway alteration SVM Identification of biological pathways involved in cancer drug response Zhu and Dupuy
(2022)

Treatment outcome SVM FOLFOXai signature identifies mCRC patients for whom oxalilplatin-containing therapies are less
beneficial

Abraham et al.
(2021)

Drug repurposing SVM Molecular simulation with approved drugs to identify molecules with RET inhibition profile Ramesh et al. (2022)

Prognostic factors LVM Identification of somatic oncogenic mutations Liu Y et al. (2022)

Prediction of benefits Decision tree Mutation signature predictive of the benefit of immunotherapy in NSCLC Liu Z et al. (2022)

Efficacy predictors SVM Regression Prediction of the efficacy of anticancer drugs based on clinical and molecular features of OSCC Brindha et al. (2022)

Toxicity predictors RF Identification of SNPs in the PI3K/AKT pathway associated with toxic effects during chemotherapy
in LACC patients

Guo et al. (2023)

Multi-omics data
integration

RF Prediction of tumor recurrence and survival in PDAC patients based on multi-omics data from
metastatic and non-metastatic microbiome patient signatures

Li S et al. (2022)

Medical imaging
(radiomics)

Regression Prediction of OS and PFS in patients with ESCC based on CT image radiomics signatures Cui et al. (2022a)

Abbreviations: CRC, colorectal cancer; CT, computer tomography; ESCC, esophageal squamous cell carcinoma; FOLFOXai, folinic acid, fluorouracil, oxaliplatin artificial intelligence; LACC,

locally advanced cervical cancer; LVM, latent variable model; mCRC, metastatic colorectal cancer; NN, neural network; NSCLC, non-small cell lung carcinoma; OS, overall survival; OSCC, oral

squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma; PFS, progression free survival; RF, random forest; SAR, structure-activity relationship; SNPs, single nucleotide

polymorphisms; SVM, support vector machine.
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enables useful forecasts, while inference helps to gain insights into
the underlying mechanisms and to learn from the trained models
(James et al., 2013). Depending on the objective, ML algorithms have
been developed to make predictions, inferences or a
combination of both.

An important issue to address when discussing ML is the trade-
off between model accuracy and interpretability. Some approaches
are easier to interpret, but are more rigid and less accurate, because
they may be based on linear functions such as linear regression.
Conversely, other ML models are more flexible in estimating the
functional form of the function but can be difficult to explain
(Eckardt et al., 2022; Kang et al., 2023). Figure 3B illustrates the
trade-off between flexibility and interpretability for some of the most
commonly used ML approaches.

ML input data can be of different origins, e.g., clinical data,
medical imaging, omics, time series. The use of a single type of input
data is characteristic of unimodalML, while the use of different types
of input data is a feature of multimodal ML. Each type of data can be
modeled in different ways, resulting in early, intermediate and late
fusion (Figure 3C). In early fusion, the input data types are merged at
the beginning to create a single ML model. In intermediate fusion,
ML models are created interlocked, each refining the previous
model. Late fusion creates separate unimodal models that are
combined into a final model. The multimodal ML provides more
comprehensive and accurate predictions than unimodal models.
Moreover, within the multimodal approaches, the intermediate and
late fusion strategies achieve better results because they take
complementarity information into account when training the
model (Steinberg et al., 1999; Kline et al., 2022). In cancer
research these multimodal approaches are considered very useful,
but their application is not so obvious. ML late fusion strategies can
be used to improve the oldest diagnosis criteria, tumor classification
and subtype identification, as in the case of NSCLC, where a study
shows that fusion of 5 different sources of information achieves the
better performance in classification compared to algorithms using
only single source information (Carrillo-Perez et al., 2022). In

addition, they can be used to develop software for cancer
theranostics, a cancer control strategy that combines early
diagnosis, accurate molecular imaging, and personalized radiation
treatment (in terms of chosen agent, dose, and timing) based on the
individual omics profile.

4.2 Machine learning algorithms and deep
learning applications

Numerous ML methods have been developed for medical
research and recent applications of ML are summarized in
Table 1. Here we give an overview of the main algorithms used
in the field of oncology (Figure 4), namely, k-means clustering and
hierarchical clustering, latent variable model, support vector
machine, decision tree learning, and neural networks. For neural
network algorithms, we focus on Deep Learning (DL), which is
becoming increasingly important in cancer research.

In unsupervised learning, ML methods are not task-specific
(i.e., they are not based on a specific predicted outcome, such as
survival), provide general insights, and include methods such as
k-means clustering and hierarchical clustering. These methods have
been used in oncology to identify cancer subtypes, stratify patients,
and create clusters from gene expression data to identify patterns
and groupings (Eckardt et al., 2023). Another example of
unsupervised learning is the latent variable model (LVM), which
can capture unobserved variables that may affect the outcome. LVM
can therefore be used to regress variables into one or more classes
that would best explain the heterogeneity in the data (Miettunen
et al., 2016).

Supervised methods include the support vector machine (SVM),
which divides data into categories (two or more) to solve both
regression and classification problems. It is based on kernel
algorithms that can expand the feature space to make data more
accessible. It is considered one of the most robust models to date
(Tate et al., 2006; Pacurari et al., 2023).

FIGURE 4
Main uses of ML algorithms in cancer research. Light yellow box represents preclinical studies where ML has been demonstrated to be effective.
Light blue box represents the phases of drug utilization in target populations where ML has taken improvements. In the green light column, different ML
algorithms that can be used for each research topic. Abbreviations: LVM, latent variable model; SVM, support vector machine.
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Decision tree learning is a supervised model that is commonly
used in clinical practice for decision-making processes. In this case,
ML can help identify which variables have the highest separability to
the desired categories and is used for both classification and
regression (Podgorelec et al., 2002). Random Forest (RF) is an
extension of decision tree learning that combines multiple
randomly generated decision trees to improve decision making.
Given the complexity of biology, data scientists usually prefer RF to
decision tree (Breiman, 2001; Cui et al., 2022b).

Finally, neural networks (NNs) are models used in all three types
of learning. NNs, which mimic the neural architecture of the human
brain, can integrate multiple sources of information and process
them in nodes and layers. Each node represents a specific feature
with a specific weight, and nodes of the same level represent a layer.
Moreover, nodes of different layers can be connected to each other.
If the information stored in the node is valuable, the node weight
exceeds a certain threshold, which means that the node is triggered
and the network is active. During the training, the weight values and
threshold are continuously adjusted to form the best combination of
nodes and weights that results in the most informative NN
(Kriegeskorte and Golan, 2019).

Deep Learning (DL) is one of the NN algorithms where the
number of hidden layers and nodes is increased and the overall size
of the network is very large, which allows better representation of
complex relationships. The main advantage of DL is that it identifies
hidden features as part of the learning process, making DL faster and
more automated compared to ML (Erickson et al., 2017). These
features also correlate with sensitivity and availability of cheaper
computing power. Therefore, DL is now referred to as a specific
subset of ML with its own algorithms and applications, and has
become one of the most widely used approaches in cancer research.
Thus, in the following part of this section, we discuss some
applications of DL in cancer research.

The use of DL in oncology began with the analysis of medical
images, because it is particularly good at identifying pathogenic
features of the observed cells, and in certain cases the performance of
DL is almost equal to human performance (LeCun et al., 2015;
Jalloul et al., 2023). For example, the application MIA was developed
to analyze images from microscopy and can be used for
classification, object recognition, segmentation, and tracking
(Körber, 2023). In addition, medical images of histopathological
tumor sections were used to test whether DL can predict response to
therapy in patients with adenocarcinoma of the gastroesophageal
junction. In this work, researchers found that DL is able to
distinguish patients who respond to neoadjuvant chemotherapy
from those who do not by extracting certain features on the
images before therapy initiation (Hörst et al., 2023). A Swedish
study has developed a DL tool for detecting lymph node metastases
in colorectal cancer that has excellent accuracy compared to human
performance. This tool reduces the time required to assess lymph
nodes, which in turn improves the diagnostic process and treatment
decisions (Kindler et al., 2023). Another DL tool has been developed
to assist clinicians in digital pathology by assessing the tumor
cellularity of histopathologic hematoxylin and eosin sections
(Altini et al., 2023). Apart from the importance that this
algorithm may have in the clinical setting, it is important to
point out that its use may also be useful in research, as it allows
pathologists to share valuable information with researchers in an

automated manner. A high percentage of tumor cells is an important
requirement for researchers to perform NGS sequencing, as the
biological material taken from the slice must be representative of the
tumor in order to reduce the contribution of normal adjacent tissue,
thereby reducing background noise and improving sequencing
quality. In addition, DL has been successfully developed to
predict optimal radiotherapy for patients with brain metastases
using CT images and non-image clinical information (Cao et al.,
2023). It has also been developed to predict pneumonitis risk in lung
cancer patients treated with immune checkpoint inhibitors and to
identify morphologic features that predict ERBB2 status and
trastuzumab efficacy in breast cancer patients (Bychkov et al.,
2021; Cheng et al., 2023). In a retrospective multicenter study, a
DL algorithm was developed to help radiologists diagnose breast
cancer lesions and differentiate axillary lymph node metastases
based on radiological features (Zhou et al., 2023).

Although medical imaging remains the foremost application of
DL, it is also used in the analysis of genomics and transcriptomics
data, including data from single-cell experiments that can improve
variant detection calling at cell-specific resolution. DL
improvements in single-cell sequencing could enhance the ability
of researchers to understand intratumoral heterogeneity and
identify previously unknown cell subpopulations, making this a
particularly attractive area for molecular oncology (Erfanian et al.,
2023; Halawani et al., 2023; Shen et al., 2023). DeepTTA is a DL
model that uses transcriptomic data to predict anticancer drug
response, which can shorten the preclinical phases of drug
development and drug screening. In addition, DL models which
can predict cancer drug response can also be used to identify new
potential clinical applications of known drugs based on target
affinity and mechanism of action (Douglass et al., 2022; Jiang
et al., 2022; Park et al., 2023). DeepTAP is another DL algorithm
capable of predicting sequence peptides that bind to tumor
neoantigens, which may be of interest to the field of cancer
immunotherapy (Zhang X et al., 2023). With this in mind, DL
algorithms are being used in precision medicine to predict
anticancer drug response in patient-derived cancer cell lines, as
in the case of the DeepDRK framework, which is freely available
(Wang Y et al., 2021). Amethod based onDLwas developed to study
the uptake of targeted nanoparticles in triple-negative breast cancer,
which could be useful for proper dosing in clinical practice (Ali et al.,
2022). A nanodiamond biosensor platform using DL was developed
to rapidly assess individual specific sensitivity to oxidative
phosphorylation inhibitors in patients with hepatocellular
carcinoma (Xu et al., 2023).

Finally, network pharmacology is a new approach in drug
development that aims to understand the network interactions of
multiple drug combinations. In this context, the network algorithms
of DL may be useful to identify synergistic combinations of multiple
drugs targeting a specific network that can be used to improve
cancer treatment (Noor et al., 2023). DeepDTnet, for example, is a
DLmethod for network-based target identification that reveals novel
therapeutic effects of known molecules, which in turn can accelerate
drug repurposing, a process aimed at finding new uses for drugs that
are approved or in trials (Zeng et al., 2020). The strategy of drug
repurposing offers numerous advantages over developing a
completely new drug, such as a lower risk of failure because
safety and risk assessment have already been tested, cost and
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time savings in the preclinical phases, and finally, phase I and II
results are already available, thanks to sophisticated algorithms such
as those used in DL and ML (Pushpakom et al., 2019). Based on this
approach, many oncology and non-oncology drugs have been
reviewed in recent years, and drug repurposing is particularly
valuable in rare or late-stage diseases where the development of a
new drug may be difficult in terms of patient recruitment and the
time required for a complete clinical trial may be unreasonable.

In PGx studies, DL has also been used to predict the toxicity of
specific medications. In recent works, DL methods were able to
predict the toxicity of radiation-based therapy in four different
cancer types (Tan et al., 2023) and identify SNP signatures
associated with urinary symptoms and overall toxicity in prostate
cancer patients treated with radiation therapy (Massi et al., 2020).
An important implementation of DL in PGx studies may interest
medical imaging with feature extraction that predicts drug response
based on SNP signatures. However, this task is very difficult to
accomplish because the DL algorithms used to scan medical images
are designed to extract “abnormal” features, and PGx often refers to
germline (i.e., “normal”) variants. However, in this way, it would be
possible to reduce the number of diagnostic tests a patient has to
undergo, also in the context of the most appropriate choice of
therapy after diagnosis.

The use of DL, as well as ML in general, can improve healthcare
and assist clinicians by shortening the time required for diagnosis
and staging and facilitating decision-making in drug selection and
administration of the correct dose, thus contributing to the clinical
translation of precision medicine in cancer.

4.3 Machine learning in PGx studies

PGx studies have gradually shifted from reactive testing on a
single gene to proactive testing on multiple genes to improve
treatment outcomes. This move has been made possible by the
implementation of high-throughput data generation and analysis.

With the advent of ML and computer science in cancer research,
it is now possible to discover previously unknown cancer-related
features and latent signatures that impact tumor development,
progression and recurrence. In addition, ML offers the
opportunity to gain insight into failed clinical trials to
understand their limitations and potential benefits, and to
prevent toxicity and other drug effects that can impact patient
quality of life and treatment efficacy (Harrer et al., 2019).

One of the first constraints in screening new drugs is selecting
candidate molecules from the initial bulk of drug libraries. By
combining genomic features of cell lines and chemical
information of molecular compounds, researchers have been able
to create in silico ML multi-drug models to predict IC50 values,
saving cost and time (Menden et al., 2013). Furthermore, these in
silico approaches enabled the identification of genomic events
associated with altered drug sensitivity, optimizing drug trial
design (Huang et al., 2017).

In cancer, multitherapy is often used not only to reduce the
toxicity of a single anticancer agent and achieve synergistic effects,
but also to overcome drug resistance (Dear et al., 2013; Lee et al.,
2019; Kim et al., 2020). Screening to predict synergistic drug
combinations is a computational approach that has been

explored using ML technology. For example, screening multiple
administrations of over 40 different drugs in melanoma cancer cells
led to the identification of 11 validated, previously untested drug
combinations that lead to different outcomes (Gayvert et al., 2017).

As mentioned earlier, there is growing evidence that optimal
prediction of drug response relies on individualized molecular
profiling (Bode and Dong, 2017). Many ML approaches in PGx
studies have been developed to predict the best match between
genetic alterations involved in the pathogenesis or recurrence of a
given cancer and drugs targeting these alterations (Chang et al.,
2018). From this perspective, therapeutic drug monitoring (TDM) is
an experimental procedure that measures the plasmatic
concentration of a given drug in a specific time window after
administration. Recent work has shown that ML methods applied
to TDM were able to predict the appropriate dosing for various
drugs, e.g., lapatinib dose for patients with metastatic breast cancer
(Yu et al., 2022) and cisplatin dose in cohort of patients with head
and neck cancer to avoid cisplatin-related toxicity (Cauvin
et al., 2022).

4.4 Multi-omics integration, ML and PGx

Integration of different omics information better captures the
complexity of cancer through different molecular layers and
therefore improves diagnosis, prognosis and treatment compared
to using a single “omic” alone (Heo et al., 2021).

There are many examples of successful integration of multi-
omics approaches. Whole genome and transcriptome data have
been used to quantify the extent of specific genetic alterations at the
mRNA level and derive quantitative trait loci (eQTLs). In this
context, polymorphisms associated with specific phenotypes are
found to be associated with eQTLs, and genetic risk factors
associated with eQTLs can bona fide predict the level of the
corresponding gene product (Nicolae et al., 2010).

Epigenomics and transcriptomics/proteomics data can be
aligned to explain how epigenetic changes can affect protein
turnover (Wang X et al., 2021). In addition, transcriptome
sequencing has often been combined with miRNome sequencing
to determine which microRNAs and non-coding RNAs may alter
gene expression andmodulate response to chemotherapy (Fazi et al.,
2015; Cuttano et al., 2022). Many consortia and catalogs have been
developed to promote the understanding of tumor processes with
high-throughput data, such as the Clinical Proteomic Tumor
Analysis Consortium (CPTAC), which integrates genomic and
proteomic data to create a proteogenomic portrait of cancer
toxicity and resistance (Ellis et al., 2013), the International
Cancer Genome Consortium (ICGC), which provides cancer
genomic, DNA methylation and gene expression data (Zhang
et al., 2011), and The Cancer Genome Atlas (TCGA) program,
which provides a collection of genomic, epigenomic, transcriptomic
and proteomic data on 33 different cancer types (The Cancer
Genome Atlas Research Network et al., 2013). These data
collections are the tip of the iceberg of the various omics data
consortia that have emerged to date, and they serve as a valuable
resource for omics and ML modeling studies of cancer.

The application of ML with the integration of multi-omics data
has resulted in several scores for risk prediction and diagnostic/
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therapeutic potential, such as the polygenic risk score. The polygenic
risk score considers all genetic inheritance variants known to be
associated with a particular disease and measures the risk associated
with the development of the disease under investigation, thereby
improving risk stratification and screening (Akdeniz et al., 2023).
Other examples include the BRECADA application, which uses
genetic and nongenetic risk factors for early detection of breast
cancer, and the OncoNPC signature, which classifies cancer of
unknown primary and accordingly tailors initial palliative
treatment intent, a strategy that often leads to better patient
outcomes compared with cancer treated without querying the
OncoNPC signature (Moon et al., 2023; Tao et al., 2023). In
addition, some radiomics features have been extracted from
images of brain metastases of extracranial primary tumors and
correlated with the expression level of PD-L1, allowing
stratification of patients according to their sensitivity to immune
checkpoint inhibitors using a ML noninvasive classifier (Meißner
et al., 2022).

The ability of ML to handle multiple data structures, namely,
clinical, molecular and imaging data, allows to discover hidden
correlations among different input data in PGx studies to make
more accurate predictions and inferences. However, there are several
crucial aspects to consider when managing and using multi-omics
data that should be examined. First, collection of multi-omics data
requires careful evaluation of the entire experimental workflow,
from tissue collection and high-quality extraction of nucleic acids
and proteins to sample preparation and sequencing. Second, data
analysis pipelines need to be developed to integrate individual omics
approaches. In this context, early, intermediate and late ML fusions
help to address the management of multimodal approaches with
positive impact on clinical cancer research. Third, the expertise
required for analytical and bioinformatics analyses often requires
the collaboration of multiple experts to properly mediate the
integration of multi-omics data. Thus, building a
multidisciplinary team is therefore challenging for the success of
multimodal data integration, but the positive outcomes of
multimodal approaches have already been demonstrated and
adopted (Kwon et al., 2015; Jing et al., 2020).

4.5 Use of ML in clinical trials

Clinical trials are later phases of drug development and incur
very high costs. Clinical trials in oncology have the highest overall
failure rate, mainly due to poor trial design (Wong et al., 2019).
Therefore, the use of ML in clinical trials could be an opportunity to
increase success. However, most applications of ML have focused on
preclinical studies rather than improving clinical trial design,
possibly due to the significant regulatory challenges associated
with the use of ML in a clinical context (Massella et al., 2022).

ML improvements in study design can be attributed to three main
strategies: cohort composition to improve suitability by reducing
cohort heterogeneity, patient recruitment to improve eligibility by
maximizing patient-study match, and patient monitoring to improve
adherence and endpoint detection to reduce dropout rates (Harrer
et al., 2019; Van Der Lee and Swen, 2023).

As mentioned earlier, oncology clinical trials often fail to meet
primary endpoints due to inadequate stratification criteria, poor

recruitment and evidence of severe drug toxicity (Hwang et al., 2016;
Kim et al., 2023). To address these issues, the RainForest algorithm
was developed. The CAIRO2 clinical trial investigated the use of
cetuximab in patients with metastatic colorectal cancer and
concluded that there was no benefit to using this agent in the
overall population. However, the RainForest algorithm was able
to identify a small subset of patients who actually benefit from
cetuximab treatment based on the SNP germline profile of patients
(Ubels et al., 2020). The use of the RainForest algorithm in clinical
trials can save enormous resources, as the cost of a single agent is
estimated to be around 2.8 million US dollars in the final stages of
approval (DiMasi et al., 2016).

Severe toxicity is another major issue in clinical trials, and
changes or interruptions to treatment schedules account for at
least 30% of failures in phases II and III (Harrison, 2016). ML
has also supported the design of clinical trials in term of drug safety.
A recent work has shown that SNPs signatures can serve as genetic
predictors of toxicity in personalized medicine. The germline variant
rs4864950 T>A in the KDR gene increased the risk of composite
toxicity (occurrence of any of hypertension, diarrhea and
dermatological reactions) in patients treated with the VEGFR
TKIs sorafenib and regorafenib (Quintanilha et al., 2022a). In
another work, the ABCB1 rs9282564 was the variant most
strongly associated with hypertension and nonhematological
toxicities in ovarian cancer patients treated with bevacizumab,
and SNPs in genes related to the biological oxidation pathway
(CYP3A4 rs28371763 and CYP1B1 rs9341266) were the most
significant variants associated with hematological toxicity in the
same cohort (Polano et al., 2023).

Clinically relevant predictors of toxicity have also been found in
many GWAS studies, e.g., SNPs predicting severe skin toxicity in
patients with colorectal carcinoma treated with cetuximab (Baas
et al., 2018) or predicting dysphagia in patients with nasopharyngeal
carcinoma treated with radiotherapy (Wang et al., 2022) or
predicting neurotoxicity and leukoencephalopathy in patients
with lymphoblastic leukemia treated with methotrexate
(Bhojwani et al., 2014). Many other correlations between SNPs
and toxicity can be found in the literature. Most importantly,
prediction of cancer-related toxicities can prevent deterioration in
patients’ quality of life and adherence to treatment and can be used
to manage chemotherapy-related adverse effects in the clinical
setting (On et al., 2022).

4.6 Challenges of ML in PGx

Incorporating assessment of somatic and germline variations
into treatment decisions with FOLFIRI in elderly patients with
metastatic colorectal cancer has been shown to be effective. This
regimen requires assessment of RASmutations as well as DPYD and
UGT polymorphisms prior to treatment with the FOLFIRI protocol
(Mathijssen et al., 2003; Morel et al., 2006; Sepulveda et al., 2017;
Battaglin et al., 2018). Although PGx test guidelines have already
been implemented in clinical practice, another important issue in
this context is the implementation of ML in clinical practice. ML has
demonstrated its usefulness in retrospectively classifying patients
during clinical trials to assess drug safety and prognosis (Chang
et al., 2018; Quintanilha et al., 2022a; Chen et al., 2022), but the
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incorporation of ML into clinical trials and clinical practice is still up
for debate. Standard guidelines and protocols need to be thoroughly
regulated to obtain comparable information and a precise
methodological approach, not only for the algorithms of ML, but
also for PGx studies. It is worth noting that different ML models can
be applied to the same given subject, as there is no universal
applicability of ML algorithms and this could lead to different
results in the same dataset.

Moreover, NGS has only recently been introduced into clinical
practice to assess diagnosis and prognosis and to evaluate therapeutic
strategies, but it is still a niche and there is room for improvement. In
addition, sequencing of some parts of the genome remains challenging,
e.g., highly polygenic regions, pseudogenes, triplet expansions, low
complexity regions, short repetitive sequences, regions of high-
similarity, and complex structural rearrangements (Treangen and
Salzberg, 2012; Rojahn et al., 2022). It is estimated that
approximately 14% of clinically relevant genetic tests are located in
these genomic regions (Lincoln et al., 2021), and correct variant
identification can be difficult. On the one hand, short tandem
repeats and complex structural variants known to play a role in the
pathogenesis of certain diseases can now be sequenced using a targeted
approach with long reads sequencing technology, as longer reads are
expected to generate appropriate sequence length that overlaps better
during assembly (Stevanovski et al., 2022). On the other hand, these
technical difficulties can be at least partially overcome by adapting NGS
analysis workflows accordingly (Rojahn et al., 2022). However,
detecting variants in these regions remains challenging and difficult
to validate. Detection of rare and very rare mutations with low allele
frequency should also be considered. Inclusion of all probes in the ML
learning datasets can be helpful, because some isoforms are more
informative than others, and pooling them into averages may lead
to dilution or loss of this information. NGS and ML can lead to great
improvements in PGx studies, as multiple samples and multiple genes
can be tested simultaneously, and clinically relevant hidden patterns can
be uncovered from complex data structures.

However, ML and DL also have their own limitations. In general,
ML algorithms are not error-free: one of the biggest challenges is the
learning model itself. Indeed, many ML approaches have problems
with underfitting or overfitting, where the data follows the trained
data or noise signals too closely, resulting in poor curve estimation.
An appropriate size of the training dataset is also important for ML
models to learn properly and make accurate predictions. The
reliance on large datasets for developing accurate models is also a
challenge due to the lack of sample availability. In addition, the
relationship between bias and variance also plays a role in obtaining
the best performance from ML models. On the other hand, the
accessibility of the code used for ML in PGx studies is low (Huang
et al., 2017). To further improve knowledge and sharing among
distant researchers around the world, platforms for sharing data and
code should be established. To this end, computer scientists could
have the opportunity to address underestimated problems and find
common resources to overcome them. In addition, the development
and improvement of multimodal ML methods, such as late ML
fusions, may encourage a more holistic view of specific patient
characteristics across different input data types.

As previously reported, PGx testing has demonstrated its utility
in many situations, and new variants of uncertain significance have
been reported thanks to GWAS and NGS PGx studies. On the one

hand, the impact of these new variants on PGx testing is still being
evaluated. On the other hand, the clinical implementation of
genotyping of genes known to be involved in individual drug
response needs to be monitored. In particular, the development
of genotyping panels should also be improved to enable the
translation of new relevant findings into the clinical settings. One
of the most important and unanswered questions related to the use
of these genotyping panels is how representative they are of
individual variability in drug response. Moreover, PGx studies
often suffer from a lack of homogeneous tumor samples, which
is particularly true for rare tumors and inconsistent sample ancestry
origins and incomplete data are also common complaints.
Harmonization of samples and data collection, as well as free
and easy access to sample datasets, could facilitate PGx studies
with ML. Finally, new and standardized scores to track NGS quality,
ML accuracy and significance of PGx variants could also be
developed to address new tasks.

5 Conclusions and future prospective

The molecular revolution in oncology continues to grow, with the
paradigm flowing from pathological oncology based on morpho-
histological assessment of tumor specimens to molecularly driven
oncology, where precise individual molecular features are considered
as part of diagnosis, grading and prognosis to tailor treatment to the
individual. In this context, not only are targeted molecular therapy and
patient genetic characteristics important factors in predicting
therapeutic response, but drug repurposing can also be a valuable
resource by using drugs approved for other diseases to treat cancer.

The therapeutic margin in cancer treatment is often small
because the dose-toxicity curve is often close to the dose-
response curve, so even small fluctuations in drug concentration
can lead to severe side effects (Lowe and Lertora, 2012). Therapeutic
drug monitoring (TDM) has already demonstrated its validity for
assessing correct dosing, although its application is still limited to a
small number of anticancer drugs (Knezevic and Clarke, 2020).
Assessing genetic polymorphisms that may alter drug response can
be beneficial for many reasons, including drug safety profile, patient
adherence, and cost savings, not only in oncology, where PGx testing
has been adopted more rapidly, but also in other areas (Roden et al.,
2019). Therefore, proactive testing is becoming increasingly
important for developing treatment strategies for patients based
on individual genetic variability and needs, from the perspective of
even more personalized medicine.

ML can improve understanding of data generated from PGx
studies, increase understanding of clinical trial results, predict clinical
outcomes, and discover new biomarkers even at very early stages of
drug development to identify subgroups of patients who actually
benefit from treatment, and subgroups of patients who do not benefit
and may experience toxicity. Although the results of ML models
derived from high-throughput data should be confirmed by classical
functional studies, they offer researchers the opportunity to explore
the extensive relationships that exist in biological processes.

Finally, ML can also be used in cancer theranostics, a combination
of diagnostic and therapeutic procedures in which radioactive drugs are
first used to identify the disease and then to deliver therapies. ML is a
very innovative and versatile tool but the adoption of ML into routine
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clinical practice is still unsettled and does not yet seem to be truly
welcome. On the one hand, this feeling can be explained by the lack of
standardization and the fact that specific guidelines for the use of ML
have not yet been established. On the other hand, the lack of
understanding of the hidden algorithms driving ML decisions may
be perceived as a barrier to clinicians’ skills and expertise. In addition,
there is no single ML model that can solve a particular problem, so the
use of a particular model is not tailored to the task at hand, which may
increase the risk of complications in ML harmonization. Finally,
patients should be informed and their data protected. Therefore,
ethical aspects related to the security of individual data and the
protection of privacy are a challenge and a mandatory requirement
to gain patients’ trust and prevent them from feeling threatened byML.
The innovation that the use of ML could bring to clinical practice is
unquestionable and could help to improve cancer treatment towards a
more personalized medicine.
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