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Patients with type 2 diabetes mellitus (T2DM) are at higher risk for urinary tract
infections (UTIs), which greatly impacts their quality of life. Developing a risk
prediction model to identify high-risk patients for UTIs in those with T2DM and
assisting clinical decision-making can help reduce the incidence of UTIs in T2DM
patients. To construct the predictive model, potential relevant variables were first
selected from the reference literature, and then data was extracted from the
Hospital Information System (HIS) of the Sichuan Academy of Medical Sciences
and Sichuan Provincial People’s Hospital for analysis. The data set was split into a
training set and a test set in an 8:2 ratio. To handle the data and establish risk
warning models, four imputation methods, four balancing methods, three feature
screening methods, and eighteen machine learning algorithms were employed. A
10-fold cross-validation technique was applied to internally validate the training
set, while the bootstrapmethodwas used for external validation in the test set. The
area under the receiver operating characteristic curve (AUC) and decision curve
analysis (DCA) were used to evaluate the performance of the models. The
contributions of features were interpreted using the SHapley Additive
ExPlanation (SHAP) approach. And a web-based prediction platform for UTIs in
T2DM was constructed by Flask framework. Finally, 106 variables were identified
for analysis from a total of 119 literature sources, and 1340 patients were included
in the study. After comprehensive data preprocessing, a total of 48 datasets were
generated, and 864 risk warning models were constructed based on various
balancingmethods, feature selection techniques, and a range of machine learning
algorithms. The receiver operating characteristic (ROC) curves were used to
assess the performances of these models, and the best model achieved an
impressive AUC of 0.9789 upon external validation. Notably, the most critical
factors contributing to UTIs in T2DM patients were found to be UTIs-related
inflammatory markers, medication use, mainly SGLT2 inhibitors, severity of
comorbidities, blood routine indicators, as well as other factors such as length
of hospital stay and estimated glomerular filtration rate (eGFR). Furthermore, the
SHAP method was utilized to interpret the contribution of each feature to the
model. And based on the optimal predictive model a user-friendly prediction
platform for UTIs in T2DMwas built to assist clinicians in making clinical decisions.
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The machine learning model-based prediction system developed in this study
exhibited favorable predictive ability and promising clinical utility. The web-based
prediction platform, combined with the professional judgment of clinicians, can
assist to make better clinical decisions.
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individualized therapy

1 Introduction

Diabetes Mellitus (DM) is a heterogeneous group of
metabolic disorders characterized by chronic hyperglycemia
that arises from defects in insulin secretion, insulin action, or
both (American Diabetes Association, 2014). According to the
statistical report by the IDF (International Diabetes Federation),
the number of adult patients with DM worldwide has reached
537 million in 2021. The prevalence of DM is increasing annually
with an average growth rate of approximately 56%. It is estimated
that by 2045, the global burden of DM will reach 783 million
(Dorresteijn et al., 2011). Notably, China remains the country
with the highest number of individuals affected by DM, with
140.9 million and 174.4 million people in 2021 and 2045,
respectively (Dorresteijn et al., 2011). Type 2 diabetes mellitus
(T2DM) accounts for the vast majority (over 90%) of diabetes
worldwide (Dorresteijn et al., 2011). T2DM can result in a broad
spectrum of health complications and organ damage (Gregg
et al., 2016), including cardiovascular diseases (Rawshani
et al., 2018), neuropathy (Davies et al., 2006), retinopathy
(Tan et al., 2017), nephropathy (Ritz and Orth, 1999), foot
ulcers and amputations (Liu et al., 2015a). In addition, T2DM
is associated with an increased risk of infectious disease (Shah
and Hux, 2003). The increased susceptibility of individuals with
T2DM to infectious diseases can be attributed to multiple factors,
including immune dysfunction (Wang et al., 2022), impaired
wound healing (Kimball et al., 2018; Xiong et al., 2020), and a
higher prevalence of comorbidities such as obesity and
cardiovascular disease (Piché et al., 2020; Wu and Ballantyne,
2020). Hyperglycemia in T2DM patients may further
compromise immune function, creating a conducive
environment for bacterial and viral growth. Consequently, the
risk of various infections, such as respiratory infections, skin
infections, hyperglycemia and urinary tract infections (UTIs) is
heightened among individuals with T2DM [(Muller et al., 2005;
Lalla and Papapanou, 2011; Carrillo-Larco et al., 2022)].So the
association between UTIs and T2DM has been well established
(Flores-Mireles et al., 2015).

UTIs is an infection of the urinary system, caused by a range of
pathogens, but most commonly by Escherichia coli, Klebsiella
pneumoniae, Proteus mirabilis, Enterococcus faecalis and
Staphylococcus saprophyticus (Flores-Mireles et al., 2015).UTIs are
some of the most common bacterial infections, affecting
404.6 million individuals worldwide and resulting in nearly
236,786 deaths in 2019 [(Stamm and Norrby, 2001), (Zeng et al.,
2022)]. UTIs remain a significant cause of healthcare-associated
infections (HAIs), and constitute 23% of infections acquired within
the intensive care unit (ICU) until now (Chenoweth, 2021).

Actually, UTIs are also the second most common HAIs in China,
comprising approximately 11.29% of cases (Wang et al., 2018).The
prevalence of UTIs in individuals with T2DM varies depending on
the population and diagnostic criteria used. A recent systematic
review and meta-analysis reported UTIs prevalence in T2DM was
11.5%, and higher rates were observed among women and those
with poorly controlled diabetes. However, certain subgroups, such as
older adults and individuals with diabetes-related complications like
neuropathy and nephropathy, may have an even higher prevalence
of UTIs (Salari et al., 2022). Overall, the rate of UTIs event was
87.3 events per 1000 patient-years among T2DM patients in
Germany in a real-world setting (Wilke et al., 2015). A
retrospective study showed that the prevalence of UTIs with
T2DM was 11.2% in China (He et al., 2018). The increased risk
of UTIs in individuals with T2DM can be attributed to various
factors, including hyperglycemia, impaired immune function, and
structural changes in the urinary tract (Geerlings, 2008). Moreover,
in clinical practice, not all patients can obtain definitive gold
standard evidence to diagnose UTIs. For example, some patients
may experience symptoms, but their urine leukocyte or bacterial
counts are within the normal range. Conversely, others may have
bacterial counts that exceed the upper limit of the normal range and
positive urine nitrite (NIT) results, despite showing no
clinical symptoms.

The co-occurrence of UTIs and T2DM is associated with a high
incidence rate. Such comorbidity not only severely affects patients’
quality of life but also leads to considerable medical costs.
Additionally, recurrent UTIs may erode patients’ confidence in
disease management and control. So it’s significantly important
to early detect and treat of UTIs in individuals with T2DM in order
to prevent further complications.

Current research on UTIs in patients with T2DM includes
treatments, clinical characteristics, medical care and analysis of
risk factors (Chua et al., 2017; Karadag Arli and Berivan Bakan,
2018; Hur et al., 2019). Previous studies on UTIs risk factors in
T2DM patients have mostly been retrospective case-control studies.
Some researchers have developed automated systems to assess the
risk of catheter-related UTIs, while others have created tools to
evaluate and prevent UTIs associated with catheter use (Chua et al.,
2017; Karadag Arli and Berivan Bakan, 2018; Hur et al., 2019).
However, these tools are limited in their application and there is
currently no personalized tool available to predict UTIs risk in
T2DM patients from the perspective of clinical diagnosis and
treatment. Overall, there is a need for more research on UTIs
risk factors in T2DM patients and the development of
personalized tools to better meet their clinical needs.

The early identification of high-risk UTIs patients through a
simpler approach holds great promise for improving the quality of
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life of T2DM. Therefore, this study aims to explore the use of machine
learning algorithms to develop a personalized predictivemodel for UTIs
in individuals with T2DM, with the goal of improving early
identification of high-risk patients and assisting clinical
decision-making.

2 Materials and methods

2.1 Literature review

To comprehensively and systematically collect data for
modeling, a literature review was conducted to investigate the
factors influencing UTIs in T2DM patients.

2.1.1 Inclusion criteria
(1) Study population are T2DM; (2) Outcome indicators are UTI-

related factors; (3) Research categories included case-control studies,
cohort studies, cross-sectional studies, and randomized controlled
trials (RCTs).

2.1.2 Exclusion criteria
(1) Study population consisted of pregnant women, minors, or

patients with tumors; (2) Literature types included conference
papers, reviews, systematic reviews, among other secondary
research types; (3) Literature contents included animal
experiment, pharmacological study and manufacturing processes;
(4) Literature that could not be obtained in full text.

2.1.3 Literature search strategy
A comprehensive literature search was conducted on PubMed,

Embase, Web of Science, CNKI, WanFang, and SinoMed databases
from their inception to 1 July 2022, with no language or geographic
restrictions. The search strategy included a combination of subject
and free terms, using keywords such as “Type 2 Diabetes Mellitus,”
“Urinary Tract Infections,” “Influencing factor” and “Risk factor”.

2.2 Data sources and collection

This study included patients who were hospitalized to Sichuan
Academy of Medical Sciences & Sichuan Provincial People’s Hospital
between September 1, 2018 and August 30, 2021, with a diagnosis of
T2DMwithout UTIs at admission and a diagnosis of UTIs at discharge.
The exclusion criteria were as follows: (1) patients with type 1 diabetes
mellitus, underage, pregnancy, tumors, or other infections; (2) patients
who died during hospitalization; (3) patients with incomplete diagnosis
and treatment data. Identifying information such as names, phone
numbers, and home addresses will be anonymized to ensure patient
confidentiality. And this study has been approved by theMedical Ethics
Committee ofMedical Sciences & Sichuan Provincial People’s Hospital.

2.3 Data pre-processing

2.3.1 Data pre-screening
In this study, the following steps were performed for data pre-

screening: (1) Deletion of variables with missing data proportions

greater than 90%. (2) Deletion of variables with single category
proportions greater than 90%. (3) Deletion of variables with a
coefficient of variation less than 0.1.

2.3.2 Data imputation
Four methods were employed for data imputation: (1) Deletion:

columns and rows with missing data were removed. (2) Simple
imputation: arithmetic mean or median was used to impute
continuous variables, mode for categorical variables. (3) Random
forest (RF) imputation: the missing values in each column were
predicted using a RF model. (4) Improved RF imputation: columns
with missing data were sorted in ascending order and imputed by RF
model next (Glickenstein et al., 2021).

2.3.3 Data balancing
If the sample is imbalanced, with a difference in the number

of positive and negative samples greater than two-fold, balancing
is required. (1) Random over-sampling: duplicate the minority
class samples to balance. (2) Random under-sampling: Randomly
remove samples from the majority class to balance. (3) Synthetic
minority oversampling technique (SMOTE): synthesize and
supplement new samples from a small amount of original
data. (4) borderline SMOTE: an improved algorithm based on
SMOTE that only uses minority class samples on the border to
synthesize new samples, thus improving the distribution of
class samples.

2.3.4 Feature selection
Feature selection is a crucial step in model building after data

balancing. It removes redundant and biases variables to produce
more accurate and meaningful research conclusions. (1) No
selection. (2) Lasso selection: a linear regression-based feature
selection method that accurately selects important variables
(Tibshirani, 1997). (3) Boruta selection: using RF algorithms to
extract feature variables (Motamedi et al., 2022).

2.4 Model establishment

Through different data imputation, data balancing and feature
selection, 48 data sets were obtained and 18 machine learning
algorithms were used on each dataset, respectively. The
18 algorithms including Logistic Regression, Stochastic Gradient
Descent (SGD), K-nearest neighbor (KNN), Linear Discriminant
Analysis (LDA), decision tree (DT), Gaussian Naïve Bayes,
Multinomial Naive Bayes, Bernoulli Naive Bayes, Passive
Aggressive, AdaBoost, Quadratic Discriminant Analysis (QDA),
Bagging, Support Vector Machine (SVM), RF, Extra Tree,
Gradient Boosting, eXtreme gradient boosting (XGBoost),
Ensemble Learning (Wu et al., 2022; Xingwei et al., 2022).

The whole process of model establishment was as follows:

(1) The data was divided into a training set and a test set in a ratio of
4:1. The training set was used to build models, and the test set
was used to assess model performance.

(2) Ten-fold cross-validation was conducted on the training set to
internally validate the model, and evaluated the impact of
different data processing methods or machine learning
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algorithms on model predictive performance by applying
200 Bootstrapping samples from the test set.

(3) The model exhibiting the highest performance was chosen.

2.5 Model validation

AUC (area under the receiver operating characteristic curve),
accuracy, precision, recall rate, and F1 value were used to evaluate
the model’s predictive performance. SHapley Additive exPlanations
(SHAP) was used to explain variable contributions to themodel. The
modeling process is shown in Figure 1. A total of 864 prediction
models were built based on different imputation, balancing and
feature selection methods. The top five models with the largest AUC
were compared, and the best one was chosen to create a personalized
prediction model for UTIs in T2DM.

Insufficient sample size for modeling may lead to bad test
efficiency. To evaluate the impact of sample sizes on model
performance, subsets of 10%, 20%, 30%, up to 100% were
randomly extracted from the training set using Bootstrapping. A
model was built for each subset, and this process was repeated
100 times. The AUC value calculated from the testing set was used to
evaluate the performance of each model and determine the optimal

sample size for the study. Additionally, decision curve analysis
(DCA) was used to access the model performance.

2.6 Build a web-based prediction platform

Based on the previous steps, we can finally construct a prediction
model and build a web-based prediction platform. The information
of patients’ individual factors, disease factors, medication factors,
laboratory tests and other covariates that are highly correlated with
the occurrence of UTIs in T2DM are inputted into the platform, and
we finally get the incidence of UTIs in T2DM.

2.7 Statistical analysis

Categorical variables were presented as percentages and counts,
while continuous variables were expressed as mean ± standard
deviation (SD). Univariate analysis was performed using analysis
of variance (ANOVA) and rank sum test. The statistical analysis was
carried out using the “stats” module in Python 3.8, while model
development was performed using the “sklearn” library
in Python 3.8.

FIGURE 1
Overview of the modeling process.
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3 Results

3.1 Results of literature search

Based on the search strategy, a total of 5,753 articles were
identified and 2,017 duplicates were removed. The titles and
abstracts of the remaining 3,736 articles were screened against the
inclusion and exclusion criteria, resulting in the exclusion of
3082 articles and leaving 654 articles for full-text screening. After
a rigorous review of the full-text, 535 articles were excluded,
leaving a final total of 119 articles included in the analysis. The
study selection process is presented in a flowchart (see Figure 2).
The specific information of the literatures is shown in
Supplementary Table S1.

3.2 Data collection

The study extracted a total of 28,367 hospitalized patients with an
admission diagnosis of T2DM. After excluding duplicate patients and
those with type 1 diabetes mellitus, underage, pregnancy, tumor, or
combined with other infections, a total of 18,363 patients were included,
of which 440 patients were diagnosed with UTIs at discharge and
17,923 were not. A control group was randomly selected from the non-
UTIs group at a rate of 5%, resulting in 900 patients. Ultimately, a total
of 1,340 patients were included for model construction. The outline of
screening procedures is illustrated in Figure 3. This study finally
included 106 variables for analysis and the baseline characteristics is
shown in Supplementary Table S2. The principle of variable assignment
is shown in Supplementary Table S3.

FIGURE 2
The flowchart of literature selection process.
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3.3 Data pre-processing

After removing columns that met the deleting criteria, 78 variables
were retained and 28 variables were deleted. Then, four data imputation
methods were used for replacingmissing data. Next, four data balancing
methods were used for imbalanced variables. After data pre-screening,
data imputation and data balancing, the variables were screened using
the no selection, lasso and boruta methods (the details are shown in
Supplementary Table S4).

3.4 Model establishment

This study developed 864 prediction models using 18 machine
learning algorithms and 48 data sets, and evaluated their
performance using 10-fold cross-validation. To assess the effect
of different data processing methods and machine learning
algorithms on model performance, we used 200 Bootstrapping
samples from the test set. The results showed that model
performance varied depending on data filling, balancing, variable
selection, and machine learning algorithm (the details are shown in
Supplementary Table S5).

3.5 Model evaluation

The model performance was evaluated using AUC, accuracy,
precision, recall rate, and F1 value and the area under the precision-

recall curve (AUPRC). The top five performing models were
selected, and Model 1 demonstrated the best performance with
an AUC of 0.9789 and an AUPRC of 0.9585. In the five best models,
the data filling method used is no filling, the data balancing method
is mainly random over-sampling or random under-sampling, all
three feature screening methods are used, and the best machine
learning algorithms are gradient boosting.

The ROC (receiver operating characteristic curve) for the top
five models is presented in Figure 4. The best predictive performance
metrics are presented in Table 1. The SHAP value was used to
explain the contribution of variables to the model. The importance
of each variable to the final prediction model was shown in Figure 5.
And the SHAP value of each feature in each sample was calculated
and plotted of the top 20 (see Figure 5). This plot explains how high
and low variable values were in relation to SHAP values. For the
prediction model, the higher the SHAP value of a variable, the more
likely UTIs occurs. As the sample size increased, the AUC values of
the testing set also increased and the graph showed a gradually
flattened trend (Figure 6), indicating that our study had a sufficient
sample size. DCA also showed excellent predictive
performances (Figure 6).

3.6 A pattern tool for prediction model

According to the best model, a prediction platform for the UTIs
of T2DM patients has been developed, the function of the prediction
model was shown in Figure 7. For example, a patient, who has been

FIGURE 3
Data screening process flowchart. EMRS, Electronic Medical Record System.
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hospitalized for 20 days and has a history of UTIs, with a systolic
blood pressure (SBP) of 120 mmHg, was receiving combined
treatment with insulin, SGLT2 inhibitors, and diuretics.
Considering the patient’s other laboratory test results related to
UTIs, the likelihood of UTIs was estimated to be 91.49%. This
prediction platform, combined with the professional judgment of
clinicians on the outcome, can assist doctors to make better
clinical decisions.

4 Discussion

In our study, a total of 1340 patients with T2DM were included
to build models. Four data imputing methods, four data balancing
methods and three feature screening methods were used to build
48 datasets, and 18 machine learning algorithms were used to
develop 864 machine learning models. AUC, accuracy, precision,
recall, F1 score, and AUPRC were used to evaluate the performance
of the models. The results showed that our model performed better
than models built using conventional statistical methods, such as
univariate analysis and multivariate binary logistic regression. For
example, Maria et al established a UTIs prediction model with
T2DMwhose AUC was 0.862 (35), which is also one of the few UTIs
prediction models with T2DM currently.

UTIs is a common infection in patients with T2DM. Early
prediction of UTIs occurrence can minimize its occurrence.
Multiple machine learning algorithms and feature selection
methods were employed to construct a UTIs prediction
model. The model can aid in early intervention measures for
high-risk individuals by adjusting the use of hypoglycemic
agents and controlling blood glucose levels to reduce the
incidence of UTIs.

According to the results, the important features of UTIs in
T2DM mainly include the following aspects: UTIs-related
inflammatory indicators (including leucocyte, urinary epithelial
cells, urinary leukocyte, etc.), medication use (mainly
SGLT2 inhibitors, insulin, etc.), severity of comorbidities (history
of UTIs, diabetes and hypertension), blood routine indicators
(neutrophil count), and other indicators (length of hospital stay
and eGRF).

Apparently, infection markers in urine analysis are directly
associated with UTIs. Although some patients may present with
asymptomatic bacteriuria (ASB), most UTIs in T2DM patients
exhibit elevated levels of infection markers in urine analysis
(Sharma et al., 2017). Additionally, this study demonstrated that
blood routine examination, such as neutrophil count, may also serve
as potential indicators, which is consistent with the findings of
Fatemeh et al. (Saheb Sharif-Askari et al., 2020).

FIGURE 4
The results of AUC (A) and AUPRC (B) in the best five models.

TABLE 1 The predictive performance of top five performing models.

Model ID AUC Accuracy Precision Recall F1Score AUPRC

1 0.9789 0.9237 0.9552 0.7901 0.8649 0.9585

2 0.9778 0.9237 0.8588 0.9012 0.8795 0.9537

3 0.9769 0.916 0.8734 0.8519 0.8625 0.9555

4 0.9759 0.9313 0.92 0.8519 0.8846 0.9552

5 0.9755 0.9275 0.9559 0.8025 0.8725 0.9533
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Many RCTs and clinical reviews indicated that the use of SGLT-
2 inhibitors was associated with an increased risk of UTIs (Clar et al.,
2012; Musso et al., 2012; Berhan and Barker, 2013; Vasilakou et al.,
2013; Liu et al., 2015b; Dave et al., 2019). The possible mechanism is
that SGLT-2 inhibitors can increase the excretion of glucose in urine,
providing a better environment for the growth of microorganisms
such as fungi and bacteria in the genitourinary tract, leading to an
increased risk of UTIs (Geerlings et al., 2014). Furthermore, the
severity of T2DM itself exacerbates the risk of UTIs. Therefore,
indicators of the control status of T2DM are of significant
importance in predicting the occurrence of UTIs. These
indicators include fasting blood glucose (FBG) levels, insulin use,
and the presence of diabetes-related complications, such as ocular
problems caused by diabetes (Wilke et al., 2015). Moreover, the
elevation of blood pressure is also identified as a contributing risk
factor (Carrondo and Moita, 2020). In addition, the history of UTIs
is also very important, because it suggested that the patient may
possess susceptibility to recurrent UTIs, which provides crucial
insights into the patient’s medical history, immune status,
anatomical abnormalities, or pathological changes. And these
factors may elevate the risk of future UTIs. Previous studies have

demonstrated that a history of UTIs is a strong risk factor for UTIs
(Geerlings et al., 2014; Wilke et al., 2015).

Other indicators, including the length of hospital stay and eGFR
are also considered risk factors, which is also consistent with the
results of some previous studies (Janifer et al., 2009; Wilke et al.,
2015; Carrondo and Moita, 2020). eGFR is a possible influencing
factor probably because of poorer kidney function status, because
the patients were mostly elderly (>64 years) (see Supplementary
Table S2). And women are more susceptible to UTIs compared to
men, primarily because the female urethra is shorter, which makes it
easier for bacteria to invade, however, the importance of gender was
not shown in our study, probably because the gender difference was
not obvious, and the baseline data showed that the male to female
ratio was 1:1 (Gyftopoulos et al., 2019; Czajkowski et al., 2021).

Some study found that invasive procedures increased the risk of
UTIs, as they can damage the urethral mucosa and facilitate bacterial
entry (Mirone and Franco, 2014; Walker et al., 2017). However, in this
study, the proportion of invasive procedures was higher in the non-
UTIs group. This discrepancy may be due to the fact that all invasive
procedures were included in this study, while other studies only
considered invasive procedures related to the genitourinary tract.

FIGURE 5
Variable contribution to the model by SHAP Value. Contribution of each feature value in one sample (A). SHAP summary plot of the top 20 variables
of the best model (B). Absolute average of SHAP value of the top 20 variables of the best model (C). X5 Length of Stay; X7 History of UTIs; X13 SBP;
X45 Insulin; X50 TZD; X52 SGLT-2i; X58 Diuretics; X62 Fasting plasma glucose; X66 Urinary protein; X69 Urine occult blood; X70 Leukocyte esterase;
X71 Urine Leukocyte Counts; X72 RBC in Urine; X73 Urine epithelial cells counts; X75 Neutrophil Count; X87 Hb; X99 TBil; X100 eGFR; X101 Urea;
X102 UA; X104 U/C.
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FIGURE 6
Sample size validation (A) and DCA plots of five models (B).

FIGURE 7
Prediction platform for UTIs in T2DM.
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5 Limitations

This study had several limitations. First, this was a
retrospective study, so some variables that could be important
for UTIs, such as specific invasive procedures and dietary habits,
may not have been obtainable and could affect the predictive
performance of the model. Second, although the results of the
sample size validation are acceptable, the final sample size
included in the study is relatively small. Third, all the data
were from the same hospital, so whether the predictive model
developed in this study is applicable to other hospitals or
populations in other countries, further research is needed.
Therefore, further research is needed to determine the
applicability of the predictive model developed to other
populations.

6 Conclusion

We have developed a predictive model for UTIs in T2DM
patients based on machine learning. In this process, we utilized
various combinations of imputing methods, sampling methods,
feature screening methods, and algorithms. Through the
establishment of the predictive model, we aim to provide some
assistance for the clinical diagnosis and treatment of
UTIs in T2DM.
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