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Objective: Pulmonary infection (PI), a severe complication of
immunosuppressive therapy, affects patients’ prognosis. As part of this study,
we aimed to construct a pulmonary infection prediction (PIP) model and validate
it in patients receiving immunosuppressive drugs (ISDs).

Methods: Totally, 7,977 patients being treated with ISDs were randomised 7:3 to
the developing (n = 5,583) versus validation datasets (n = 2,394). Our predictive
nomogram was established using the least absolute shrinkage and selection
operator (LASSO) and multivariate COX regression analyses. With the use of the
concordance index (C-index) and calibration curve, the prediction performance
of the final model was evaluated.

Results: Among the patients taking immunosuppressive medication, PI was
observed in 548 (6.9%). The median time of PI occurrence after
immunosuppressive therapy was 123.0 (interquartile range: 63.0, 436.0) days.
Thirteen statistically significant independent predictors (sex, age, hypertension,
DM, malignant tumour, use of biologics, use of CNIs, use of methylprednisolone
at 500mg, use of methylprednisolone at 40 mg, use of methylprednisolone at
40 mg total dose, use of oral glucocorticoids, albumin level, and haemoglobin
level) were screened using the LASSO algorithm and multivariate COX regression
analysis. The PIP model built on these features performed reasonably well, with
the developing C-index of 0.87 (sensitivity: 85.4%; specificity: 81.0%) and
validation C-indices of 0.837, 0.829, 0.832 and 0.830 for predicting 90-, 180-,
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270- and 360-day PI probability, respectively. The decision curve analysis (DCA)
and calibration curves displayed excellent clinical utility and calibration
performance of the nomogram.

Conclusion: The PIP model presented herein could aid in the prediction of PI risk in
individual patients who receive immunosuppressive treatment and help personalise
clinical decision-making.
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1 Introduction

Immunosuppressive drugs (ISDs) are a class of drugs that
exert immunosuppressive effects through various mechanisms
and are primarily used to clinically modulate the immune
response of patients (Suthanthiran et al., 1996; Barshes et al.,
2004; Allison, 2005). Since the establishment of their
immunosuppressive action, ISDs have been widely
recommended as first-line therapeutics in organ
transplantation cases and the treatment of autoimmune
disorders (Kasiske et al., 2010; Radhakrishnan and Cattran,
2012; Fanouriakis et al., 2019). With the widespread
application of glucocorticoids and other immunosuppressants,
an increasing number of latent adverse effects is linked with this
class of agents in recent years, and this limits their use (Penfornis
and Kury-Paulin, 2006; Htwe and Khardori, 2017;
Chotiyarnwong and McCloskey, 2020). Pulmonary infection
(PI) is a common comorbidity in immunosuppressed patients
and contributes to an exceptionally high mortality rate (Godbole
and Gant, 2013; Ahuja and Kanne, 2014), which it has various
potential reasons. One reason could be that
immunosuppressants inhibit the immune function of patients,
which significantly increases their susceptibility to a variety of
microbial pathogens and the incidence of infection, especially
PI, directly threatening the lives of many patients (Stahn and
Buttgereit, 2008). Moreover, the symptoms of infection in
patients could be overshadowed by the long-term course of
immunosuppressants, which makes it difficult for early
diagnosis and treatment, thus rendering rapid progression
and a poor prognosis (Poowuttikul et al., 2019). The results
of a 10-year cohort study from China revealed that patients with
pneumonia who previously received active immunosuppressant
therapy had a greater risk of mortality when hospitalised (Yin
et al., 2021). Therefore, it is crucial to understand the risk factors
and identify patients at a high risk of PI when initiating
immunosuppressant therapy. However, there is a lack of
visual prediction models that can be applied in broad and
large populations.

The nomogram model, as a multi-factor calibrated
visualisation tool, has been extensively used to predict various
outcomes in clinical practice, and it can provide the rationale for
clinicians to develop more effective and individualised therapy
regimens (Iasonos et al., 2008). Accordingly, this research
was devised to establish a simple and effective nomogram
prediction model for PI and validate it in patients receiving
immunosuppressive therapy.

2 Materials and methods

2.1 Definitions

The diagnostic criteria for PI in the current research
encompassed the following elements: 1) Clinical manifestations
comprised the onset of a new cough or expectoration, or the
exacerbation of existing respiratory tract symptoms, accompanied
by or without purulent sputum, chest pain, dyspnea, hemoptysis,
fever, and rales detected during lung auscultation; 2) Leukocyte
count exceeding 10 × 109/L or falling below 4 × 109/L (Kalil et al.,
2016); 3) Imaging characteristics encompassed the emergence of
infiltration, consolidation, ground-glass opacity, or effusion
observed in chest plain films or computed tomography scans
(Wunderink et al., 1992; Koenig and Truwit, 2006). Patients who
satisfied the third criterion, in conjunction with either the first or
second criterion, were subjected to a clinical diagnosis of PI.
Diagnosis of PI was reviewed and reconfirmed by an experienced
specialist in infectious diseases (JZ).

Immunosuppressive agents used in this study were calcineurin
inhibitors (CNIs) (tacrolimus and cyclosporine A),
cyclophosphamide (CTX), mycophenolate mofetil (MMF),
biologics (rituximab, infliximab, etanercept, adalimumab,
tocilizumab, abatacept and bortezomib), azathioprine,
methotrexate, leflunomide, Tripterygium wilfordii,
hydroxychloroquine, and glucocorticoids.

2.2 Eligibility criteria

The inclusion criteria were as follows: 1) patients using ISDs
according to electronic medical records; 2) a follow-up period of
longer than 14 days after initiating immunosuppressive therapy.

The exclusion criteria were as follows: 1) age less than 18 years
old; 2) PI occurred within 14 days of immunosuppressive therapy; 3)
patients with pre-existing PI who need to receive ISDs treatment,
such as acute exacerbations of chronic obstructive pulmonary
disease (AECOPD) and COVID-19.

2.3 Data sources and processing

Demographic characteristics and laboratory data of, and
physician’s orders for these patients including, but not limited to,
sex, age, hypertension, diabetes mellitus (DM), malignant tumour,
use of immunosuppressive agents, albumin level, haemoglobin level
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and lymphocyte level were excerpted from the hospital’s electronic
patient management system. The study design flowchart is depicted
in Figure 1.

2.4 Statement of human rights and ethics

Keeping in conformity with the Helsinki Declaration (as revised
in 2013), our study received ethical permission from the Zhejiang
Provincial People’s Hospital Ethics Committee (No. 2021QT345)
(World Medical Association, 2013).

2.5 Informed consent

Informed consent from the patients was waived as the study was
retrospective in nature.

2.6 Statistical analyses

The baseline characteristics of the two cohorts are summarised
as frequency count (percentage) for count variables and median
(interquartile range [IQR]) for metric variables. To measure
between-group differences, count variables were subjected to

chi-square or Fisher’s exact test, and metric variables were
subjected to t-test or Wilcoxon test, depending on the distribution.

Imputation was conducted if missing values were <20%. The
LASSO method was adopted to screen significant covariates and
prevent the overfitting of the model. In this regression model, the
absolute size of the coefficients of a regression model is penalised
according to the value of λ, which is a LASSO regularisation
parameter. In the presence of larger penalties, the estimates of
weaker factors shrink toward zero, resulting in only the strongest
factors remaining in the model. The most predictive covariates were
chosen based on the minimum of λ (λmin). Thereafter, we
incorporated the variables identified via LASSO regression
analysis into COX regression models, and the variables that were
consistently statistically significant were chosen to construct
the nomogram.

A nomogram was constructed based on the final model. To
evaluate the predictive performance in terms of discrimination and
calibration, validation of the derived nomogram was carried out. An
assessment of discrimination was performed using the receiver
operating characteristic (ROC) curve and concordance index
(C-index). A comparison of the observed PI rates with
predictions from the final model was used to evaluate calibration.
R software, version 4.1.0 (2021-05-18; R Foundation for Statistical
Computing, Vienna, Austria) was employed for the statistical
analyses presented. R packages including mice, VIM, missForest,
survival, survminer, rms, glmnet, regplot, survivalROC, and
survcomp were utilised in the current study. A two-tailed P-value
of <0.05 was set to denote statistical significance for all tests.

3 Results

3.1 Baseline characteristics of the
developing and validation datasets

In total, 8,625 patients using ISDs between January 2010 and
October 2021 were consecutively selected for this study. Among
these patients, 610 were excluded because of PI before
immunosuppressive treatment or the occurrence of PI within
14 days of immunosuppressive therapy, and 38 patients were
excluded as they were under 18 years of age. Ultimately,
7,977 patients were selected for the current analysis. All
participants were randomly assigned to either the developing
dataset (n = 5,583) or validation dataset (n = 2,394) at a 7:
3 ratio. The detailed study flow was given in Figure 1. There
were no statistically significant differences in the demographic
factors between the sets (Table 1). The prevalence of PI was 6.9%
(384/5,583) in the developing set and 6.9% (164/2,394) in the
validation set. The median time of PI after immunosuppressive
therapy was 123.0 (IQR: 63.0, 436.0) days.

3.2 Predictor selection

A total of 53 general variables measured at admission to the
hospital were included in the LASSO regression analysis.
Participants’ characteristics were shown in Supplementary
Table S1. Based on the LASSO regression analysis results,

FIGURE 1
Flow diagram of the study design. CNIs, calcineurin inhibitors;
DM, diabetes mellitus; ISDs, immunosuppressive drugs; LASSO, least
absolute shrinkage and selection operator; PI, pulmonary infection.
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TABLE 1 Demographics and baseline characteristics of the study cohort.

Overall Developing cohort Validation cohort P

n 7977 5583 2394

Follow up time (day) 134.0 (64.0, 495.0) 136.0 (64.0, 501.50) 133.0 (64.0, 469.0) 0.407

Pulmonary infection n(%) 548 (6.9) 384 (6.9) 164 (6.9) 1

Pulmonary infection time (day) 123.0 (63.0, 436.0) 125.0 (63.0, 438.5) 121.0 (63.0, 433.0) 0.476

Sex (female) n(%) 5431 (68.1) 3830 (68.6) 1601 (66.9) 0.136

Age (years) 55 (44, 66) 56 (44, 66) 55 (43, 66) 0.207

Smoking habit n(%) 986 (12.4) 685 (12.3) 301 (12.6) 0.733

Drinking habit n(%) 676 (8.5) 483 (8.7) 193 (8.1) 0.411

Hypertension n(%) 1357 (17.0) 949 (17.0) 408 (17.0) 0.987

Diabetes mellitus n(%) 628 (7.9) 432 (7.7) 196 (8.2) 0.524

Malignant tumor n(%) 2709 (34.0) 1899 (34.0) 810 (33.8) 0.897

Organ transplanation n(%) 172 (2.2) 111 (2.0) 61 (2.5) 0.135

Autoimmune disease n(%) 5056 (63.4) 3546 (63.5) 1510 (63.1) 0.728

Kidney disease n(%) 1676 (21.0) 1146 (20.5) 530 (22.1) 0.112

CTX n(%) 3178 (39.8) 2208 (39.5) 970 (40.5) 0.432

CTX total dose (mg) 3800(2700, 5200) 3800(2700, 5100) 3800 (2800, 5400) 0.378

MMF n(%) 1047 (13.1) 737 (13.2) 310 (12.9) 0.788

MMF duration (day) 140 (48, 533) 146 (47, 548) 140 (49, 471) 0.709

CNIs n(%) 1339 (16.8) 947 (17.0) 392 (16.4) 0.541

CNIs duration (day) 153 (48, 408) 150 (50, 420) 161 (45, 395) 0.486

Biologics n(%) 454 (5.7) 315 (5.6) 139 (5.8) 0.813

Azathioprine n(%) 1825 (22.9) 1309 (23.4) 516 (21.6) 0.07

Azathioprine duration (day) 159 (34, 680) 163 (35, 646) 154 (32, 767) 0.079

Methotrexate n(%) 1203 (15.1) 853 (15.3) 350 (14.6) 0.472

Methotrexate duration (day) 119 (28, 525) 119 (28, 506) 109 (28, 591) 0.451

Leflunomide n(%) 1559 (19.5) 1072 (19.2) 487 (20.3) 0.251

Leflunomide duration (day) 182 (49, 727) 177 (50, 700) 193 (40, 784) 0.236

Tripterygium wilfordii n(%) 2166 (27.2) 1550 (27.8) 616 (25.7) 0.065

TW duration (day) 170 (44, 567) 175 (44, 575) 162 (43, 549) 0.065

Hydroxychloroquine n(%) 1825 (22.9) 1309 (23.4) 516 (21.6) 0.07

Hydroxychloroquine duration (day) 159 (34, 680) 163(35, 646) 154 (32, 767) 0.079

Pred 500 mg n(%) 166 (2.1) 108 (1.9) 58 (2.4) 0.189

Pred 500 mg total dose (mg) 2000 (1500, 2803) 2000 (1500, 2500) 2000 (1500, 3000) 0.159

Pred 40 mg n(%) 1081 (13.6) 739 (13.2) 342 (14.3) 0.223

Pred 40 mg total dose (mg) 640 (280, 1280) 600 (280, 1280) 650 (280, 1283) 0.199

Oral glucocorticoids n(%) 2743 (34.4) 1908 (34.2) 835 (34.9) 0.561

Oral glucocorticoids duration (day) 131 (34, 405) 133 (33, 412) 126 (35, 393) 0.634

SMZ n(%) 626 (7.8) 434 (7.8) 192 (8.0) 0.742

(Continued on following page)
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15 features were chosen to be potential predictors of PI, including
sex, age, hypertension, DM, malignant tumour, CTX total dose,
use of biologics, use of MMF, use of CNIs, use of

methylprednisolone at 500 mg, use of methylprednisolone at
40 mg, total cumulative dose of methylprednisolone at 40 mg,
use of oral glucocorticoids, albumin level, and haemoglobin level.

TABLE 1 (Continued) Demographics and baseline characteristics of the study cohort.

Overall Developing cohort Validation cohort P

Albumin, g/L 40.2 (36.0, 43.5) 40.3 (36.2, 43.5) 40.1 (35.8, 43.5) 0.575

Globulin, g/L 29.0 (25.8, 32.5) 29.0 (25.8, 32.5) 29.0 (25.9, 32.3) 0.942

Creatinine, μmol/L 71.4 (62.9, 84.9) 71.2 (63.0, 84.8) 71.9 (62.7, 85.0) 0.559

Uric acid, umol/L 295 (238, 366) 295 (238, 366) 297 (238, 366) 0.957

Fasting blood glucose, mmol/L 5.03 (4.63, 5.56) 5.02 (4.63, 5.56) 5.04 (4.62, 5.57) 0.494

Phosphorus, mmol/L 1.18 (1.05, 1.31) 1.18 (1.04, 1.31) 1.18 (1.05, 1.31) 0.267

Monocyte % 5.70 (4.40, 7.20) 5.60 (4.40, 7.10) 5.70 (4.40, 7.20) 0.926

Monocyte, ×10⁹ /L 0.34 (0.26, 0.48) 0.34 (0.26, 0.48) 0.34 (0.25, 0.48) 0.841

Basophil % 0.30 (0.10, 0.40) 0.20 (0.10, 0.40) 0.30 (0.10, 0.40) 0.365

Basophil 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.656

Eosinophil % 1.20 (0.50, 2.40) 1.20 (0.50, 2.30) 1.30 (0.50, 2.40) 0.262

Eosinophil, ×10⁹ /L 0.07 (0.03, 0.14) 0.07 (0.03, 0.14) 0.07 (0.03, 0.14) 0.136

Lymphocyte % 28.1 (21.1, 35.0) 28.1 (21.0, 34.9) 28.0 (21.3, 35.1) 0.488

Lymphocyte count, ×10⁹ /L 1.67 (1.22, 2.20) 1.67 (1.22, 2.20) 1.67 (1.22, 2.20) 0.69

Neutrophil to lymphocyte ratio 2.24 (1.60, 3.33) 2.24 (1.60, 3.35) 2.25 (1.58, 3.28) 0.344

Platelet to lymphocyte ratio 125.8 (90.7, 172.7) 125.9 (90.7, 172.1) 125.4 (90.7, 174.2) 0.992

White blood cell count, ×10⁹/L 6.11 (4.78, 7.87) 6.10 (4.78, 7.88) 6.14 (4.77, 7.85) 0.793

Hemoglobin, g/L 128.0 (114.0, 139.0) 128.0 (115.0, 139.0) 128.0 (114.0, 139.0) 0.899

Platelets, ×10⁹ /L 214.0 (167.0, 264.0) 214.0 (166.0, 264.0) 214.0 (169.0, 265.0) 0.507

CTX, cyclophosphamide; MMF, mycophenolate mofetil; CNIs, calcineurin inhibitors; TW, Tripterygium wilfordii; Pred, methylprednisolone; SMZ, sulfamethoxazole.

FIGURE 2
Variable selection using the least absolute shrinkage and selection operator (LASSO) regression model: (A) LASSO coefficient profiles of the
58 baseline features; (B) Tuning parameter (λ) selection in the LASSO model used 10-fold cross-testing via minimum criteria.
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The screening for the LASSO analysis is shown in Figure 2. The
significant features from LASSO were subsequently chosen for
further multivariate COX regression analysis. Thirteen variables

were finally screened as statistically significant independent
predictors of PI. The results of the multivariate COX
regression analysis are presented in Figure 3.

FIGURE 3
Multivariate COX regression analysis of the developing cohort. Alb, albumin; CNIs, calcineurin inhibitors; CTX, cyclophosphamide; DM, diabetes
mellitus; Hb, haemoglobin; MMF, mycophenolate mofetil; pred, methylprednisolone.

FIGURE 4
The nomogram of the pulmonary infection prediction (PIP) model. In the nomogram, each patient’s value is displayed on an axis for each variable,
and a line is drawn upward to determine the number of points each variable receives. On the Total Points axis is the sum of these numbers, and a line is
drawn downward to the survival axes to determine 90-, 180- and 360-day probability of PI. Alb, albumin; CNIs, calcineurin inhibitors; DM, diabetes
mellitus; Hb, haemoglobin; PI, pulmonary infection; pred, methylprednisolone.
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3.3 Nomogram construction

Thirteen of the clinical parameters (sex, age, hypertension, DM,
malignant tumour, use of biologics, use of CNIs, use of
methylprednisolone at 500 mg, use of methylprednisolone at
40 mg, use of methylprednisolone at 40 mg total dose, use of oral

glucocorticoids, albumin level, and haemoglobin level) were
integrated to construct a pulmonary infection prediction (PIP)
model in patients receiving ISDs (Figure 4).

Notably, patients with the following features presented a greater
probability of developing PI: male, old age, hypertension, DM,
malignant tumour, use of biologics, use of CNIs, use of
methylprednisolone at 500 mg, use of methylprednisolone at
40 mg, high-dose methylprednisolone, use of oral glucocorticoids,
and low albumin and haemoglobin levels.

Moreover, the longer the length of the line, the greater the effect
of these factors on the risk of developing PI. As found from the
nomogram, the use of methylprednisolone at 40 mg total dose had
the greatest effect on the occurrence of PI, whereas the presence of
hypertension was observed to have the least effect. The top line of the
nomogram corresponded to the score for each factor. Scores for each
of these parameters were pooled, with higher scores indicating a
higher risk of developing PI.

3.4 Nomogram validation

The model showed a high degree of discrimination, with the
developing C-index of 0.87 and the validation C-indices of 0.837,
0.829, 0.832 and 0.830 for predicting 90-, 180-, 270- and 360-day PI
probability, respectively (Figure 5). The dynamic alterations of the
C-indices for the PIP model in the validation cohort are shown in
Figure 6. The calibration plot also displayed excellent concordance
between the predicted probability of PI and observations, which
indicated good calibration of the model in the validation dataset

FIGURE 6
The dynamic alterations of concordance index (C-index) for the
model in the validation dataset.

FIGURE 5
The receiver operating characteristic (ROC) curves based on the nomogram in the validation dataset: (A) ROC curve predicting 90-day probability of
pulmonary infection (PI); (B) ROC curve predicting 180-day probability of PI; (C) ROC curve predicting 270-day probability of PI; (D) ROC curve predicting
360-day probability of PI.
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(Figure 7). The decision curve analysis (DCA) of the developing and
validation datasets proved the potential clinical value of the
model (Figure 8).

4 Discussion

We built a simplified prediction model based on 13 easily
accessible variables selected using LASSO and multivariate
regression analyses to facilitate the personalised estimation of the

likelihood of PI and validated it in patients who received
immunosuppressant medications. The LASSO regression analysis
allows the shrinkage of the coefficients of the less contributive
variables to be exactly zero, which effectively deals with the
multicollinearity problem in the model and the enormous
number of clinical factors (Hepp et al., 2016). The nomogram
provides a simple pictorial representation of sophisticated
mathematical calculations, and it has been recognised as a
reliable and valuable predictive tool for clinical use (Xie et al.,
2015). However, it must be clarified that the relatively large

FIGURE 8
The decision curve analysis (DCA) of the model: (A) DCA in the developing dataset; (B) DCA in the validation dataset.

FIGURE 7
The calibration diagram of the model in the validation dataset.
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number of parameters involved in this model did not affect its
usefulness and feasibility. This is because the combination of two or
three ISDs is the most commonly used therapy, and it is seldom that
all of the listed ISDs are simultaneously prescribed in clinical
practice. Further, all patients receiving immunosuppressant
therapy were included in our study, regardless of hospital
departments. As a result, our predictive model seemed to have a
better generalizability to some extent. In 2019, Wang et al. (2019),
utilising clinical data of 333 patients, proposed using the AIM-7C
score for the early evaluation of the risk of developing PI after the
initiation of a cyclosporine regimen. Nevertheless, this score was
only applicable to patients with primary membranous nephropathy,
and not to all patients receiving immunosuppressive therapy. To our
understanding, this is the inaugural instance of a visual nomogram
model designed explicitly for the early detection of PI in all patients
treated with ISDs.

In this study, we found that the prevalence of PI was 6.9% (548/
7,977), illustrating that patients receiving immunosuppressive
therapy are a high-risk population for PI. Furthermore, the
results showed that the incidence rate of PI among males was
11.9% (302/2,546), whereas that among females was 4.2% (246/
5,431), demonstrating that male patients were more vulnerable to
PI than females. The reason for this phenomenon could not be
elucidated. One possible reason is the different effects of sex
hormones on the immune response. Previous studies have
reported that testosterone has an immunosuppressive effect,
whereas oestrogens tend to reinforce immunological hyper-
response (Beery, 2003). Additionally, the majority of males have
a history of smoking and alcohol consumption (Fujii et al., 2021;
Shrestha et al., 2021). Smoking and alcohol consumption can
aggravate underlying diseases and reduce cardiopulmonary
function, which is another possible reason for this observation.
Another independent risk factor that we found was the age of the
patients. There is increasing evidence that the lung immune system
declines with age, increasing the risk of developing infections and
chronic inflammatory diseases, as well as the mortality rate (Larbi
et al., 2008). Moreover, we found low albumin and haemoglobin
levels to be independent risk factors for PI development, and this
was consistent with the findings of previous research (Levy et al.,
2005; Wang et al., 2019). As a well-established marker of
malnutritional status, a low serum albumin level strongly
suggests poor dietary choices in patients. Long-term
immunosuppressive therapy can further affect nutrient balance,
which in turn reduces the body’s immunity to pathogens. Patients
receiving immunosuppressive therapy who have anaemia may
experience weakened immune systems, further increasing their
risk of infection. Furthermore, we found that malignant tumours,
and the use of biologics and CNIs, were significantly associated
with the occurrence of PI. It is generally known that patients with
malignant tumours often experience complications with infection
owing to their immunocompromised status (Azevedo et al., 2020).
Infection is frequently cited as an adverse effect in the
administration of biologics and CNIs (Thaunat et al., 2004;
Evens et al., 2011; Kelesidis et al., 2011; Sułkowska et al., 2012;
High and Olivry, 2020). The pathogenic microorganisms identified
in patients with infection included viruses, bacteria, fungi, and
virus-bacteria co-infection. Besides the above clinical parameters,
we found that the use of methylprednisolone at 500 mg, use of

methylprednisolone at 40 mg, total cumulative dose of
methylprednisolone at 40 mg, and use of oral glucocorticoids
were independent predictors of PI development. Long-term use
of glucocorticoids can inhibit the antigen-antibody reaction in the
human body, thereby leading to the development of infection
(McEwen, 2008). A previous animal study confirmed the
relationship of glucocorticoid use with the development of PI
(Reis e Sousa, 2001). As such, rational clinical use of
glucocorticoids appears to be particularly valuable. In addition,
DM and hypertension were correlated with an elevated risk of
developing PI. Indeed, DM has been considered a significant risk
factor for lower respiratory tract infections in susceptible patients
(Klekotka et al., 2015). Chronic hypertension damages blood
vessels, resulting in pulmonary oedema, pulmonary congestion,
systemic hypoxia, and even PI (Ponte et al., 2013).

Based on 13 independent risk factors (male, age,
hypertension, DM, malignant tumour, use of biologics, use of
CNIs, use of methylprednisolone at 500 mg, use of
methylprednisolone at 40 mg, total cumulative dose of
methylprednisolone at 40 mg, use of oral glucocorticoids, and
low albumin and haemoglobin levels) established from a large
cohort with sufficient sample size, we constructed the first
practical nomogram model and demonstrated that it was
advantageous for the individualised risk stratification of PI in
patients taking immunosuppressants. Our nomogram model
demonstrated satisfactory prediction ability, with C-indices of
0.837, 0.829, 0.832, and 0.830 for the 90-, 180-, 270- and 360-day
probability of PI in the validation set, respectively, which
demonstrated the model’s favourable discriminative ability to
differentiate patients who were at a risk of developing PI from
those who were not. Furthermore, the calibration plot
demonstrated a strong agreement between the calibration and
standard curves in the validation cohort, suggesting that the
predicted occurrence of PI was close to the observed data. In
addition to acknowledging uncontrolled factors, such as sex, age,
and malignant tumours, medical staff should strengthen the
management of controllable factors. In this prediction model,
we consider a value greater than 0.5 as high risk and a value less
than 0.5 as low risk. If the value is greater than 0.5, we will not
only increase the frequency and content of follow-up, but also
communicate with the patient about the risk of infection and
adjust the treatment plan if necessary. Once high-risk cases are
detected, aggressive preventive interventions should also be
undertaken at the earliest opportunity to reduce the morbidity
rate of PI. For instance, it is imperative to strongly advocate
smoking cessation for all patients receiving immunosuppressants
who are still smoking. And nursing staff should assume the
responsibility of instructing patients in respiratory function
exercises to enhance lung function. Moreover, regular
nutritional screening and management should be reinforced as
a fundamental element of preventive measures, ensuring efficient
support in maintaining optimal patient health.

A number of limitations were identified in the current study. In the
first place, due to its retrospective nature, its generalizability was limited
by the fact that it was restricted to a single site. Yet, our study enrolled all
patients treated with ISDs in a single center irrespective of disciplines,
which might somewhat compensate for the aforementioned drawback.
Second, our nomogram has not yet undergone external validation, and
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thus, the extrapolation of our nomogram to other cohorts remains
unknown. Further independent external validation using additional
large datasets to verify these findings has been planned. Third, some
patients were administered more than one ISD during the study, which
unavoidably introduced bias into the study. Consequently, further
studies should take into account the potential interactions among
multiple drugs. Last but not least, our study did not grade the risk
of developing PI in patients with immunosuppressive therapy.
Accordingly, we plan to explore this issue in our future research.

5 Conclusion

To summarize, sex, age, hypertension, DM, malignant tumour, use
of biologics, use of CNIs, use of methylprednisolone at 500 mg, use of
methylprednisolone at 40 mg, total cumulative dose of
methylprednisolone at 40 mg, use of oral glucocorticoids, and
albumin and haemoglobin levels were independent predictors of the
occurrence of PI in patients who were receiving immunosuppressant
therapy. The nomogram model established in this study has the
potential to assist in the development of an optimal therapeutic
intervention for this condition, thereby effectively reducing the
occurrence of PI. This suggests that our nomogram model holds
promise for widespread implementation in clinical practice.
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