AUTHOR=Franchini Fanny , Fedyashov Victor , IJzerman Maarten J. , Degeling Koen TITLE=Implementing competing risks in discrete event simulation: the event-specific probabilities and distributions approach JOURNAL=Frontiers in Pharmacology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1255021 DOI=10.3389/fphar.2023.1255021 ISSN=1663-9812 ABSTRACT=

Background: Although several strategies for modelling competing events in discrete event simulation (DES) exist, a methodological gap for the event-specific probabilities and distributions (ESPD) approach when dealing with censored data remains. This study defines and illustrates the ESPD strategy for censored data.

Methods: The ESPD approach assumes that events are generated through a two-step process. First, the type of event is selected according to some (unknown) mixture proportions. Next, the times of occurrence of the events are sampled from a corresponding survival distribution. Both of these steps can be modelled based on covariates. Performance was evaluated through a simulation study, considering sample size and levels of censoring. Additionally, an oncology-related case study was conducted to assess the ability to produce realistic results, and to demonstrate its implementation using both frequentist and Bayesian frameworks in R.

Results: The simulation study showed good performance of the ESPD approach, with accuracy decreasing as sample sizes decreased and censoring levels increased. The average relative absolute error of the event probability (95%-confidence interval) ranged from 0.04 (0.00; 0.10) to 0.23 (0.01; 0.66) for 60% censoring and sample size 50, showing that increased censoring and decreased sample size resulted in lower accuracy. The approach yielded realistic results in the case study.

Discussion: The ESPD approach can be used to model competing events in DES based on censored data. Further research is warranted to compare the approach to other modelling approaches for DES, and to evaluate its usefulness in estimating cumulative event incidences in a broader context.