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Evaluating efficacy and real-world effectiveness for novel therapies targeting rare
mutations or patient subpopulations with unmet needs is a growing challenge in
health economics and outcomes research (HEOR). In these settings it may be
difficult to recruit enough patients to run adequately powered randomized clinical
trials, resulting in greater reliance on single-arm trials or basket trial designs.
Additionally, evidence networks for performing network meta-analysis may be
sparse or disconnected when comparing available treatments in narrower patient
populations. These challenges create an increased need for use of appropriate
methods for handling small sample sizes, structural modelling assumptions and
more nuanced decision rules to arrive at “best-available evidence” on comparative
and non-comparative efficacy/effectiveness. We advocate for greater use of
Bayesian methods to address these challenges as they can facilitate efficient
and transparent borrowing of information across varied data sources under
flexible modelling assumptions, probabilistic sensitivity analysis to assess model
assumptions, and more nuanced decision-making where limited power reduces
the utility of classical frequentist hypothesis testing. We illustrate how Bayesian
methods have been recently used to overcome several challenges of rare
indications in HEOR, including approaches to borrowing information from
external data sources, evaluation of efficacy in basket trials, and incorporating
non-randomized studies into network meta-analysis. Lastly, we provide several
recommendations for HEOR practitioners on appropriate use of Bayesian
methods to address challenges in the rare disease setting.
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Introduction

A core task of health economics and outcomes research (HEOR) is to compare the
effectiveness of two or more competing treatments. Over the past several decades,
researchers in HEOR have been working to realize the promise of a “big data” revolution in
which an excess of evidence can be brought to bear on any given decision problem (Berger and
Doban, 2014). However, due to advances in health technologies which target smaller populations
and/or very rare diseases we continue to see challenges of limited data and small sample sizes. In
response to these trends, we advocate for modern Bayesian approaches which can incorporate all
available information in a principled and transparent way. In our view, Bayesian approaches are
particularly valuable if primary data sources are insufficient to establish reliable and statistically
conclusive superiority of a novel treatment compared to the status quo. In these cases, the novel
treatments that are urgently needed by patients may be passed over if typical large-sample,
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dichotomous statistical significance thresholds are treated as an
unquestioned default by decision-makers.

While Bayesian methods have seen substantial uptake in the area of
meta-analysis–for example, in guidance from the UKNational Institute
for Health and Care Excellence’s (NICE) Decision Support Unit (DSU)
(Dias et al., 2011)–, we suggest that significant gains can also bemade in
rare disease settings where sample sizes and available evidence bases are
more limited. A goal of this paper is to provide examples and guidance
on how practitioners can incorporate external information using
Bayesian modelling to address some of the challenges of evaluating
efficacy/effectiveness that arise in health technology assessments (HTA)
of newly developed therapies for rare indications.We point to some key
applications in which we believe important gains can be made:
borrowing from external sources to augment a concurrent control
arm or to estimate a historical control rate for rare diseases;
incorporating disparate data sources (such as randomized controlled
trial (RCT) and non-randomized study (NRS) data) into a meta-
analysis; and applying Bayesian hierarchical models (BHM) to
partially pool information across heterogeneous data sources. In
each of these applications, common questions emerge: 1) What
relevant information can we draw on to improve existing analyses
and estimates? 2) When existing data are limited, what assumptions
might enable incorporation of external information, and are these
plausible? Or, when very strong assumptions are needed, what
would constitute “best-available evidence”? And 3) how can we
characterize the limitations of the analysis and assess sensitivity to
violations of key assumptions?

What are Bayesian methods and why use
them?

Bayesian inference defines a probability model for data which is
a function of parameters (the likelihood), and a probability model
for parameters before any data are observed (the prior). After data
are observed, the prior and the likelihood are used to calculate a
probability distribution for the parameters given the data (the
posterior). If there is information available which is related
directly to the model parameters, it can be included in the prior.
If there is information available in the form of additional data from
another source, it can be included in the likelihood. The posterior
distribution contains all available information about the model
parameters, and in practice is a very useful mathematical object.
For example, functions of the posterior such as the probability that
one treatment is superior to another, or the expected benefit of
selecting one treatment over another, or the distribution of predicted
patient outcomes in a given population, can all be obtained without
much additional computational effort. In the frequentist approach,
many of these derived quantities are not available, and even if they
are available their calculation is considerably more burdensome.

Because Bayesian methods lead to probability statements about
model parameters, they are vital to formal decision analysis and thus
HTA (see Spiegelhalter et al. (1999) and examples therein). Bayesian
inference leads to statements like: “there is a 95% probability that the
hazard ratio is between 0.6 and 0.84”; whereas frequentist inference
leads to statements such as: “if the trial were repeatedmany times, and a
95% confidence interval constructed for each, the true hazard ratio
would be within 95% of the intervals.” In anHTA context, we argue that

the former is not only more interpretable, but also more directly useful
for decision making. A more extensive comparison of Bayesian and
frequentist methods can be found in Spiegelhalter et al. (1999).

How can Bayesian borrowing help bolster
limited sample sizes in HEOR analyses?

Bayesian borrowing methods can incorporate information about
model parameters (e.g., the control arm response rate) from external
data in a transparentmanner. Thesemethods allow for down-weighting
of the external data to mitigate potential bias arising from different
parameter values in the current population compared to the external
populations. One established approach is to borrow information by
means of a power prior (Ibrahim and Chen, 2000; Ibrahim et al., 2015).
The power prior is formed by taking a prior for the parameter and
combining it with a discounted likelihood for the parameter on the
external data. The external data parameter likelihood is discounted by
raising it to the power of a discount parameter between 0 and 1. A
discount parameter value of 0 corresponds to no borrowing and a value
of 1 yields complete pooling of the datasets. Due to the challenge of
selecting a value for the discount parameter, one option for practitioners
is to vary the discount parameter and assess howmuch borrowing from
the external data is required before a specified decision threshold—or
“tipping point”—is reached (e.g., for concluding that a treatment is
effective). This sort of tipping point analysis has precedent in a
regulatory context when using Bayesian borrowing (US Food and
Drug Administration, 2018). Another option is to use dynamic
borrowing, in which the discount parameter is treated as a random
quantity with its own prior distribution. In theory, this approach allows
the amount of borrowing to depend on the degree of agreement in
observed outcomes between the current and external data sources. In
practice, there may not bemuch information available in the data about
the discount parameter, and results can be sensitive to the choice of
prior. Regardless, proper implementation of dynamic borrowing using a
power prior requires a normalization step (Neuenschwander et al.,
2009) which can be computationally challenging to implement. Ibrahim
et al. (2015) provide amore detailed overview of power priors, including
extensions such as commensurate priors, for interested readers.
Additionally, Viele et al. (2014) compare several approaches to
borrowing from historical data, including the use of power priors.

Another prior-based approach to Bayesian borrowing is to formulate
a meta-analytic predictive (MAP) prior for the parameter of interest
(Neuenschwander et al., 2010). As an example, suppose we want to
borrow information on the response rate for the control treatment. We
conduct a Bayesian meta-analysis (typically a random effects meta-
analysis) to obtain the posterior predictive distribution for the control
treatment response rate. This posterior then becomes the prior for the
response rate in our concurrent control arm—if there is one—or
represents the entirety of information available for this parameter if
there is no concurrent control arm. The posterior predictive distribution
is preferred because it incorporates heterogeneity in response rates across
trial populations, andwe seek to generalize from the external populations
to our current population. A narrower/more precise MAP prior in effect
represents a larger sample size being borrowed from the external data. In
cases where the generalization from external to current is insufficiently
conservative, robust MAP priors have been used (Schmidli et al., 2014).
Robust MAP priors are defined as a weighted mixture of the MAP prior
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and a vague prior. This approach is analogous to the power prior in that
placing more weight on the vague component in the mixture results in a
more diffuse prior distribution which imparts less information, down-
weighting the contribution of the external data.

Power prior and robustMAPpriormethods have different strengths
and weaknesses in practice. Power prior methods can be more
challenging to implement (especially when the discount parameter is
a random quantity), but they have a simple form and can easily be
adapted to incorporate disparate sources of external information. MAP
prior methods will be more familiar to those experienced with Bayesian
meta-analysis, and may be easier to explain and justify in many HEOR
settings. Both approaches can incorporate aggregate data and/or
individual patient data (IPD) from multiple sources, and both can be
used for tipping point analysis if desired (US Food and Drug
Administration, 2018; Best et al., 2021). In one prospective RCT
using robust MAP to reduce control group allocation, variance of the
robust MAP prior was inflated to achieve a target effective sample size
(Richeldi et al., 2022)—a practical approach to borrowing which could
also be applied to a power prior with fixed discount parameter.

How can we model structural relationships
between data sources while also accounting
for potential heterogeneity?

In cases where a structural relationship among data sources can be
assumed, Bayesian hierarchical models (BHMs) are another option for
partial pooling of information in which hierarchical dependencies of key
parameters are modeled explicitly (Gelman et al., 2013). BHMs assume
that some model parameters are related by virtue of being drawn from a
common distribution—i.e., that they are exchangeable—but that the
parameters of the distribution are themselves random quantities. For
example, response rates for a specific control treatment are often
assumed to be heterogeneous across data sources but nonetheless
may be interrelated. Under a BHM approach, information on the
control treatment response rate can be partially pooled across data
sources, with the amount of pooling dependent on the degree of
heterogeneity in response rates across data sources (less borrowing
occurs if response rates are very heterogeneous). This also has the
effect of shrinking parameter estimates towards the grand mean,
mitigating overfitting and improving inference for individual
parameters, particularly when data are limited (Gelman et al., 2013).

To illustrate the utility of BHMs in the HEOR space, we focus on
some recent applications to analyses of basket trials. Basket trial designs
include patients with multiple cancer types which share a common
targetablemutation or biomarker. In these basket trials, sample sizes tend
to be extremely limited, treatment responses are expected to vary among
tumour types, and control arms are often omitted. Murphy et al. (2021)
use a BHM approach in a single-arm basket trial setting for evaluating
response for NTRK fusion-positive patients receiving larotrectinib. Their
approach allows for partial borrowing of information on response rates
across tumour types to produce estimates of response for individual
tumour types, the overall basket of represented tumours, and for an
unrepresented histology. BHM approaches were also well-received in a
NICE technical appraisal for larotrectinib (UK National Institute for
Health and Care Excellence, 2020).

In the BHM approach to analysis of basket trials, exchangeability of
tumour types may be a clinically tenuous assumption (although perhaps

an acceptable approximation in light of data limitations if the BHM is
flexible enough to describe the data). Neuenschwander et al. (2016)
propose an exchangeable-non-exchangeable (EXNEX) model which
allows for relaxation of strong exchangeability assumptions, and we
envision future methodological developments in this area. Mackay
et al. (Mackay et al., 2022; Mackay et al., 2023) have recently proposed
an extension of BHM modelling for histology-independent therapies to
allow for indirect treatment comparisons (ITC) between multiple basket
trials. The approach allows for adjustment for potential confounding due
to differences in tumour type compositions between trials while preserving
limited precision/power bymeans of partial pooling. The reader is directed
to Murphy et al. (2022) for a more detailed discussion of modelling
approaches for histology-independent therapies in an HTA context.

While hierarchical models can be implemented under both a
Bayesian and classical frequentist approach, a key advantage of
Bayesian approaches is the ability to incorporate prior information
and perform probabilistic sensitivity analyses when faced with
challenging settings with limited available data. For example, use
of weakly informative priors can avoid issues of extreme overfitting
to the data. Additionally, it can be difficult to reliably estimate the
heterogeneity parameters for a hierarchical model when the number
of groups (e.g., tumour types) is very small. In these situations,
multiple prior distributions can be used to assess how sensitive
conclusions are to assumptions about the degree of heterogeneity in
outcomes across groups.

Beyond applications to basket trials, BHMs have been used to
incorporate disparate data sources, structural assumptions, and
borrowing approaches when no single source is sufficient for
inference and decision-making. For example, Heeg et al. (2022)
recently used BHMs to partially pool information on specific model
parameters across a class of immune-oncology therapies to improve
survival extrapolations from immature data.

Can we incorporate non-randomized
studies into meta-analyses while mitigating
risk of bias to address challenges in assessing
comparative efficacy/effectiveness?

Meta-analyses which synthesize the published evidence on
relative treatment effects generally rely on RCT evidence only.
However, when estimating real world effectiveness or efficacy/
effectiveness in key patient populations of interest, or when RCT
evidence is lacking due to the rarity of some indications,
incorporating information from non-randomized studies (NRS)
using real-world data becomes appropriate (Sarri et al., 2022).
Relevant NRS would include cohort studies comparing patient
outcomes by treatment using appropriate methods to mitigate
sources of bias (Faria et al., 2015)—particularly well-designed
synthetic control arm analyses (Thorlund et al., 2020) and target
trial emulations (Hernán and Robins, 2016). Sarri et al. (2022)
provide a structured framework for incorporating NRS into meta-
analyses—a process which includes assessing risk of bias in the
identified NRS and careful selection of methods to appropriately
down-weight the influence of NRS, to incorporate bias adjustments,
and to conduct sensitivity analyses to the modelling decisions.

Several promising approaches exist for incorporating NRS into a
network meta-analysis (NMA) or pairwise meta-analysis which are
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both conducive to down-weighting the NRS either statically or
dynamically, and to probabilistic sensitivity analysis. Schmitz et al.
(2013) highlight three approaches to incorporating NRS: 1) naïve
pooling of the RCT and NRS evidence, 2) incorporation of the NRS
using informative priors, and 3) use of a hierarchical model to capture
the potential heterogeneity in relative treatment effects between RCT
and NRS. They also outline how corrections for systematic and non-
systematic bias can be incorporated into approaches 2) and 3).

Schmitz et al. (2013) note that the bias in NRS relative treatment
effects (e.g., log-odds ratios, log-hazard ratios, etc.) can be modelled
using a Gaussian distribution where the mean and variance represent
systematic and non-systematic components of the bias, respectively.
This allows for incorporation of NRS data into the meta-analysis with
potential bias adjustment and down-weighting—either by means of a
bias-adjusted priors or through direct incorporation into the likelihood.
Efthimiou et al. (2017) highlight additional approaches than can be
taken to form priors from NRS data—such as down-weighting of the
parameter likelihood from the NRS data by means of a power prior or
mixture prior (e.g., robust MAP priors). Verde et al. propose a
hierarchical meta-regression (HMR) approach which can be used to
estimate a bias-correction term for study design or other study-level
covariates, and detect and down-weight outlier studies when there is
significant cross-study heterogeneity (Verde et al., 2016; Verde, 2017;
Verde, 2019). Additionally, HMRs can be used to extrapolate treatment
effects to specific populations when IPD is available for at least one
study or real-world data source.

Discussion

As new drug development is focusing more and more on narrower
indications, HEOR practitioners are increasingly faced with challenges
of limited data. These limitations arise from difficulties recruiting
enough patients to conduct adequately powered RCTs (leading to
more reliance on single-arm trials for regulatory and HTA
submissions), narrowing of indications or subpopulations of interest
leading to smaller numbers of relevant studies being identified in
systematic literature reviews (and greater risk of disconnected or
tenuous networks in NMAs), and more reliance on evidence from
ITCs that are unlikely to yield precise estimates of relative treatment
effects. Consequently, we present several recommendations for how
Bayesian methods (including many of the approaches outlined above)
can be used to help mitigate some of these pitfalls.

Firstly, since Bayesian approaches allow for weakly informative
priors to be specified before analyzing the data, use of sensible default
priors can mitigate some of the risks of model overfitting when data are
very limited without imposing overly strong assumptions. With weakly
informative defaults, the prior can be easily overwhelmed when
informative data are available. An example of this can be found in
the Keefe et al. (2021) meta-analysis of diagnostic tests where use of
weakly informative priors allows for the meta-analysis to be run even
when the model is overparametrized for some classes of diagnostic tests
(too few studies relative to the number of parameters). In these cases,
the prior is minimally updated (or not updated at all) and continues to
reflect agnostic beliefs as to whether the test is predictive. In cases where
more studies are available, the prior is updated to reflect the larger
evidence base.

Secondly, if strong modelling assumptions are needed to
synthesize the limited amount of available data, probabilistic
sensitivity analyses should be conducted to assess robustness to
deviations from these assumptions. For example, if it is infeasible to
conduct a random effects NMA due to too few studies in the
network, different heterogeneity assumptions can be assessed by
fitting modified random effects NMAs in which different strong
priors are used for the heterogeneity parameters, each reflecting a
plausible scenario. In this context, fixed effects NMA can be viewed
as a special case of random effects NMA, and use of informative
priors on heterogeneity parameters allows for sensitivity analysis
even when data are too limited to estimate these parameters.

Lastly, if precision/power are anticipated to be extremely limited
(e.g., in a rare disease setting), it may be worth considering a context-
appropriate decision rule rather than a default p-value threshold. For
example, if we are performing an ITC between two treatments that
have received regulatory approval based on single-arm trials, and it
is infeasible to conduct an adequately powered ITC, it may be
sensible to prioritize reimbursement of one drug over the other
based on the posterior probability of superiority (a quantity which is
directly available in Bayesian inference). This would arguably
constitute a “best-available evidence” standard in this example.

In summary, Bayesianmethods provide a principled framework for
quantifying the amount of evidence in favour of a particular conclusion,
are well-suited to combining information from multiple data sources
under various structural assumptions, and can facilitate probabilistic
sensitivity analyses to probe these structural assumptions. For these
reasons we believe that Bayesianmethods should play an increasing role
in health economics and outcomes research.
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