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Patients diagnosed with cancer face an increased risk of cardiovascular events in
the short term, while those experiencing acute myocardial infarction (AMI) have a
higher incidence of cancer. Given limitations in clinical resources, identifying
shared biomarkers offers a cost-effective approach to risk assessment by
minimizing the need for multiple tests and screenings. Hence, it is crucial to
identify common biomarkers for both cancer survival and AMI prediction. Our
study suggests that monocyte-derived biomarkers, specifically WEE1, PYHIN1,
SEC61A2, and HAL, hold potential as predictors for cancer prognosis and AMI. We
employed a novel formula to analyzemRNA levels in clinical samples frompatients
with AMI and cancer, resulting in the development of a new risk score based on
expression profiles. By categorizing patients into high-risk and low-risk groups
based on the median risk score, we observed significantly poorer overall survival
among high-risk patients in cancer cohorts using Kaplan-Meier analysis.
Furthermore, calibration curves, decision curve analysis (DCA), and clinical
impact curve analyses provided additional evidence supporting the robust
diagnostic capacity of the risk score for AMI. Noteworthy is the shared
activation of the Notch Signaling pathway, which may shed light on common
high-risk factors underlying both AMI and cancer. Additionally, we validated the
differential expression of these genes in cell lines and clinical samples,
respectively, reinforcing their potential as meaningful biomarkers. In
conclusion, our study demonstrates the promise of mRNA levels as biomarkers
and emphasizes the significance of further research for validation and refinement.
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Introduction

Acute myocardial infarction (AMI) and cancer are significant
contributors to morbidity and mortality globally (Psaty and Vasan,
2023). Despite limited references on the relationship between these
two conditions, research indicates that patients diagnosed with
cancer are at a higher short-term risk of experiencing
cardiovascular events, while those with acute myocardial
infarction have an increased incidence of cancer (Rinde et al.,
2017; Leening et al., 2023). These potential links imply a latent
connection exists between cancer survival and AMI incidence.
Therefore, identifying common biomarkers for both cancer
survival and AMI prediction is of utmost importance.

The observation that cancer patients face an elevated risk of
cardiovascular events is a matter of concern. Studies have shown
that cancer survivors experience cardiac complications, such as
myocardial infarction, heart failure, and arrhythmias, at rates higher
than the general population (Howard et al., 2019). It is hypothesized
that this increased risk is multifactorial, involving both direct effects of
cancer treatment (e.g., chemotherapy-induced cardiotoxicity) and
shared risk factors between cancer and cardiovascular diseases
(Shaikh and Shih, 2012). For instance, inflammation, oxidative
stress, and endothelial dysfunction, which are common processes in
both cancer and cardiovascular diseases, may contribute to the
development of adverse cardiac events in cancer patients (Libby and
Kobold, 2019). Therefore, identifying common biomarkers that can
predict both cancer survival and AMI might help identify patients at
higher risk for cardiovascular complications during cancer treatment.

On the other hand, the association between AMI and the
subsequent occurrence of cancer has also been documented.
Multiple studies have demonstrated an increased incidence of
various types of cancer, including lung, colorectal, and hematological
malignancies, among individuals with a history of AMI (Leening et al.,
2023). Given the potential bidirectional relationship between AMI and
cancer, it is vital to explore common biomarkers that might aid in early
detection and improve patient outcomes for both conditions. In recent
years, advances in molecular profiling technologies have paved the way
for the discovery of potential shared biomarkers for cancer survival and
AMI prediction (Zhao et al., 2022). Transcriptomics has emerged as a
powerful tool for comprehensively analyzing gene expression patterns
and identifying differentially expressed genes associated with both
diseases (Wang et al., 2009; Ding et al., 2022). Integration of multi-
omics data, combining transcriptomics with other molecular profiling
techniques such as genomics and proteomics (Reel et al., 2021), holds
even greater potential in unraveling the complex interplay between
cancer and AMI. In our study, we used ovarian cancer (OC) samples to
explore the common diagnostic and prognostic signature of AMI may
seem unconventional at first. However, OC and AMI might share
certain risk factors, such as obesity, diabetes, and smoking, which can
predispose individuals to both conditions (Stewart et al., 2019; Kuhn
et al., 2020). In this study, we used OC samples as an example. By
studyingOC samples, we can investigate if there are commonmolecular
pathways or biomarkers (Aydin et al., 2019) associated with these
shared pathways that might contribute to the development of both OC
and AMI.

In our study, we applied a novel formula to analyze mRNA levels
in clinical samples from AMI and OC. The calculation resulted in
the generation of a new risk score based on the expression profiles.

The utilization of risk scores demonstrates the ability to accurately
predict the probability of AMI incidence and the prognosis of OC
patients. Most important of all, these findings demonstrate the
potential of utilizing shared biomarkers (WEE1, PYHIN1,
SEC61A2, and HAL) to predict outcomes in both cancer and
AMI patients.

Materials and methods

Pre-processing of bulk transcriptome data

For theAMI cohort, two independent datasets were analyzed on the
GPL6244 platform, namely, GSE59867 (111 AMI patients and 46 stable
CAD patients at admission) and GSE62646 (28 AMI patients and
14 stable CAD patients at admission) (Pan et al., 2023). The peripheral
blood cohort of OC was obtained from GSE31682, which comprises
20 healthy controls and 48 OC patients. After excluding patients with
incomplete follow-up information (Feng et al., 2022), we obtained RNA
sequencing (RNA-seq) data from both the Cancer Genome Atlas
(TCGA) database (Blum et al., 2018) and the International Cancer
Genome Consortium (ICGC) database. Additionally, data from the
Gene Expression Omnibus (GEO) database (Barrett et al., 2013) was
obtained for theGPL570 platform (n= 597), which includedGSE19829,
GSE18520, GSE9891, GSE26193, GSE30161, and GSE63885. To
integrate the ICGA and TCGA data and define the meta-RNA-seq
dataset, the meta-microarray dataset was defined using the
GPL570 platform. Finally, the “sva” package was utilized to
effectively address and eliminate batch effects across the different
datasets.

Pre-processing of single-cell RNA
sequencing data

Considering the limited availability of human AMI single-cell
RNA (scRNA) sequencing datasets, we employed amouse single-cell
sequencing dataset (GSE135310) as an alternative (Pan et al., 2023).
This dataset includes single-cell RNA sequencing files for cardiac
CD45+ total leukocytes, isolated from mice subjected to AMI or
sham surgery at various time points. As we lacked peripheral blood
single-cell data from healthy individuals within the same batch, we
focused on analyzing datasets obtained before and after
chemotherapy from the same batch. In this regard, we obtained
the GSE213243 dataset, comprising 2 peripheral blood samples from
OC patients. In summary, we performed a series of data filtering
steps to ensure the quality of our scRNA data. We retained cells with
an expression of RNA features ranging from 200 to 2500 while
keeping the percentage of mitochondrial RNA content below 10%.
Additionally, we employed the Harmony algorithm to mitigate
batch effects in our analysis. To annotate all clusters, we utilized
the “SingleR” package for comprehensive annotation.

Clinical samples

As consistent with our previous publication (Pan et al., 2023), we
performed mRNA validation of peripheral blood samples using the
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same cohort of patients. In brief, ten early AMI patients and ten
CAD patients were recruited from our hospital between January
2023 and March 2023. Blood samples were collected from the
patients shortly after experiencing chest pain, before the
administration of antiplatelet or anticoagulant drugs. Peripheral
blood mononuclear cells (PBMCs) were isolated from the collected
blood samples using established techniques (Boyum, , 1968).

Immunohistochemical techniques and RT-
qPCR

Immunohistochemistry (IHC) staining involves the use of
antibodies that are specifically designed to recognize and bind to
target antigens of interest. The antibodies are labeled with a
chromogenic or fluorescent dye, enabling the visualization and
localization of the target molecules under a microscope. The IHC
sections utilized in this study were obtained from the Human
Protein Atlas (HPA) database. To validate the mRNA expression
levels of AMI, PBMCs from patients were utilized. As for OC, cell
lines were employed for the validation of mRNA expression levels.
IOSE-80 (CP-H055), and SKOV3 (CL-0215) were purchased from
Procell Life Science and Technology Co. Ltd. They were cultured in
RPMI 1640 medium supplemented with 10% FBS and 1% penicillin/
streptomycin at 37°C in a humidified incubator with 5% CO2. In
short, total RNA was extracted from samples using the FastPure
Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, Nanjing, China).
Subsequently, RT-qPCR was performed on a LightCycler 480 II
Real-time PCR instrument with the HiScript III All-in-one RT
SuperMix Perfect for qPCR (Vazyme, Nanjing, China) and
ChamQ universal SYBR qPCR Master Mix (Vazyme, Nanjing,
China). We used the 2-̂ΔΔCt method to calculate gene expression
levels. The primer sequences used were designed based on
previously published references and PrimerBank database (Wang
et al., 2012), including WEE1 (Ma et al., 2022), PYHIN1 (Lee et al.,
2019), SEC61A2, and HAL (Kozaczek et al., 2019).

CIBERSORT

CIBERSORT is a widely used computational tool for analyzing
gene expression data and estimating the relative abundance of
immune cell populations within complex tissue samples (Chen
et al., 2018). It utilizes a deconvolution algorithm to infer cell
type proportions from bulk RNA sequencing data. We used the
mRNA expression profile data from GSE59867, GSE31682, and
meta-RNA-seq datasets (TCGA-OV and ICGC-OV) as inputs. The
algorithm utilizes a support vector regression model trained on the
signature matrix to determine the relative abundance of each
cell type.

Weighted gene co-expression network
analysis

In our study, we utilized the Weighted Gene Co-expression
Network Analysis (WGCNA) (Langfelder and Horvath, 2008) in
order to investigate gene expression patterns and identify gene

modules with similar expression profiles. WGCNA is a powerful
tool that allows us to construct a co-expression network based on
correlations between genes across different samples. By analyzing
the module and module-trait (monocyte score from CIBERSORT)
relationships, we can uncover biologically relevant modules
associated with specific traits or phenotypes of interest. We
established the optimal soft thresholding powers (β) for OC and
AMI samples to be β = 7 and β = 9, respectively. Additionally, we
ensured that each module consisted of no fewer than 50 genes.

Least absolute shrinkage and selection
operator regression

We used cross-validation (10-flod) to determine the optimal
value for λ. In short, our objective was to determine the optimal
model λ value by constructing a penalty function with the
occurrence of AMI as the endpoint event and the variation in
gene expression as the variable for each sample. The Least
absolute shrinkage and selection operator (LASSO) regression
model is fit on the training set for each λ value (Cheng et al.,
2022), and the performance is evaluated on the validation set using a
chosen metric, such as mean squared error or area under the curve.
The λ value that minimizes the error on the validation set is
considered the optimal choice. Hence, we conducted a more
comprehensive screening of potential diagnostic genes from the
pool of monocyte-associated genes.

Establishment and validation of the logstic
regression model

We utilized a nomogram based on Logistic regression to facilitate
predictive modeling and risk assessment (Zhang et al., 2022). By fitting
the logistic regression equation, we estimated the coefficients of the four
variables (WEE1, PYHIN1, SEC61A2, and HAL) and captured their
contributions to the probability of the outcome. Each predictor variable
was assigned a corresponding point value based on its coefficient. The
total points were summed up to determine the individual’s predicted
probability of the outcome. Moreover, we utilized calibration curves,
decision curve analysis (DCA) curves, and clinical impact curves to
validate the performance of the nomogram in GSE62646 and
GSE59867.

Establishment and validation of the Cox
regression model

The Cox regression model, also referred to as the proportional
hazards model, is a widely employed statistical approach utilized in
survival analysis to analyze time-to-event data. To construct the Cox
regression model, we initially selected a group of potential predictor
variables, namely, WEE1, PYHIN1, SEC61A2, and HAL. Subsequently,
we performed model training by fitting the Cox regression equation to
the meta-RNA-seq cohorts, thereby estimating the coefficients for each
gene. The risk score was then calculated using the formula: risk score =
Σ (Expi * coefi), where coef and Exp represent the coefficient and
expression of each gene, respectively. After establishing the Cox
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regression model, we proceeded to validate its performance utilizing
meta-microarray cohorts. We employed calibration plots, receiver
operator characteristic (ROC) curves, and log-rank tests to assess the
model’s efficacy in distinguishing between high-risk and low-risk
individuals.

Enrichment analysis

We employed hallmark gene sets (h.all.v7.5.1.symbols.gmt)
(Liberzon et al., 2015), which are collections of genes

representing key biological processes and signaling pathways.
These gene sets cover a wide range of fundamental cellular
activities, such as cell cycle regulation, DNA repair, immune
response, and metabolism. By applying Gene Set Variation
Analysis (GSVA) (Hanzelmann et al., 2013), we transformed our
gene expression data into pathway enrichment scores for each
sample. This was achieved by comparing the expression levels of
genes within each hallmark gene set to the background distribution
in our dataset. The resulting enrichment scores provided
quantitative measures of the activity levels of these pathways in
individual samples.

FIGURE 1
Analysis of cell proportions in AMI and CAD patients and OC patients. (A) Comparison of cell proportions using the CIBERSORT algorithm in
peripheral blood microarray dataset of AMI and CAD patients. (B) Comparison of cell proportions using the CIBERSORT algorithm in peripheral blood
microarray dataset of OC patients compared to normal individuals. (C) Dimensionality reduction analysis on single-cell data from sham and AMI. (D) The
proportion of cells in sham and AMI groups. (E) Dimensionality reduction analysis on single-cell data fromOC patients. (F) The proportion of cells in
OC groups (Before and after chemotherapy).
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Statistical analysis

Statistical analysis was performed using R software (v4.1.2). To
evaluate differences, the significance of most cases was assessed using
the Wilcoxon rank-sum test. Statistical significance was defined as a
p-value below 0.05 and indicated as *p< 0.05, **p< 0.01, or ***p< 0.001.

Results

Monocytes may serve as indicators for
predicting AMI and the prognosis of cancer

Coronary artery disease (CAD) is a principal cause of morbidity
and mortality worldwide. Patients with stable CAD are still at risk of
AMI, which is a severe complication of CAD. Thus, in clinical settings,
patients with CAD are commonly used as control groups to investigate
changes in blood indicators among AMI patients. In our study, we first
compared differences in cell proportions using the CIBERSORT
algorithm on a peripheral blood microarray dataset consisting of
AMI and CAD patients. AMI patients exhibit decreased levels of
CD8+ T cells, memory CD4+ T cells, resting NK cells, and M2-type
macrophages. Conversely, they have increased levels of Tregs, resting
mast cells, neutrophils, and monocytes (Figure 1A). Subsequently, we
further investigated the changes in cell content in the peripheral blood
of OC patients compared to normal individuals. Interestingly, only the
trend of monocytes cell changes was consistent with that of AMI
patients. This suggests a potential common role of monocytes in both
conditions (Figure 1B). To further validate the robustness of our results,
we conducted dimensionality reduction analysis on single-cell data
from both the sham and AMI patients, resulting in six distinct clusters
that could be clearly distinguished: monocytes, endothelial cells,
macrophages, granulocytes, NK cells, and B cells (Figure 1C). Of
note, after AMI occurred, the proportion of monocytes increased,
consistent with the results of bulk transcriptome analysis. Due to the
lack of peripheral blood single-cell data from healthy individuals from
the same batch, we analyzed the datasets obtained before and after
chemotherapy from the same batch. Similarly, the single-cell data from
patients were sorted into four clusters (Figure 1D), with a significant
decrease in the proportion of monocytes observed after chemotherapy.
Therefore, the proportion of monocytes in the peripheral blood of
patients decreased when the tumor-load was reduced by chemotherapy.
Conversely, monocytes proportion significantly increased when the
tumor occurred (Figure 1E). Given that pathology is often considered
the gold standard for cancer diagnosis, we re-assessed the prognostic
value of monocytes (CD14 is a typical marker for monocytes) in the
TCGA-OV cohort (cancer tissues). Our results also demonstrate that
monocytes are a risk factor for OC prognosis. Specifically, as the
expression of CD14 increases in bulk tissues, the prognosis of
patients worsens (Supplementary Figure S1).

Biomarkers derived from monocytes using
WGCNA in AMI and cancer

To enhance genefiltration frommonocytes, we integrated the entire
gene expression profile into WGCNA. Additionally, we utilized the
score ofmonocyte expression in the CIBERSORT algorithm as a clinical

feature to identify key modules most pertinent to monocyte expression.
During the construction of the co-expression network, we observed
optimal soft threshold powers of β = 7 for OC (Figure 2A) and β = 9 for
AMI samples (Figure 2B). Through careful examination of correlation
coefficients and p-values (Figures 2C, D), we determined that the purple
and brown modules exhibited the strongest absolute correlation with
the monocyte score in OC (Figure 2E), while in AMI, the purple and
yellowmodules displayed the strongest absolute correlation (Figure 2F).
As a result, we designated these four modules as key modules and
subsequently identified 23 overlapping genes within them (Figure 2G).
Subsequently, we conducted further screening of the aforementioned
23 genes in the AMI dataset using the LASSO algorithm. Our objective
was to determine the optimal model λ value by constructing a penalty
function with the occurrence of AMI as the endpoint event and the
variation in gene expression as the variable for each sample (Figures 2H,
I). Consequently, we identified seven genes: HRH4, LTBR,WEE1,HAL,
PYHIN1, S100A12, and SEC61A2. Of particular significance, based on
these seven genes, we proceeded with prognostic validation utilizing the
RNA-seq cohort of OC. Our findings indicated that WEE1, PYHIN1,
and SEC61A2 served as risk factors impacting the prognosis of ovarian
cancer, while HAL demonstrated a protective effect (Supplementary
Figure S2).

In summary, our findings suggest that WEE1, PYHIN1,
SEC61A2, and HAL derived from monocytes may serve as a
potential predictor for AMI and cancer prognosis.

Establishment of the monocytes-related
diagnostic signature in AMI

In the AMI dataset, we made noteworthy observations. Firstly,
WEE1 (p = 2.4e-11) exhibited significant downregulation and displayed
superior diagnostic potential, as evidenced by anAUCof 0.839 (95%CI:
0.768–0.899), as shown in Figure 3A. Similarly, PYHIN1 (Figure 3B)
and SEC61A2 (Figure 3C) were markedly downregulated in AMI
samples and demonstrated favorable diagnostic performance, with
AUCs of 0.782 and 0.747, respectively. It is worth mentioning that
HAL exhibited significant upregulation in AMI samples, yielding an
AUC of 0.766 (Figure 3D). To further enhance the diagnostic accuracy
of the model and facilitate its clinical application, we developed a
nomogram utilizing the aforementioned four genes as predictors for
AMI (Figure 3E). The calibration curve demonstrated the ability of the
nomogram to accurately and reliably diagnose AMI among CAD
patients (Figure 3F). Moreover, the DCA curve (Figure 3G) and
decision curve analysis (Figure 3H) provided further evidence of its
robust diagnostic capacity. Importantly, in the validation dataset
(GSE62646), the calibration curve (Figure 3I), DCA curve
(Figure 3J), and clinical impact curve (Figure 3K) consistently
underscored the excellent external validation capability of the
nomogram.

Establishment of the monocytes-related
prognostic signature in cancer

Considering that cancer treatment primarily involves surgery
and tissue samples are readily available, we conducted a
comprehensive investigation into the expression of the
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aforementioned four genes across various tissue samples by
combining the GTEx database and the HPA database. At both
the protein and mRNA levels, WEE1 exhibited significantly
higher expression in tumor samples (Figure 4A). Similarly,
PYHIN1 displayed significantly higher mRNA expression in
tumor samples, although no significant protein staining

(Figure 4B). In contrast, HAL did not exhibit significant
differences in mRNA expression between the two sample
types, but protein upregulation was evident in tumor samples
(Figure 4C). Unfortunately, an IHC antibody for SEC61A2 was
unavailable. However, we characterized the protein’s structure
and confirmed its significant upregulation at the mRNA level in

FIGURE 2
Construction and Analysis of Co-expression Networks for Monocyte-Related Genes. (A)Determination of soft threshold powers (β) for OC samples
in the co-expression network construction. (B) Determination of soft threshold powers (β) for AMI samples in the co-expression network construction.
(C) Clustering dendrograms, with dissimilarity based on topological overlap, together with assigned module colors in OC datasets. (D) Clustering
dendrograms, with dissimilarity based on topological overlap, together with assignedmodule colors in AMI datasets. (E)Correlation coefficients and
p-values used to identify key modules most correlated with the monocyte score in OC datasets. (F) Correlation coefficients and p-values used to identify
key modules most correlated with the monocyte score in AMI datasets. (G) Venn plot of key modules. (H) The gene signature selection of optimal
parameter (lambda). (I) LASSO coefficient profiles genes were selected by the optimal lambda.
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normal samples (Figure 4D). Subsequently, to quantify the
survival risk for each ovarian cancer patient, we developed a
risk model utilizing a multi-factorial Cox formula (Figure 4D)
based on the four aforementioned genes (WEE1, PYHIN1,
SEC61A2, and HAL). The risk score for each OC patient was
calculated using the equation: Risk score = (−0.195 ×

WEE1 expression) + (−0.335 × PYHIN1 expression) +
(−0.191 × SEC61A2 expression) + (0.137 × HAL expression).
Subsequently, survival curves were generated for each gene in the
model, revealing intriguing findings. PYHIN1, SEC61A2, and
WEE1 emerged as protective genes, suggesting that reduced
expression of these genes may contribute to prolonged overall

FIGURE 3
Evaluation of Diagnostic Performance and Clinical Application of the AMI Nomogram. (A) ROC curve and box plot of differential expression of
WEE1 in different samples. (B) ROC curve and box plot of differential expression of PYHIN1 in different samples. (C) ROC curve and box plot of differential
expression of SEC61A2 in different samples. (D) ROC curve and box plot of differential expression of HAL in different samples. (E) Development of a
nomogram utilizing WEE1, PYHIN1, SEC61A2, and HAL as predictors for AMI diagnosis. (F) Calibration curve showing the accuracy and reliability of
the nomogram in diagnosing AMI among CAD patients. (G)DCA curve demonstrating the diagnostic capacity of the nomogram. (H)Clinical impact curve
illustrating the robustness of the nomogram for AMI diagnosis. (I) External validation of the nomogram using calibration curve. (J) External validation of
the nomogram using DCA curve. (K) External validation of the nomogram using clinical impact curve.
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survival in patients (Figure 4F). Conversely, HAL was identified
as a high-risk gene, implying that increased expression of HAL
may be associated with decreased patient survival. Notably, our
expression level assessment demonstrated predominantly
negative correlations among the genes (Figure 4G).
Specifically, HAL displayed negative correlations with
WEE1 and PYHIN1, while exhibiting a positive correlation
with SEC61A2. Regarding risk scores, a noteworthy positive

correlation was solely observed with HAL (R = 0.442, p <
0.001). The formula described above was applied to both the
meta-RNA-seq cohort and the meta-microarray cohort, resulting
in the generation of a new risk score based on the expression
profile. Patients were then classified into high-risk and low-risk
categories using the median risk score. Kaplan-Meier survival
analysis conducted in the meta-RNA-seq cohort revealed that
high-risk patients exhibited significantly worse overall survival

FIGURE 4
Expression Analysis and Prognostic Model Development. (A) The expression level (protein and mRNA) of WEE1 in different samples levels. (B) The
expression level (protein andmRNA) of PYHIN1 in different samples levels. (C) The expression level (protein andmRNA) of HAL in different samples levels.
(D) The expression level (mRNA) protein structure and of SEC61A2 in different samples levels. (E)Development of a risk model using a multi-factorial Cox
formula based on the four genes (WEE1, PYHIN1, SEC61A2, and HAL). (F) Survival curves showing the impact of each gene in the model on overall
survival. (G) Correlations among the genes involved in risk model.
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compared to low-risk patients (Figure 5A). Similarly, in the meta-
microarray cohort, the high-risk group had a lower likelihood of
survival (Figure 5B). To assess the prognostic accuracy of the
prognostic features, ROC curves for 1, 3, 5, and 10-year OS were
analyzed. In the meta-RNA-seq training cohort, the AUC values
for these time points were 0.728, 0.692, 0.673, and 0.708,
respectively, (Figure 5C). Similarly, the meta-microarray
validation set showed superior AUC values of 0.595, 0.578,

0.625, and 0.697 for the 1, 3, 5, and 10-year AUCs,
respectively, (Figure 5D).

To ensure consistency with the AMI risk signature, we
utilized a visual nomogram to evaluate the risk of OC
patients by integrating FIGO staging and risk stratification
(Figure 5E). The accuracy of nomogram was assessed and
found to be superior in both the meta-RNA-seq cohort and
the meta-microarray cohort (Figure 5F). Additionally, ROC

FIGURE 5
Prognostic Analysis and Nomogram Evaluation. (A) Kaplan-Meier survival analysis in the meta-RNA-seq cohort. (B) Kaplan-Meier survival analysis in
themeta-microarray cohort. (C) Evaluation of prognostic accuracy using ROC curves for 1, 3, 5, and 10-year overall survival in themeta-RNA-seq cohort.
(D) Evaluation of prognostic accuracy using ROC curves for 1, 3, 5, and 10-year overall survival in the meta-microarray cohort. (E) Utilization of a visual
nomogram integrating FIGO staging and risk stratification to evaluate the risk of ovarian cancer patients. (F)Calibration curve of nomogramaccuracy
in both the meta-RNA-seq cohort and the meta-microarray cohort. (G) ROC analysis comparing the performance of the nomogram with other clinical
models and risk scores.
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analysis was performed, indicating that early survival
prediction using the nomogram outperformed other clinical
models and risk scores, whereas for long-term survival
prediction (>5 years), utilizing the risk score alone yielded
better results (Figure 5G).

Immune cell infiltration in AMI and cancer

We utilized the CIBERSORT method to analyze the immune
cell composition of tissue samples, comparing the high-risk and
low-risk groups, and associating them with model genes.
Interestingly, we discovered that the high-risk group exhibited

lower levels of CD8+ T cells and M1 macrophages (Figure 6A).
CD8+ T cells, typically referred to as cytotoxic T lymphocytes,
secrete various cytokines involved in immune responses
(Mittrucker et al., 2014), while M1-type macrophages are
capable of producing pro-inflammatory cytokines (Mills et al.,
2016). The reduction of CD8+ T cells and M1 macrophages may
indicate an “cold environment” in high-risk patients.
Furthermore, we observed a significant positive correlation
between the expression of the PYHIN1 gene and CD8+ T cells,
suggesting that the PYHIN1 gene primarily influences changes in
the tumor microenvironment by regulating the proliferation of
cytotoxic T lymphocytes (Figure 6B). We demonstrated the
specific distribution of risk scores and different immune cell

FIGURE 6
Immune Cell Composition Analysis and Model Gene Correlation. (A) Analysis of immune cell composition utilizing the CIBERSORTmethod in tissue
samples of high-risk and low-risk groups. (B) Characterization of the correlation between gene expression and immune cell. (C) Characterization of the
correlation between model genes and immune cells in AMI samples.
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types, revealing a negative correlation between CD8+ T cells and
risk scores. Moreover, it appears that changes in risk scores also
influence the proportions of M0/M1/M2 macrophages.
Furthermore, we characterized the correlation between model
genes and immune cells in AMI samples, which similarly showed
a strong significant positive correlation between PYHIN1 gene
expression and CD8+ T cells, potentially regulating the
proliferation of resting NK cells (Figure 6C).

Enrichment analysis

The analysis of hallmark pathway gene features using the
GSVA method reveals distinct differences between high-risk and
low-risk groups in OC. A direct comparison between these
groups demonstrates specific enrichment features. In the high-
risk group, the top five enriched features include Estrogen
Response Early, Myogenesis, Notch Signaling, Bile Acid
Metabolism, and Heme Metabolism (Figure 7A). Conversely,
the low-risk group exhibits the top five enriched features: E2F
Targets, G2M Checkpoint, PI3K/AKT/MTOR Signaling, MYC
Targets V1, and Mitotic Spindle. Additionally, we investigated
the significantly different pathway signals between patients with
AMI and coronary artery disease. The findings reveal substantial
activation of the P53 Pathway, Hypoxia, and Notch Signaling in
AMI patients (Figure 7B). Of particular interest is the shared
activation of the Notch Signaling pathway, which may provide
insight into the common high-risk factors underlying both AMI
and cancer.

Validation of mRNA levels in clinical samples

To validate the reliability of the four prognostic genes
identified, qRT-PCR testing was performed on both clinical
samples and cell lines. In PBMC samples, we observed
consistent differential expression patterns of the four genes
with the results obtained from the microarray analysis
(Figures 3A–D). Specifically, compared to CAD, WEE1,
PYHIN1, and SEC61A2 were downregulated in AMI, while
HAL exhibited upregulation (Supplementary Figure S3A).
Furthermore, it is noteworthy that the validation performed at
the cell lines also demonstrated consistent results with RNA-seq
analysis. Specifically, when compared to IOSE-80 cells,
SKOV3 cells exhibited upregulation in the expression of
WEE1, PYHIN1, and HAL, while the expression of
SEC61A2 was downregulated (Supplementary Figure S3B).

Discussion

Acute myocardial infarction (AMI) and cancer are two
prevalent and devastating health conditions that contribute
significantly to morbidity and mortality worldwide (Rinde
et al., 2017). While extensive research exists on each of these
diseases independently, the relationship between AMI and cancer
remains relatively understudied. Common biomarkers could help
identify patients who are at higher risk of developing either
cancer or AMI, enabling tailored preventive strategies. By
stratifying individuals based on their risk profiles, healthcare

FIGURE 7
Enrichment analysis. (A) The results of Gene Set Variation Analysis in OC samples. (B) The results of Gene Set Variation Analysis in AMI samples.
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providers can offer targeted interventions, such as lifestyle
modifications, pharmacological interventions, and regular
surveillance, with the goal of mitigating the risk of both
diseases. Moreover, in a clinical setting where resources are
often limited, utilizing shared biomarkers may offer a cost-
effective approach to risk assessment by reducing the need for
multiple tests and screenings.

In our study, our findings suggest that WEE1, PYHIN1,
SEC61A2, and HAL derived from monocytes may serve as a
potential predictor for AMI and cancer prognosis. WEE1, a
protein kinase involved in cell cycle regulation, acts as a critical
regulator of the DNA damage response pathway and plays a
crucial role in maintaining genomic stability (Okabe et al., 2023;
Su et al., 2023). Its overexpression has been observed in various
tumor types, contributing to tumor growth, chemoresistance,
and poor prognosis. Mohamed et al. (Mohamed et al., 2018)
discovered that overexpression of cyclin-dependent kinase 1
(CDK1), CDK4, cyclin B1, and cyclin D1 in adult
cardiomyocytes induces stable cell division, leading to
significant cardiac regeneration after myocardial infarction.
Importantly, they found that inhibition of Wee1, along with
Tgf-β, made CDK1 and cyclin B dispensable, highlighting the
role of WEE1 as a potential target for promoting cardiomyocyte
proliferation. Chen and Gardner (Chen and Gardner, 2004)
found that endothelin (ET) promotes proliferation of rat aortic
smooth muscle cells by increasing CDK2 and CDC2 activity
through the MEK/ERK/RSK signal transduction pathway. They
observed that ET treatment led to phosphorylation and
inactivation of the inhibitory kinase WEE1, along with
upregulation of CDC25A phosphatase, highlighting the role
of WEE1 in ET-dependent mitogenesis. PYHIN1, a member
of the PYHIN (pyrin and HIN domain-containing) protein
family, exerts complex functions ranging from tumor
suppression to tumor promotion, depending on the specific
tumor (Tong et al., 2019; Ding et al., 2022). Its involvement in
DNA damage repair, cell cycle regulation, immune responses,
and inflammation contributes to its multifaceted role in cancer
progression. de Las Fuentes et al. (2013) investigated the role of
SNP-loop diuretic interactions in hypertension across different
ethnic groups. In their study on African Americans (AA) and
European Americans (EA), they identified several promising
loci, including genes such as NUDT12, CHL1, GRIA1,
CACNB2, and PYHIN1 for systolic blood pressure (SBP) in
AA, and ID3 for diastolic blood pressure (DBP) in AA. These
findings suggest that PYHIN1 may play a role in the regulation
of blood pressure and response to anti-hypertensive drugs,
although no SNP reached genome-wide significance in this
small study. Further research in more diverse populations is
needed to identify additional variants. SEC61A2, a key
component of the SEC61 protein complex, plays a crucial
role in protein translocation across the endoplasmic
reticulum (ER) membrane (Connerly et al., 2005; Vendrov
et al., 2006) investigated NAD(P)H oxidase-mediated
signaling in atherosclerosis and identified several genes
regulated by thrombin-induced NAD(P)H oxidase, including
SEC61A2, in vascular smooth muscle cells (VSMCs). They
demonstrated that NAD(P)H oxidase plays a role in the
regulation of CD44 and BMP4-Id signaling pathway, which

are implicated in restenosis and atherosclerosis. These
findings suggest that SEC61A2 and other genes controlled by
NAD(P)H oxidase may have important implications for
vascular lesion formation. Homo sapiens histidine ammonia-
lyase (HAL) is an enzyme involved in the catabolism of
histidine. It plays a crucial role in modulating histidine
metabolism, which influences the immune response, and
angiogenesis (Krzymuska, 1964; Blaeschke et al., 2019)
conducted a study on pediatric medulloblastoma, a brain
tumor with minimal mutational load and low
immunogenicity. Despite this, they identified immunogenic
tumor-specific peptides in each patient, including peptides
derived from the HAL gene. These findings suggest that even
in tumors with low mutational load, specific T-cell
immunotherapy targeting neoantigens is feasible and may
guide future therapeutic approaches. Yu et al. (2015)
conducted a study on the association between genetic
variants, histidine levels, and incident coronary heart disease
(CHD). They identified three rare loss-of-function (LoF)
variants in the HAL gene, which encodes histidine ammonia-
lyase, and found that these variants had significant effects on
blood histidine levels. Furthermore, high blood histidine levels
were associated with a reduced risk of developing CHD,
suggesting a potential protective role of histidine in both
African Americans and European Americans. By identifying
these genes as potential biomarkers for both cancer prognosis
and AMI prediction, we aim to shed light on the shared
molecular mechanisms underlying these diseases. However,
further experimental studies are needed to elucidate the
specific roles of WEE1, PYHIN1, SEC61A2, and HAL in
disease occurrence, progression, and response to treatment in
both cancer and AMI.

Moreover, we also applied a novel formula to analyze mRNA
levels in clinical samples from a meta-RNA-seq cohort and a
meta-microarray cohort. The calculation resulted in the
generation of a new risk score based on the expression
profiles. Patients were classified into high-risk and low-risk
categories using the median risk score, and Kaplan-Meier
survival analysis revealed that high-risk patients exhibited
significantly poorer overall survival compared to low-risk
patients in both cohorts. These findings demonstrate the
potential of utilizing shared biomarkers to predict outcomes in
cancer patients. Furthermore, our study assessed the prognostic
accuracy of the obtained risk score using ROC curves for various
time points of overall survival. In the meta-RNA-seq training
cohort, the AUC values demonstrated moderate to good accuracy
for predicting 1, 3, 5, and 10-year overall survival. Similarly, in
the meta-microarray validation set, the AUC values indicated fair
to good accuracy for the same time points. To ensure consistent
presentation and enhance clinical utility, we integrated FIGO
staging and risk stratification into a visual nomogram. Similarly,
we created a nomogram for the diagnosis of AMI patients. The
calibration curve demonstrated the ability of the nomogram to
accurately and reliably diagnose AMI among CAD patients.
Moreover, the DCA curve and decision curve analysis
provided further evidence of its robust diagnostic capacity.
Importantly, in the validation dataset (GSE62646), the
calibration curve, DCA curve, and clinical impact curve
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consistently underscored the excellent external validation
capability of the nomogram.

In the context of cancer, the correlation between the risk
score and immune signatures indicates that patients with a higher
risk score may have a more dysregulated immune system, which
could influence their response to immunotherapy.
Immunotherapies, such as immune checkpoint inhibitors, have
revolutionized cancer treatment by enhancing the immune
system’s ability to recognize and eliminate tumor cells.
Therefore, our findings suggest that patients with a higher risk
score may be more suitable candidates for immunotherapeutic
approaches, as they may have a greater potential to respond to
these treatments. Similarly, in the context of AMI, the correlation
between the risk score and immune signatures implies that the
immune response plays a crucial role in the pathogenesis and
progression of cardiac injury. Targeting immune-related
pathways involved in AMI may provide new avenues for
therapeutic interventions. Modulating the immune response,
reducing inflammation, and promoting tissue repair are
potential strategies for improving outcomes in patients with
AMI. Therefore, understanding the relationship between the
risk score and immune signatures can guide the development
of novel therapies targeted at modulating the immune response
in the context of AMI.

Of particular interest is the shared activation of the Notch
Signaling pathway, which may provide insight into the common
high-risk factors underlying both AMI and cancer. The role of
Notch signaling in cancer is complex and contributes to
enhanced tumorigenesis through various mechanisms such as
angiogenesis, drug resistance, and epithelial to mesenchymal
transition. Inhibiting the Notch pathway has emerged as a
promising therapeutic strategy, and studies have shown
promising results with Notch inhibitory agents in reducing
tumorigenic aggressiveness (Sen and Ghosh, 2023; Yu et al.,
2023) investigated the role of Notch signaling in innate
lymphoid cells (ILCs) in acute coronary syndrome. The study
found that activation of the Notch signaling pathway was
associated with a shift from ILC1 to ILC2 subsets in
peripheral blood of AMI patients, and inhibiting Notch
signaling increased ILC1 frequency and interferon-γ secretion
while reducing ILC2 frequency and interleukin-5/interleukin-
13 production. These findings suggest that Notch signaling may
play a role in regulating ILC subsets in AMI patients. Liu et al.
(2019) investigated the role of miR-29b and its effect on
myocardial infarction (MI) in rats through the Notch
signaling pathway. The study demonstrated that
downregulation of miR-29b in the MI group was associated
with increased expression of Notch1, DII4, Hesl, and NICD1,
suggesting that miR-29b inhibits myocardial fibrosis and cardiac
hypertrophy by activating the Notch signaling pathway,
providing protection against MI. Matsuda et al. (2014)
investigated the impact of Notch signaling on human cardiac
stem cells (CSCs) and their therapeutic potential in an AMI rat
model. They found that reducing Notch signaling by culturing
CSCs at low plating density enhanced their proliferation, multi-
differentiation potential, and therapeutic efficacy, highlighting
the importance of optimizing culture conditions for CSCs in
clinical applications.

One practical application of the common signature is its
potential in guiding treatment decisions. By profiling the
common signature in individual patients, clinicians could
better stratify patients and predict their response to specific
therapies. For example, if a patient with cancer or AMI has a
dysregulated immune-related common signature, it suggests that
they may be more likely to benefit from immunotherapeutic or
immune-modulatory interventions. This information can help
inform treatment selection and improve personalized medicine
approaches. Furthermore, the common signature can also guide
the development of novel therapeutic strategies. By targeting the
shared dysregulated pathways identified in the common
signature, researchers and pharmaceutical companies can
develop new drugs or repurpose existing ones to effectively
treat both cancer and AMI. This approach could lead to the
development of combination therapies that simultaneously target
the common dysregulated pathways, potentially improving
treatment efficacy and patient outcomes. Additionally, the
common signature can have implications for prognosis and
risk stratification. By assessing the expression levels or
activation states of the common signature genes, clinicians
may be able to predict disease progression, recurrence, or
complications in both cancer and AMI patients. This
information can aid in tailoring surveillance strategies and
determining appropriate follow-up care for patients at
higher risk.

There are several limitations to consider in this study.
Firstly, the sample size of the clinical samples used for
mRNA analysis was not clearly stated, which may affect the
generalizability and statistical power of the findings.
Additionally, the study focused on a specific set of
biomarkers derived from monocytes, and it is possible that
other relevant biomarkers were not considered. The study
also primarily relied on retrospective data analysis, which
may introduce biases and limit causal interpretations.
Further prospective studies are needed to validate the
predictive value of these biomarkers in larger, diverse patient
populations. Finally, although the shared activation of the
Notch signaling pathway is mentioned as a potential
underlying factor, the specific mechanistic links between the
identified biomarkers, AMI, and cancer prognosis are not fully
explored or elucidated. Future research should aim to
investigate these mechanisms in order to better understand
the biological significance of these biomarkers.

Conclusion

In conclusion, the identification of shared biomarkers for cancer
survival and AMI prediction represents a critical step toward
improving patient care for individuals affected by these
conditions. By understanding the underlying pathophysiological
mechanisms and implementing personalized preventive strategies,
healthcare providers can potentially reduce the burden of both
diseases and improve patient outcomes. Our study demonstrates
the potential of utilizing mRNA levels as biomarkers and highlights
the importance of further research in this area to validate and refine
these findings.

Frontiers in Pharmacology frontiersin.org13

Yuan et al. 10.3389/fphar.2023.1249145

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1249145


Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

The studies involving humans were approved by the Ethics
Committee of the First Hospital of Jiaxing Affiliated Hospital of
Jiaxing University. The studies were conducted in accordance
with the local legislation and institutional requirements. The
participants provided their written informed consent to
participate in this study.

Author contributions

NY and H-HP conceived and designed the study. Y-SL was
responsible for materials. H-LH and C-LZ drafted the article. BW
revised the article critically. All authors contributed to the article and
approved the submitted version.

Funding

This research was supported by Zhejiang Provincial Natural
Science Foundation of China (No. LGF21H020006).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1249145/
full#supplementary-material

SUPPLEMENTARY FIGURE S1
Prognostic value of monocytes assessed in the TCGA-OV cohort.

SUPPLEMENTARY FIGURE S2
Forest plot of univariate cox regression analysis.

SUPPLEMENTARY FIGURE S3
Validation of mRNA levels in clinical samples. (A) mRNA expression of WEE1,
PYHIN1, SEC61A2, and HAL in clinical samples. (B) mRNA expression of
WEE1, PYHIN1, SEC61A2, and HAL in cell lines.

References

Aydin, S., Ugur, K., Aydin, S., Sahin, I., and Yardim, M. (2019). Biomarkers in acute
myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 15, 1–10. doi:10.
2147/VHRM.S166157

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). NCBI GEO: Archive for functional genomics data sets--update. Nucleic
Acids Res. 41, D991–D995. doi:10.1093/nar/gks1193

Blaeschke, F., Paul, M. C., Schuhmann, M. U., Rabsteyn, A., Schroeder, C., Casadei,
N., et al. (2019). Low mutational load in pediatric medulloblastoma still translates into
neoantigens as targets for specific T-cell immunotherapy. Cytotherapy 21, 973–986.
doi:10.1016/j.jcyt.2019.06.009

Blum, A., Wang, P., and Zenklusen, J. C. (2018). SnapShot: TCGA-analyzed tumors.
Cell 173, 530. doi:10.1016/j.cell.2018.03.059

Boyum, A. (1968). Separation of leukocytes from blood and bone marrow.
Introduction. Introd. Scand. J. Clin. Lab. Invest. Suppl. 97, 7.

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711,
243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, S., and Gardner, D. G. (2004). Suppression of WEE1 and stimulation of
CDC25A correlates with endothelin-dependent proliferation of rat aortic smooth
muscle cells. J. Biol. Chem. 279, 13755–13763. doi:10.1074/jbc.M310064200

Cheng, X., Li, J., Feng, L., Feng, S., Wu, X., and Li, Y. (2022). The role of hypoxia-
related genes in TACE-refractory hepatocellular carcinoma: Exploration of prognosis,
immunological characteristics and drug resistance based on onco-multi-OMICS
approach. Front. Pharmacol. 13, 1011033. doi:10.3389/fphar.2022.1011033

Connerly, P. L., Esaki, M., Montegna, E. A., Strongin, D. E., Levi, S., Soderholm, J.,
et al. (2005). Sec16 is a determinant of transitional ER organization. Curr. Biol. 15,
1439–1447. doi:10.1016/j.cub.2005.06.065

de Las Fuentes, L., Sung, Y. J., Schwander, K. L., Kalathiveetil, S., Hunt, S. C.,
Arnett, D. K., et al. (2013). The role of SNP-loop diuretic interactions in
hypertension across ethnic groups in HyperGEN. Front. Genet. 4, 304. doi:10.
3389/fgene.2013.00304

Ding, J. M., Lin, W. R., Fei, Z. D., and Chen, C. B. (2022b). PYHIN1 correlates with
CD8+ T cells infiltration and confers good patient survival in oral cancer. J. Dent. Sci. 17,
551–559. doi:10.1016/j.jds.2021.06.014

Ding, J., Sharon, N., Bar-Joseph, Z., Wu, Z., Zhang, X., Li, B., et al. (2022a). Recent
advances in quantum dots-based biosensors for antibiotics detection. Nat. Rev. Genet.
23, 355–364. doi:10.1016/j.jpha.2021.08.002

Feng, S., Xu, Y., Dai, Z., Yin, H., Zhang, K., and Shen, Y. (2022). Integrative analysis from
multicenter studies identifies a WGCNA-derived cancer-associated fibroblast signature for
ovarian cancer. Front. Immunol. 13, 951582. doi:10.3389/fimmu.2022.951582

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis
for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7

Howard, E., Steingart, R. M., Armstrong, G. T., Lyon, A. R., Armenian, S. H., Teresa
Voso, M., et al. (2019). Cardiovascular events in cancer survivors. Semin. Oncol. 46,
426–432. doi:10.1053/j.seminoncol.2019.01.007

Kozaczek, M., Bottje, W., Greene, E., Lassiter, K., Kong, B., Dridi, S., et al. (2019).
Comparison of liver gene expression by RNAseq and PCR analysis after 8 weeks of
feeding soy protein isolate- or casein-based diets in an obese liver steatosis rat model.
Food Funct. 10, 8218–8229. doi:10.1039/c9fo01387c

Krzymuska, A. (1964). Enzymes of histidine metabolism in normal and tumor tissues;
histidase and urocanase activity. Arch. Immunol. Ther. Exp. Warsz. 12, 724–729.

Kuhn, F., Schiergens, T. S., and Klar, E. (2020). Acute mesenteric ischemia. Visc. Med.
36, 256–262. doi:10.1159/000508739

Langfelder, P., and Horvath, S. (2008). Wgcna: an R package for weighted correlation
network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-9-559

Lee, Y. C., Chao, Y. L., Chang, C. E., Hsieh, M. H., Liu, K. T., Chen, H. C., et al. (2019).
Transcriptome changes in relation to manic episode. Front. Psychiatry 10, 280. doi:10.
3389/fpsyt.2019.00280

Leening, M. J. G., Bouwer, N. I., Ikram, M. A., Kavousi, M., Ruiter, R., Boersma, E.,
et al. (2023). Risk of cancer after ST-segment-elevation myocardial infarction. Eur.
J. Epidemiol. 38, 853–858. doi:10.1007/s10654-023-00984-8

Frontiers in Pharmacology frontiersin.org14

Yuan et al. 10.3389/fphar.2023.1249145

https://www.frontiersin.org/articles/10.3389/fphar.2023.1249145/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1249145/full#supplementary-material
https://doi.org/10.2147/VHRM.S166157
https://doi.org/10.2147/VHRM.S166157
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.jcyt.2019.06.009
https://doi.org/10.1016/j.cell.2018.03.059
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1074/jbc.M310064200
https://doi.org/10.3389/fphar.2022.1011033
https://doi.org/10.1016/j.cub.2005.06.065
https://doi.org/10.3389/fgene.2013.00304
https://doi.org/10.3389/fgene.2013.00304
https://doi.org/10.1016/j.jds.2021.06.014
https://doi.org/10.1016/j.jpha.2021.08.002
https://doi.org/10.3389/fimmu.2022.951582
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1053/j.seminoncol.2019.01.007
https://doi.org/10.1039/c9fo01387c
https://doi.org/10.1159/000508739
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3389/fpsyt.2019.00280
https://doi.org/10.3389/fpsyt.2019.00280
https://doi.org/10.1007/s10654-023-00984-8
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1249145


Libby, P., and Kobold, S. (2019). Inflammation: A common contributor to cancer,
aging, and cardiovascular diseases-expanding the concept of cardio-oncology.
Cardiovasc Res. 115, 824–829. doi:10.1093/cvr/cvz058

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., and Tamayo,
P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 1, 417–425. doi:10.1016/j.cels.2015.12.004

Liu, Y., Wang, H., Wang, X., and Xie, G. (2019). MiR-29b inhibits ventricular
remodeling by activating notch signaling pathway in the rat myocardial infarction
model. Heart Surg. Forum 22, E019–E023. doi:10.1532/hsf.2079

Ma, L., Lin, Y., Sun, S. W., Xu, J., Yu, T., Chen, W. L., et al. (2022). KIAA1429 is a
potential prognostic marker in colorectal cancer by promoting the proliferation via
downregulating WEE1 expression in an m6A-independent manner. Oncogene 41,
692–703. doi:10.1038/s41388-021-02066-z

Matsuda, T., Miyagawa, S., Fukushima, S., Kitagawa-Sakakida, S., Akimaru, H., Horii-
Komatsu, M., et al. (2014). Human cardiac stem cells with reduced notch signaling show
enhanced therapeutic potential in a rat acute infarction model. Circ. J. 78, 222–231.
doi:10.1253/circj.cj-13-0534

Mills, C. D., Lenz, L. L., and Harris, R. A. (2016). A breakthrough: Macrophage-
directed cancer immunotherapy. Cancer Res. 76, 513–516. doi:10.1158/0008-5472.
CAN-15-1737

Mittrucker, H. W., Visekruna, A., and Huber, M. (2014). Heterogeneity in the
differentiation and function of CD8⁺ T cells. Arch. Immunol. Ther. Exp. Warsz. 62,
449–458. doi:10.1007/s00005-014-0293-y

Mohamed, T. M. A., Ang, Y. S., Radzinsky, E., Zhou, P., Huang, Y., Elfenbein, A., et al.
(2018). Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and
cardiac regeneration. Cell 173, 104–116. doi:10.1016/j.cell.2018.02.014

Okabe, S., Tanaka, Y., Moriyama, M., and Gotoh, A. (2023). WEE1 and PARP-1 play
critical roles in myelodysplastic syndrome and acute myeloid leukemia treatment.
Cancer Cell Int. 23, 128. doi:10.1186/s12935-023-02961-3

Pan, H. H., Yuan, N., He, L. Y., Sheng, J. L., Hu, H. L., and Zhai, C. L. (2023). Machine
learning-based mRNA signature in early acute myocardial infarction patients: The
perspective toward immunological, predictive, and personalized. Funct. Integr.
Genomics 23, 160. doi:10.1007/s10142-023-01081-5

Psaty, B. M., and Vasan, R. S. (2023). The association of myocardial infarction with
cancer incidence. Eur. J. Epidemiol. 38, 851–852. doi:10.1007/s10654-023-01019-y

Reel, P. S., Reel, S., Pearson, E., Trucco, E., and Jefferson, E. (2021). Using machine
learning approaches for multi-omics data analysis: A review. Biotechnol. Adv. 49,
107739. doi:10.1016/j.biotechadv.2021.107739

Rinde, L. B., Smabrekke, B., Hald, E. M., Brodin, E. E., Njolstad, I., Mathiesen, E. B.,
et al. (2017). Myocardial infarction and future risk of cancer in the general population-
the Tromso Study. Eur. J. Epidemiol. 32, 193–201. doi:10.1007/s10654-017-0231-5

Sen, P., and Ghosh, S. S. (2023). The intricate notch signaling dynamics in therapeutic
realms of cancer. ACS Pharmacol. Transl. Sci. 6, 651–670. doi:10.1021/acsptsci.2c00239

Shaikh, A. Y., and Shih, J. A. (2012). Chemotherapy-induced cardiotoxicity. Curr.
Heart Fail Rep. 9, 117–127. doi:10.1007/s11897-012-0083-y

Stewart, C., Ralyea, C., and Lockwood, S. (2019). Ovarian cancer: An integrated
review. Semin. Oncol. Nurs. 35, 151–156. doi:10.1016/j.soncn.2019.02.001

Su, Y. L., Xiao, L. Y., Huang, S. Y., Wu, C. C., Chang, L. C., Chen, Y. H., et al. (2023).
Inhibiting WEE1 augments the antitumor efficacy of cisplatin in urothelial carcinoma
by enhancing the DNA damage process. Cells 12, 1471. doi:10.3390/cells12111471

Tong, Y., Song, Y., and Deng, S. (2019). Combined analysis and validation for DNA
methylation and gene expression profiles associated with prostate cancer. Cancer Cell
Int. 19, 50. doi:10.1186/s12935-019-0753-x

Vendrov, A. E., Madamanchi, N. R., Hakim, Z. S., Rojas, M., and Runge, M. S. (2006).
Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway
in VSMC, restenosis, and atherosclerosis. Circ. Res. 98, 1254–1263. doi:10.1161/01.RES.
0000221214.37803.79

Wang, X., Spandidos, A., Wang, H., and Seed, B. (2012). PrimerBank: A PCR primer
database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res. 40,
D1144–D1149. doi:10.1093/nar/gkr1013

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-seq: A revolutionary tool for
transcriptomics. Nat. Rev. Genet. 10, 57–63. doi:10.1038/nrg2484

Yu, B., Li, A. H., Muzny, D., Veeraraghavan, N., de Vries, P. S., Bis, J. C., et al. (2015).
Association of rare loss-of-function alleles in HAL, serum histidine: Levels and incident
coronary heart disease. Circ. Cardiovasc Genet. 8, 351–355. doi:10.1161/
CIRCGENETICS.114.000697

Yu, H., Wei, Y., Dong, Y., and Chen, P. (2023). Regulation of notch signaling pathway
to innate lymphoid cells in patients with acute myocardial infarction. Immunol. Invest.
52, 241–255. doi:10.1080/08820139.2022.2158856

Zhang, K., Feng, S., Ge, Y., Ding, B., and Shen, Y. (2022). A nomogram based on seer
database for predicting prognosis in patients with mucinous ovarian cancer: A real-
world study. Int. J. Womens Health 14, 931–943. doi:10.2147/IJWH.S372328

Zhao, S., Wu, Y., Wei, Y., Xu, X., and Zheng, J. (2022). Identification of biomarkers
associated with CD8+ T cells in coronary artery disease and their pan-cancer analysis.
Front. Immunol. 13, 876616. doi:10.3389/fimmu.2022.876616

Frontiers in Pharmacology frontiersin.org15

Yuan et al. 10.3389/fphar.2023.1249145

https://doi.org/10.1093/cvr/cvz058
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1532/hsf.2079
https://doi.org/10.1038/s41388-021-02066-z
https://doi.org/10.1253/circj.cj-13-0534
https://doi.org/10.1158/0008-5472.CAN-15-1737
https://doi.org/10.1158/0008-5472.CAN-15-1737
https://doi.org/10.1007/s00005-014-0293-y
https://doi.org/10.1016/j.cell.2018.02.014
https://doi.org/10.1186/s12935-023-02961-3
https://doi.org/10.1007/s10142-023-01081-5
https://doi.org/10.1007/s10654-023-01019-y
https://doi.org/10.1016/j.biotechadv.2021.107739
https://doi.org/10.1007/s10654-017-0231-5
https://doi.org/10.1021/acsptsci.2c00239
https://doi.org/10.1007/s11897-012-0083-y
https://doi.org/10.1016/j.soncn.2019.02.001
https://doi.org/10.3390/cells12111471
https://doi.org/10.1186/s12935-019-0753-x
https://doi.org/10.1161/01.RES.0000221214.37803.79
https://doi.org/10.1161/01.RES.0000221214.37803.79
https://doi.org/10.1093/nar/gkr1013
https://doi.org/10.1038/nrg2484
https://doi.org/10.1161/CIRCGENETICS.114.000697
https://doi.org/10.1161/CIRCGENETICS.114.000697
https://doi.org/10.1080/08820139.2022.2158856
https://doi.org/10.2147/IJWH.S372328
https://doi.org/10.3389/fimmu.2022.876616
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1249145

	Identification of prognostic and diagnostic signatures for cancer and acute myocardial infarction: multi-omics approaches f ...
	Introduction
	Materials and methods
	Pre-processing of bulk transcriptome data
	Pre-processing of single-cell RNA sequencing data
	Clinical samples
	Immunohistochemical techniques and RT-qPCR

	CIBERSORT
	Weighted gene co-expression network analysis
	Least absolute shrinkage and selection operator regression
	Establishment and validation of the logstic regression model
	Establishment and validation of the Cox regression model
	Enrichment analysis
	Statistical analysis

	Results
	Monocytes may serve as indicators for predicting AMI and the prognosis of cancer
	Biomarkers derived from monocytes using WGCNA in AMI and cancer
	Establishment of the monocytes-related diagnostic signature in AMI
	Establishment of the monocytes-related prognostic signature in cancer
	Immune cell infiltration in AMI and cancer
	Enrichment analysis
	Validation of mRNA levels in clinical samples

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


