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Background: Dihydropteridone derivatives represent a novel class of
PLK1 inhibitors, exhibiting promising anticancer activity and potential as
chemotherapeutic drugs for glioblastoma.

Objective: The aim of this study is to develop 2D and 3D-QSARmodels to validate
the anticancer activity of dihydropteridone derivatives and identify optimal
structural characteristics for the design of new therapeutic agents.

Methods: The Heuristic method (HM) was employed to construct a 2D-linear
QSAR model, while the gene expression programming (GEP) algorithm was
utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA
approach was introduced to investigate the impact of drug structure on
activity. A total of 200 novel anti-glioma dihydropteridone compounds were
designed, and their activity levels were predicted using chemical descriptors
and molecular field maps. The compounds with the highest activity were
subjected to molecular docking to confirm their binding affinity.

Results:Within the analytical purview, the coefficient of determination (R2) for the
HM linear model is elucidated at 0.6682, accompanied by an R2

cv of 0.5669 and a
residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates
coefficients of determination for the training and validation sets at 0.79 and
0.76, respectively. Empirical modeling outcomes underscore the preeminence
of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM
linear model manifested suboptimal efficacy. The 3D paradigm evinced an
exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values,
complemented by an impressive F-value (12.194) and a minimized standard
error of estimate (SEE) at 0.160. The most significant molecular descriptor in
the 2D model, which included six descriptors, was identified as “Min exchange
energy for a C-N bond” (MECN). By combining the MECN descriptor with the
hydrophobic field, suggestions for the creation of novel medications were
generated. This led to the identification of compound 21E.153, a novel
dihydropteridone derivative, which exhibited outstanding antitumor properties
and docking capabilities.
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Conclusion: The development of 2D and 3D-QSAR models, along with the
innovative integration of contour maps and molecular descriptors, offer novel
concepts and techniques for the design of glioblastoma chemotherapeutic agents.
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1 Introduction

Glioblastoma (GBM), as a highly malignant tumor, originates
from genetic alterations in neural glial stem cells or progenitor cells,
rendering it highly invasive and lethal (Wang and Jiang, 2013; Schiff
et al., 2019). Clinical manifestations of GBM primarily include
increased intracranial pressure, seizures, headaches, and
neurological deficits (Márquez et al., 2017; Doan et al., 2020).
The current standard treatment for GBM is surgical resection.
However, due to the highly infiltrative nature of GBM, the active
region often overlaps extensively with vital brain areas involved in
motor function and language, making complete eradication through
surgery challenging and leading to disease progression and
recurrence (Davis, 2016). Approximately 70% of GBM patients
experience disease progression within a year after diagnosis, with
less than 5% surviving beyond 5 years post-diagnosis (Zhu et al.,
2019). Consequently, multimodal therapies such as radiation
therapy and immunotherapy are often concurrently employed
alongside surgical intervention (Tan et al., 2020).

Currently, several chemotherapy drugs are available for GBM
treatment, including temozolomide, bevacizumab, carboplatin,
etoposide, and irinotecan (Zhao et al., 2020). However, these
drugs are associated with adverse effects such as bleeding,
perforation, and hepatorenal dysfunction. Prolonged use of a
single type of chemotherapy drug also leads to the development
of drug resistance, further compromising patient prognosis (Wu
et al., 2021). Nonetheless, the molecular mechanisms underlying
GBM recurrence, metastasis, drug resistance, and toxicity remain
incompletely elucidated. Limited progress has been made in
chemotherapy drug research since 2005 (Jackson, Choi, and Lim,
2019). Consequently, there is a pressing need to develop GBM
chemotherapy drugs with reduced toxicity and improved efficacy
to enhance treatment outcomes.

The principal focal point of action for dihydropteridone
derivatives lies in Polo-like kinase 1 (PLK1). PLK1 assumes a
pivotal role in numerous functions, encompassing DNA
checkpoint regulation, cellular division, microtubule dynamics,
and DNA replication/repair (Kim et al., 2017). Being a proto-
oncogene, PLK1 expression levels are significantly elevated in
various malignancies, including glioblastoma, making it a
potential therapeutic target for glioblastoma treatment (Bhola
et al., 2015). Dihydropteridone derivatives exert their anticancer
effects primarily by interfering with folate metabolism and
inhibiting the dihydropteridone reductase pathway (Martin et al.,
2020). By impeding the synthesis of nucleotides, the building blocks
of DNA and RNA, these drugs disrupt fundamental processes
involved in tumor cell development and proliferation (Hofheinz
et al., 2010). Additionally, they can induce DNA damage and
promote apoptosis in tumor cells (Kim et al., 2017). Moreover,
the synthesis process of dihydropteridone-class compounds is

relatively straightforward, and their production costs are not
exorbitant, providing a foundation for their future prospects in
anticancer treatment. Recently, a novel dihydropteridone derivative
has garnered attention (Li et al., 2023), as it possesses the
aforementioned advantages and also incorporates an oxadiazole
moiety, significantly ameliorating the inherent metabolic
vulnerability of amides to hydrolysis by esterases and hepatic
amidases (Fukami and Yokoi, 2012; Robins, Fogle, and Marlier,
2015). This enhancement in metabolic stability contributes to its
improved anticancer activity and opens new avenues for designing
chemotherapy drugs targeting glioblastoma.

To facilitate the efficient design and evaluation of novel drugs,
we introduce computer-aided drug design, with quantitative
structure-activity relationship (QSAR) being the most
exceptional experimental approach (Janicka and Śliwińska,
2022). This mathematical framework establishes a correlation
between the scrutiny of structural attributes and the
corresponding pharmacological efficacy. In previous studies on
QSAR modeling, the 2D model primarily focuses on elucidating
the impact of the molecular descriptors’ quantity and class on drug
activity. Conversely, the 3D model places emphasis on exploring
the correlation between the spatial configuration of the molecule
and its activity. In the present study, we aim to leverage the
strengths of both approaches—molecular descriptors and
molecular force fields—to develop a predictive model for the
activity of dihydropteridone derivatives against GBM. By
employing this mathematical model, our objective is to facilitate
the design of more efficacious chemotherapeutic drugs
targeting GBM.

2 Materials and methods

2.1 Data set acquisition

All the dihydropteridone derivatives with an oxadiazole moiety
used in this experiment were obtained from the research conducted
by Zhiwei Li et al. (Li et al., 2023). The structures and corresponding
activity values of the 34 compounds are presented in Table 1.

2.2 Exploring 2D-QSAR analysis

2.2.1 Handling of 2D-QSAR dataset
To mitigate the risk of overfitting, a random partitioning was

applied to the set of 34 compounds at a ratio of 1:3, resulting in
8 compounds assigned to the test set and 26 compounds allocated to
the training set. The primary objective of the training set is to
establish and refine the model, encompassing the construction,
calibration, as well as the identification of key variables and
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TABLE 1 Structure and IC50 values of 47 compounds.

Structure Substituent IC50 (µM) No

0.3 13aa

0.53 13b

0.19 13c

0.4 13daysa

0.39 13e

0.69 13f

0.23 13g

0.64 13ha

0.6 13i

0.62 13j

(Continued on following page)
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TABLE 1 (Continued) Structure and IC50 values of 47 compounds.

Structure Substituent IC50 (µM) No

0.23 13k

0.55 13l

1.07 13ma

0.42 13n

0.33 13o

0.42 13p

0.5 13q

0.79 13r

(Continued on following page)
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TABLE 1 (Continued) Structure and IC50 values of 47 compounds.

Structure Substituent IC50 (µM) No

0.63 13sa

0.53 13t

0.34 13u

0.44 13v

0.62 21a

1.02 21b

0.53 21c

0.5 21da

(Continued on following page)
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algorithms. Meanwhile, the test set serves primarily for model
calibration purposes, ensuring the assessment remains unbiased
and does not involve parameter modification. Ultimately,
decisions regarding algorithm adjustments or model retraining
are contingent upon evaluating the overall fit of the model.

2.2.2 Selection of molecular descriptors and
refinement of compounds

The performance of the QSAR model relies heavily on the
appropriate selection of molecular descriptors, necessitating the
structural optimization of the compound under investigation. In this

TABLE 1 (Continued) Structure and IC50 values of 47 compounds.

Structure Substituent IC50 (µM) No

0.18 21e

0.76 21f

0.45 21g

0.32 21h

0.37 21ia

0.91 21j

0.55 21k

0.26 21la

Note:In the 2D-QSAR, experiment, the test set is denoted by.
a, while in the 3D-QSAR, experiment, it is indicated by underlining.
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study, the chemical structure was initially sketched using ChemDraw
(Evans, 2014) and subsequently subjected to optimization using
HyperChem (Froimowitz, 1993). The optimization process involved
employing the molecular mechanics field (MM+) for the initial
optimization, followed by the selection of the AM1 or PM3 model
based on the presence or absence of S and P atoms. Furthermore, the
structure was cyclically optimized using the Polak-Ribiere method until
the root mean square gradient reached a threshold of 0.01. Finally, the
CODESSA program (Katritzky et al., 2001) was utilized to compute
molecular descriptors encompassing quantum chemistry, structure,
topology, geometry, and electrostatic properties.

2.2.3 Heuristic construction of linear models
In the process of constructing linear models, the Heuristic

Method (HM) was employed to extract all molecular descriptors.
Subsequently, feature selection was conducted to determine the
optimal number of descriptors that effectively represent the
chemical structure while excluding descriptors with minimal
impact. Objective measures, such as the F-test, R2, R2

CV, and
t-test, were used to evaluate the correlation coefficients between
two parameters. Additional descriptors were iteratively added until
further inclusion of descriptors had little influence on the results.
The linear model obtained through this procedure consisted of six
descriptors.

2.2.4 Development of nonlinear models
utilizing GEP

Gene Expression Programming (GEP) is a powerful technique
rooted in programming and algorithms (Allen, 1992), surpassing the

capabilities of both. Unlike coding numbers or analyzing trees, GEP
utilizes linear chromosomes as candidates (Kaydani, Mohebbi, and
Eftekhari, 2014). The coding of constant-length linear symbols and
the derivation of individual phenotypes, similar to coding codes and
expression trees, respectively, are employed (Teodorescu and
Sherwood, 2008). The candidate chromosomes are generated
from the feature set and the end set, and then encoded into an
expression tree (ET) format to calculate the equation (Gharagheizi
et al., 2012).

Figure 1 illustrates the overall process of GEP. Fitness functions
are applied to a random number of chromosomes, with termination
conditions being either the achievement of the predicted value or
reaching the maximum number of iterations. When the termination
requirement is not met, individuals are selected using the elite
roulette approach. Genetic operations such as mutation,
transposition, and recombination are applied to the selected
individuals to form a new generation. This process is repeated
iteratively to obtain improved results.

At the operational level, the molecular descriptor values are
inputted using automated problem software (APS), and the GEP
technique is employed to derive the nonlinear model. The quality of
the model is evaluated using R2 as an objective assessment indicator,
and appropriate parameter selection is critical to achieve this
objective.

Thus, two models were designed: one linear and the other
nonlinear. Clearly, the nonlinear model generated by the GEP
method outperforms the linear model in terms of both
predictiveness and stability. However, it should be noted that 2D-
QSAR alone fails to fully capture the three-dimensional relationship
between molecular structure and activity, highlighting the need for
further exploration through 3D-QSAR studies.

2.3 The exploration of 3D-QSAR

2.3.1 Data manipulation and structural refinement
The IC50 denotes the concentration of a compound necessary to

inhibit a biological process by 50% (Sebaugh, 2011), and it
frequently covers a wide range of magnitudes. In light of this, we
employed the formula log (IC50) + 9 to substitute the IC50 values for
the 34 compounds. This approach was undertaken to facilitate the
analysis and processing of the data, ultimately enhancing both
accuracy and stability. These modified data were randomly
divided into validation and training sets in a 1:4 ratio.

Furthermore, the ChemDraw structures of the compounds were
imported into the SYBYL program for additional optimization.
Unlike previous optimizations, this step aimed to minimize the
energy of the CoMSIA structure as much as possible. To achieve this,
the Tripos force field and Powell gradient technique were
implemented within the software (Yu et al., 2015).

This optimization process was underpinned by a systematic
calibration of salient operational parameters. The Dielectric
Function was set to “Distance,” the MB Cut-off was designated at
8, and the Dielectric Constant was adjusted to 1. Further refinement
was achieved by determining the Max Displacement at 0.01,
establishing the Minimum Energy Change at 0.05, setting the LS
Accuracy to 0.001, configuring the RMS Displacement at 0.001, and
specifying the Gradient at 0.05. Following this intricate calibration,

FIGURE 1
GEP diagram.
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the software initiated a comprehensive sequence of 1,000 iterations,
leading to the generation of an optimal minimal structure. This
resultant structure subsequently served as the foundational 3D
conformation for ensuing analytical stages.

2.3.2 Conformation comparison and selection
The selection and comparison of conformations are crucial as

the compound’s structure plays a vital role in subsequent modeling
processes (Patel et al., 2008; Ai et al., 2011). Among the
34 compounds, 21E, which exhibited the highest activity value,
was chosen as the reference or stacking template. The bold segment
of 21E is exceptionally designated due to its manifestation of the
identical structure that compound 21E shares with the other
compounds. Based on this reference, the remaining compounds
were aligned and arranged accordingly (as shown in Figure 2).

2.3.3 CoMSIA research
TheComparativeMolecular Similarity IndexAnalysis (CoMSIA)

is based on the concept that changes in molecular bond affinities are
strongly correlated with changes in molecular properties (Yu et al.,
2015). This technique involves the calculation of molecular fields as
numerous contour plots using a Gaussian function that depends on
distance (Li et al., 2012). In contrast to CoMFA, CoMSIA utilizes
contour plots to depict the five distinct spatial molecular fields. This
approacheliminates theneed forarduousprocedures, suchasaligning
thegridwith themolecules in thedataset,which is required inCoMFA
(Bordas, Komives, and Lopata, 2003). As a result, CoMSIA enhances
both clarity and precision in the analysis.

The region for molecule stacking is filled with a cubic grid with a
pitch of 2 Å and extending 4 Å in all directions. The default probe
generates a multi-molecular field grid, and the affinity is associated
with molecular properties using partial least squares (PLS). This
leads to the construction of a 3D quantitative conformational model.

The leave-one-out (LOO) cross-validation test is employed to
determine statistical significance, providing cross-validated
correlation coefficients (Q2) and best group scores (ONC) (Hadni
and Elhallaoui, 2020). Additionally, the ONC is further analyzed
through non-cross-validation to formulate the ultimate regression
model. Objective assessment indicators such as the standard error of

estimate (SEE), F-value, and non-cross-validation correlation
coefficient (R2) are used for the evaluation of non-cross-
validation modeling (Yan et al., 2020).

2.3.4 Verification of the 3Dmodel through external
and internal validation

The method of external validation was employed to forecast the
activity of the compound set in the test group (Yan et al., 2020),
yielding the correlation coefficient R2

ext, which was determined by
the following equation:

R2
ext � 1 − ∑ntest

i�1 yi − ~yi( )2
∑ntest

i�1 yi − �ytr( )2
In the aforementioned equation, ntest represents the total

quantity of compounds present within the test set. Symbol �ytr
represents the mean value of the compounds’ activity observed
within the training set. Additionally, symbols yi and ~yi represent
the experimental and predicted values, respectively, of the
compounds’ pharmacological activity within the test set. It is
worth noting that when the correlation coefficient R2 exceeds 0.5,
the model demonstrates robustness and exhibits excellent statistical
predictive capability (Yang et al., 2011; Mouchlis et al., 2012).

Moreover, we performed an supplementary validation of the
model utilizing R2

m to assess its rationality (Roy and Mitra, 2012).
The formula is expressed as follows:

R2
m overall( ) � R2* 1 −

�������
R2 − R2

0

√( )
Within the formula, R2 symbolizes the square of the correlation

coefficient between the predicted values and experimental values of
all compounds in both the test set and validation set, while R2

0

denotes the square of the correlation coefficient with a zero
intercept. When R2

m exceeds 0.5, it serves as an indicator of the
model’s substantial stability (Pratim Roy et al., 2009).

Meanwhile, an internal validation, specifically, a 20-times
Y-randomization validation, was performed to ascertain the
optimal model. We subjected the dependent variables to
randomization and generated new QSAR models. On each
occasion, these newly created models exhibited lower q2 and R2

FIGURE 2
Utilization of compound 21E as a molecular stacking template. (A) Bold highlighting indicates the stacking regions shared by all compounds. (B)
Graph illustrating the subsequent stacking process.
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values than the original model. Subsequently, the parameter R2
p was

introduced to assess the disparity between the randomized and
original model R2. The formula utilized is as follows:

R2
p � R2*

�������
R2 − R2

r

√
Where R2

r represents the average R
2 value over the 20 iterations of

the stochastic model, and a favorable outcome for the model R2
p should

yield a value greater than 0.5 (Rücker, Rücker, and Meringer, 2007).

2.3.5 Molecular docking based on the SYBYL
software platform

The compounds underwent initial optimization using the
SYBYL software, employing the Tripos force field. Following that,
the conformation displaying the minimum energy value was chosen
for the molecular docking procedure. The PLK1 receptor (ID: 3db6)
was obtained from the RCSB Protein Data Bank (PDB) during the
second stage. After removing water molecules and hydrogenated
atoms, the protein ligand was extracted and discarded, while
retaining the binding site for further analysis.

Following this, a flexible docking approach was employed to
facilitate the interaction between the ligand and receptor, allowing
for the exposure of the active pocket at the binding site. Docking was
performedutilizingSybyl-Dockasthebenchmark,employingadocking
thresholdwitha value of 0.5, anexpansion factorof 1, anda retentionof
20 conformational alterations. The evaluation of ligand-receptor
interactions was objectively conducted using a comprehensive
scoring function, with higher values indicating a stronger binding
impact of the drug. Undoubtedly, the considerations of
hydrophobicity, enthalpy, and polarity are crucial in this context.

3 Results and discussion

3.1 HM-based linear model

A total of 501 molecular descriptors were calculated for the
34 compounds using CODESSA. Based on the hierarchical modeling

(HM), a linear model consisting of eight distinct descriptor
numbers (1–8) was constructed. The relationship between these
descriptor numbers and the model’s evaluation indexes,
namely R2, R2

cv, and S2, was examined (refer to Figure 3). It
was observed that both R2 and R2

cv showed positive correlations
with the increase in descriptor numbers, while S2 exhibited an
inverse relationship. Notably, the addition of the 7th descriptor
did not result in a significant improvement in R2. The six-
parameter HM model, with an R2 value of 0.6682, an R2

cv

of 0.5669, and an S2 measuring at 0.0199, is deemed the
optimal linear model for evaluating the efficacy of glioma
inhibitors.

Specific information about the six modeled molecular
descriptors is provided in Table 2. To ensure the absence of
multicollinearity, Table 3 presents the correlation between these
descriptors. The correlation coefficient between any two descriptors
was found to be less than 0.80, indicating their independence and
lack of mutual influence. This validates the integrity of the linear
model.

Figure 4 illustrates the predicted and measured values of the
hierarchical modeling (HM) linear model for the compounds. The
equation representing this model is as follows: Log (IC50) = −2.4280e +
01 + NFA*2.9798e − 01 + MRCH*4.4403e − 01 + MECN*5.6298e +
00 −TEIZP*5.7965e− 01 + ZXS *3.6953e + 00−MCIHN*3.8370e + 00.

The absolute magnitude of the coefficients was employed to
evaluate the impact of the molecular descriptors on the antiglioma
activity of dihydropteridone derivatives. It can be observed that the
order of influence is as follows: MECN >MCIHN > ZXS > TEIZP >
MRCH > NFA.

3.2 Developing nonlinear models with GEP

After randomly assigning the 34 compounds, 26 compounds
were allocated to the training set, and the remaining 8 compounds
were assigned to the test set in proportion. The nonlinear model was
constructed using the GEP method implemented in the Automated

FIGURE 3
Visualization of descriptor number changes in relation to S2 (A), R2, and R2

cv (B).
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Problem Solver (APS) program. Table 4 provides the model’s
parameters and corresponding symbols. The distribution of
predicted and measured values obtained from this model for
compound prediction is depicted in Figure 5. The R2 values for
the training and test sets are 0.79 and 0.76, respectively, indicating a
high level of accuracy in the model’s predictions.

The nonlinear model equations were translated into the
following representation using the C programming language:
Log\[IC_(50) \] = 1\/\(TEIZP − NFA\) + sin\[sin\(TEIZP\) +
\(MECN − MECN\)\]\/\(MRCH − MCIHN\) * sin\(MRCH\) +

ZXS * 1\/\{MRCH * sin\(ZXS\) \/ZXS + ZXS \/TEIZP +
sin\[sin\(sin\(sin\(MRCH\) * sin\(MCIHN\)\)\)\]\}.

3.3 The statistical outcome of the CoMSIA
study

Table 5 presents the key statistical data for the CoMSIA model
with the most optimal performance. The model exhibits high Q2

(0.628), R2 (0.928), and F-values (12.194), indicating a strong and

TABLE 2 Correlation information for the six molecular descriptors.

Symbol Physical-chemical meaning Coefficient t-test

NFA Number of F atoms 2.9798e − 01 4.0171

MRCH Max e-e repulsion for a C-H bond 4.4403e − 01 2.5384

MECN Min exchange energy for a C-N bond 5.6298e + 00 3.3342

TEIZP Topographic electronic index (all bonds) [Zefirov’s PC] −5.7965e − 01 −3.1843

ZXS ZX Shadow/ZX Rectangle 3.6953e + 00 2.7395

MCIHN Min coulombic interaction for a H-N bond −3.8370e + 00 −1.5254

TABLE 3 Correlation table displaying the relationships among the selected six
descriptors.

Name NFA MRCH MECN TEIZP ZXS MCIHN

NFA 1 −0.13064 −0.08954 0.00487 0.20426 0.15741

MRCH −0.13064 1 0.24872 −0.13865 −0.06382 −0.07646

MECN −0.08954 0.24872 1 −0.04309 −0.02138 0.2345

TEIZP 0.00487 −0.13865 −0.04309 1 0.40439 0.07533

ZXS 0.20426 −0.06382 −0.02138 0.40439 1 0.71179

MCIHN 0.15741 −0.07646 0.2345 0.07533 0.71179 1

FIGURE 4
Empirical vs. computed log (IC50) values using the HM
methodology.

TABLE 4 Parameters and symbols used in nonlinear equation operations.

Parameter name Representation Value

Addition + 1

Subtraction − 1

Multiplication * 1

Division — 1

Inverse Inx 1

Sine Sin 1

FIGURE 5
Empirical and predicted values from non-linear algorithms (GEP),
with all IC50 measurements converted to their respective log (IC50)
notations.
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reliable fit. Additionally, the model demonstrates low SEE values
(0.160), further supporting its robustness.

3.4 Results of the external and internal
validation

When the R2
ext, R

2
m, and R

2
p values exceed 0.5, the model attains a

high level of confidence. Through the analysis utilizing both external
and internal validation methods, we acquired an R2

ext value of 0.65,
an R2

m value of 0.64, and an R2
p value of 0.61. These findings suggest

that the model demonstrates a certain degree of stability and
predictability. This finding is supported by Figure 6, which
provides visual representation of the model’s predictive
capabilities. Presentation of the five molecular fields of CoMSIA.

The utilization of CoMSIA confers a notable advantage wherein
it enables the visualization of contour maps pertaining to individual
molecular fields (Mao et al., 2012). This feature establishes a
fundamental basis for our comprehension of the role of
physicochemical structure in activity. Moreover, the identification
and annotation of pivotal structures, regions, and active sites have
yielded significant advancements in the development of innovative
pharmaceuticals.

As exemplified in Figure 7, the illustration exemplifies the
diverse contributions of the five molecular fields to the most

active 21E molecule. Evidently, the hydrophobic field exerts a
substantial influence on the compound, thus necessitating a
subsequent design orientation in alignment with this aspect.

3.5 Designing and predicting the activity of
novel compounds

First, we must analyze the regions wherein positive and negative
alterations in molecular descriptors lead to augmented or
diminished activity, respectively. Subsequently, we shall explore
the influence of modifications in the 3D structural attributes
within the CoMSIA contour map on the biological activity in 3D
space. It is imperative to identify five molecular fields, namely spatial
(S), hydrogen bond donor (D), electrostatic (E), hydrogen bond
acceptor (A), and hydrophobic (H), where advantageous changes
correspond to heightened activity in specific regions. By
manipulating the distinct 3D geometries and compositions of the
compounds, we can ascertain their association with the favorable
regions on the 3D CoMSIA contour map.

Upon evaluating the outcomes of 2D-QSAR analysis on
dihydropteridone derivatives, it was determined that the molecular
descriptor known as “Minimum exchange energy for a C-N bond”
(MECN) exerts the most substantial influence on the compound’s
activity. MECN represents the underlying energetics of the C-N bond
transformation (Gilli et al., 2002). This energy metric holds
paramount importance in the sophisticated realms of molecular
interactions and bonding dynamics. It significantly influences the
bioactivity of molecular entities by determining their inherent
stability, reactivity, and binding propensity (Bariwal and Van der
Eycken, 2013). The intrinsic affinity between a molecule and its
designated target is central to assessing its therapeutic efficacy. A
reducedMECN suggests enhanced stability inmolecular engagements
with biological entities, implying superior inhibitory responses against
pathogenic enzymes or proteins. Conversely, an elevated MECN
could compromise these interactions, thereby diminishing a
compound’s therapeutic effectiveness. Therefore, understanding
and optimizing the MECN is pivotal for amplifying its bioactive
potential.

Beyond the MECN, five paramount molecular descriptors are
delineated: the “Number of fluorine atoms,” which modulates
solubility and metabolic tenacity (Shah and Westwell, 2007); the
“Max e-e repulsion for a C-H bond,” articulating molecular
conformation and kinetic propensities (Brandes and Ellman,
2022); the “Topographic electronic index (all bonds) [Zefirov’s
PC],” epitomizing molecular discernment via electronic
topography (Hamlin, Swart, and Bickelhaupt, 2018); the “Min
coulombic interaction for a H-N bond,” signifying electrostatic
congruencies (Tang et al., 2020); and the “ZX Shadow/ZX
Rectangle,” encapsulating the compound’s spatial and electronic
disposition (Silakari et al., 2008).

Leveraging this observation, along with the notable importance
of the hydrophobic field in CoMSIA, the MECN descriptor was
integrated into the design process for novel medications, with a
particular emphasis on augmenting the drug’s efficacy through the
hydrophobic field.

A total of 200 new dihydropteridone derivatives were
synthesized and subsequently assessed using CoMSIA software,

TABLE 5 Statistical results of the highly efficient 3D-QSAR model derived from
the CoMSIA method.

Model Q2 ONC R2 SEE F

CoMSIA 0.682 1 0.928 0.160 12.194

Name S E H D A

Contribution 0.193 0.194 0.331 0.279 0.218

FIGURE 6
Relationship between measured and predicted values in the
CoMSIA model.
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utilizing 21E as a template. Due to spatial limitations, only the top
eight innovative compounds and their projected activity levels are
presented in Table 6. Notably, 21E.153, exhibiting the highest
activity value, exhibits promising potential as an anti-glioma
medication. Molecular docking experiments were subsequently
conducted to further validate our hypothesis.

3.6 Experiments usingmolecular docking for
the most active chemicals

In this investigation, we employed ligands 21E, 21E.153, and
Temozolomide for conducting molecular docking experiments with
the glioma-associated target PKL1, respectively. Temozolomide, a
commonly utilized chemotherapeutic agent for glioma, was chosen
as the docking ligand. Figure 8 illustrates the docking results of these
three compounds, wherein the yellow segment denotes hydrogen
bonding interactions. It is worth noting that compound
21E.153 exhibits a remarkable presence of three hydrogen bonds,
surpassing the quantities observed in compounds 21E and
temozolomide. Furthermore, their respective docking scores of

8.7688, 8.7067, and 3.4497 provide additional support for this
interpretation. Collectively, the aforementioned observations
substantiate the superior docking efficacy of compound 21E.153.

FIGURE 7
Five molecular field maps of CoMSIA based on the template of compound 21E. (A) Steric field, with the increase of the green group positively
correlated with activity and the increase of the yellow group negatively correlated. (B) Electrostatic field, exhibiting a positive correlation between the
increase of the red negative field and blue positive field and the activity. (C) Hydrophobic field, where the yellow portion requires strengthening of its
hydrophobic structure, while the gray portion necessitates reinforcement of its hydrophilic structure. (D) Hydrogen bond acceptor field, indicating
the need for an increase in the purple region and a decrease in the red region for hydrogen bond acceptors. (E)Hydrogen bond donor field, indicating the
need for augmentation in the blue-green region and reduction in the purple region for hydrogen bond donors.

TABLE 6 A Presentation of 200 novel compounds along with their predicted
values (shown here are the top eight only).

Name Predictive value

21E 9.549

21E.33 9.556

21E.4 9.569

21E.38 9.569

21E.13 9.57

21E.37 9.571

21E.2 9.574

21E.40 9.583

21E.153 9.632
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4 Conclusion

In this study, our initial approach involved the exploration of
both linear and nonlinear 2D-QSAR models. However, it became
evident that the nonlinear models outperformed the linear
models in terms of stability and prediction capabilities.
Nonetheless, both linear and nonlinear models overlook the
influence of spatial structure on activity. Hence, we proceeded
to develop a 3D-QSAR model utilizing the CoMSIA technique.
The robustness of the 3D-QSAR model is demonstrated by its
high Q2 (0.628), R2 (0.928), and F-values (12.194), along with low
SEE values (0.160).

Employing the CoMSIA approach not only enables us to
uncover the three-dimensional structural variations of the
model but also provides us with five molecular field contour
maps, which prove to be unexpectedly valuable for the
generation of new molecules. By combining the significant
molecular descriptor “MECN” with the significant molecular
field “hydrophobic field”, we successfully generated and
postulated 200 novel compounds. Among these, compound
21E.153 emerged as the most potent.

To validate the affinity of these compounds for glioma-related
receptor targets, we conducted molecular docking experiments.
Encouragingly, 21E.153 exhibited the most favorable docking
interaction, introducing a novel concept and strategy for the
future development of glioma medications.
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