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Chemical libraries have become of utmost importance to boost drug discovery
processes. It is widely accepted that the quality of a chemical library depends,
among others, on its availability and chemical diversity which help in rising the
chances of finding good hits. In this regard, our group has developed a source for
useful chemicals named Medicinal and Biological Chemistry (MBC) library. It
originates from more than 30 years of experience in drug design and discovery
of our research group and has successfully provided effective hits for neurological,
neurodegenerative and infectious diseases. Moreover, in the last years, the
European research infrastructure for chemical biology EU-OPENSCREEN has
generated the European Chemical Biology library (ECBL) to be used as a
source of hits for drug discovery. Here we present and discuss the updated
version of the MBC library (MBC v.2022), enriched with new scaffolds and
containing more than 2,500 compounds together with ECBL that collects
about 100,000 small molecules. To properly address the improved
potentialities of the new version of our MBC library in drug discovery, up to
44 among physicochemical and pharmaceutical properties have been calculated
and compared with those of other well-known publicly available libraries. For
comparison, we have used ZINC20, DrugBank, ChEMBL library, ECBL and NuBBE
along with an approved drug library. Final results allowed to confirm the
competitive chemical space covered by MBC v.2022 and ECBL together with
suitable drug-like properties. In all, we can affirm that these two libraries represent
an interesting source of new hits for drug discovery.
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1 Introduction

Virtual high throughput screening (vHTS) represents a gold standard in modern drug
discovery workflows especially for Pharma and Biotech companies (Subramaniam et al.,
2008; Tanrikulu et al., 2013). Integration and complementation of in silico tools to classical
HTS has boosted the capability of rapidly exploring a wider chemical space for the effective
identification of new hits with indirect beneficial effects also on further steps of drug
discovery as hit-to-lead optimization (Bajorath, 2002). The in silico techniques generally
applied in this context are based on a common principle that is the accurate and effective
assessment of the chemical complementarity between the protein target of interest and small
molecules. In the case of ligand-based techniques as the mainstream QSAR-based (Neves
et al., 2018) or pharmacophore-based (Kim et al., 2010) virtual screening, preliminary and
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well-curated experimental data for representative chemical scaffolds
are needed. These data in conjunction with a proper selection of
relevant atomic or molecular descriptors for the compiled list of
active compounds are then used to guide the search for new
compounds. In the case of structure-based approaches as
docking-based virtual screening, each compound in the chemical
library is screened for its binding affinity toward a given target by
using properly tuned scoring functions (Neves et al., 2021). Best
scored molecular candidates from both approaches can be used for
preliminary proof-of-concept. In case active compounds are found,
they can go to further structural optimization with the ultimate goal
of maximizing both biological effect and pharmacokinetic
properties.

One strategy that can be envisaged to rise the chances to find
effective compounds is represented by the use of big non-
enumerated libraries. Nowadays, we are assisting to the growing
of huge chemical libraries with an average number of compounds
from 1010 to 1020 (Nicolaou et al., 2016). Despite they enable access
to an impressive large chemical space, a common bottleneck is still
represented here by the in silico tools since a complete structure-
based screening of such huge libraries would require unaffordable
computational costs and time. Besides, such huge chemical libraries
have a number of compounds with properties far from being
optimal to be considered as hits. To overcome these limitations,
machine learning models from the implementation of Bayesian
optimization algorithms for docking-based virtual screening
would significantly reduce the computing time making the
screening of large chemical library possible (Graff et al., 2021).

Another more feasible possibility could be represented by the use of
focused chemical libraries. These kinds of libraries are generally small,
drug-like collections and come from a focused enumeration of
compounds acting on specific targets as kinases (Kéri et al., 2005),
protein-protein interactions (PPi) (Sperandio et al., 2010), G-coupled
receptors (Jimonet and Jäger, 2004) among others. The use of such
small libraries indeed would allow to shorten the computing time. Best
candidates from preliminary screening can be then used to setup ad hoc
optimization strategies aimed at improving activity toward a specific
protein target of interest (Balakin et al., 2006; Mayr and Bojanic, 2009).
The advantage of using quality-focused libraries resides in the fact that
properties for compounds are already partially optimized. Moreover, a
clear linkage between structure and biological activity is also guaranteed.

Our laboratory has developed an in-house quality-focused
chemical library named Medicinal and Biological Chemistry
(MBC) library, that condensates more than 30 years of medicinal
chemistry research in our group. It contains compounds with a
standard chemical purity of at least 95% by HPLC and is available
both electronically and physically upon request. Since its first
publication in 2017 (Sebastián-Pérez et al., 2017), the MBC library
has grown significantly reaching a total of 2,577 curated compounds
with annotated data about activity and purity. Compounds of the first
version of the MBC library (MBC v.2016) have been designed mainly
as potential drugs for neurological and neurodegenerative diseases but
can be also used as a useful reservoir for the treatment of other
diseases. The actual version (MBC v.2022) has been enriched by novel
chemical series that have been developed for different targets as those
responsible for neglected or infectious diseases, among others. The
most representative chemical families of the new MBC v.2022 library
are reported in Figure 1.

To validate the quality of the updated MBC library, up to
44 physicochemical and pharmaceutical properties have been
calculated for all the compounds with particular attention to
drug-likeness properties. The original version of the library
(MBC v.2016) has been compared with the new one (MBC
v.2022) to quantify the level of improvement of the new version.
To exclude structural redundancy, special attention has been
deserved to the analysis of the structure (i.e., Tanimoto
similarity) and substructure (i.e., Bemis-Murcko algorithm)
variability. Finally, to provide a wider perspective, the MBC
v.2022 library has been also compared with others well-known
chemical libraries such as ZINC20 (Irwin et al., 2020), DrugBank
(Wishart et al., 2018), ChEMBL (Mendez et al., 2019), NuBBE
(Saldívar-González et al., 2019) and the Approved drug library
from Selleck Chemicals together with the European chemical
biology library (ECBL) (Horvath et al., 2014). This last library
was assembled by the European research infrastructure
consortium (ERIC) for chemical biology named EU-
OPENSCREEN (EU-OS) (Frank, 2014; Brennecke et al., 2019).
This ERIC integrates high-capacity screening platforms
throughout Europe with the ECBL (Horvath et al., 2014) and
medicinal chemistry expert laboratories making available new hit
discoveries for a selected target and the hit-to-lead optimization.

2 Materials and methods

2.1 Database’s collection

TheMBC v.2016 (1,096 compounds) (Sebastián-Pérez et al., 2017),
MBC v.2022 (2,577 compounds), ECBL (101,021 compounds; https://
www.eu-openscreen.eu/services/database.html), ZINC20 (Irwin et al.,
2020) (10,723,360 compounds; https://files.docking.org/zinc20-ML/),
DrugBank v.5.0 (Wishart et al., 2018) (10,981 compounds; https://
go.drugbank.com/releases/latest), ChEMBL v.31 (Mendez et al., 2019)
(1,908,325 compounds; https://chembl.gitbook.io/chembl-interface-
documentation/downloads), NuBBE (Saldívar-González et al., 2019)
(2,223 compounds; https://nubbe.iq.unesp.br/portal/nubbe-search.
html) and Approved drug library (3,104 compounds; https://www.
selleckchem.com/screening/fda-approved-drug-library.html) databases
downloaded from their websites in September 2022 were considered for
comparison. For comparative purposes, focused subsets of the freely
available databases ZINC20, DrugBank, ChEMBL were considered.
Briefly, the in-stock drug-like subset was used in case of the
ZINC20 database. Regarding the ChEMBL database, only small
molecules was selected, discarding other entries (as antibodies or
enzymes) out of the scope of this study. Finally, for the DrugBank
library, biotechnology products were ignored. All the material and data
produced for this study along with the python scripts used to reproduce
all the graphics are available at https://doi.org/10.5281/zenodo.8212104.

2.2 Database’s preparation

For all the databases, the 3D structures were generated with the
LigPrep module of the Schrödinger suite (Schrödinger, 2022:
LigPrep, Schrödinger, LLC, New York, NY, 2022) in accordance
with our previous study (Sebastián-Pérez et al., 2017). In brief,
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molecules were protonated according to the protonation state at
physiological pH. All counterions were removed and no tautomers
were generated. Finally, stereochemistry was retained according to
the original entries. In-house python scripts along with the pandas-
1.4.4, matplotlib-3.6.0 and seaborn-0.12.0 modules of python3 were
used to produce all the graphics and statistics reported in this study.

2.3 Properties’ calculation

Pharmaceutically relevant principal descriptors for all the
compounds (see Table 1) were calculated using the QikProp v.6.8
(Schrödinger Release, 2022: QikProp, Schrödinger, LLC, New York,
NY, 2022). As stated in the manual, QikProp is unable to calculate
properties for not neutralizable quaternary ammonium compounds,
so we were forced to exclude these compounds from all the analyzed
databases. For this reason, 7.39%, 3.14%, 0.20%, 4.13%, 0.61%,
2.97%, 4.62%, and 0.14% of the prepared compounds respectively
fromMBC v.2016, MBC v.2022, ECBL, DrugBank, ZINC, ChEMBL,
approved drug library and NuBBE were excluded. The probability of
a false readout in a screening assay was determined by HitDexter3.0
(Stork et al., 2020; Stork et al., 2021). Similarly, 3.61% and 0.15% of
MBC v.2022 and ECBL were not able to be processed.With regard to
Veber and Ghose filters, both were calculated with RDKit (Landrum,
2016; Bento et al., 2020). The corresponding measurements and
thresholds can be found elsewhere (Ghose et al., 1999; Veber et al.,
2002).

2.4 Structure similarity analysis

A wide chemical space as a result of a large chemical diversity in
chemical libraries is of utmost importance in rising the chances of
finding effective and thus promising hits in drug discovery (Gerry
and Schreiber, 2018). In this scenario, the Tanimoto coefficient has
been routinely used to evaluate chemical similarity or variability
(Bajusz et al., 2015). The Tanimoto coefficient (Tc) between two
points, a and b, with k dimensions is calculated according to Eq. 1

Tc �
∑k

j�1aj × bj

∑k
j�1a

2
j +∑k

j�1b
2
j −∑k

j�1aj × bj( )
(1)

The pairwise comparison of fingerprints—one for the query and
one for the target structure - allows to obtain the global similarity
between two molecules (Tc) which can vary between 0.0 (no
similarity) and 1.0 (maximum similarity or identity).

Tanimoto similarity matrixes for the MBC v.2016, MBC
v.2022 and ECBL libraries were generated with RDKit
(Landrum, 2016; Bento et al., 2020). Accordingly, the SMILES
codes for each molecule of the previously cited datasets were first
converted in RDKit molecules and molecular fingerprints were
thus calculated. Comparison of the so generated RDKit
fingerprints allowed to generate a NxM matrix whose
dimensions depends on the length of the analyzed database.
Accordingly, 1,096 × 1,096, 2,577 × 2,577 and 101,021 ×
101,021 Tanimoto matrixes were generated respectively for the
MBC v.2016, MBC v.2022 and ECBL libraries and plotted
(Figure 4). SMILES codes for compounds bearing a quaternary
ammonium - for which QikProp was unable to calculate
properties - were retained for this analysis.

2.5 Substructure similarity analysis

A quite common scaffold representation is the Murcko
framework proposed by Bemis and Murcko (Hu et al., 2016).
Given a query molecule, the method employs a systematic
dissection into four parts: ring systems, linkers, side chains,
and the Murcko framework that is the union of ring systems
and linkers in a molecule. The information obtained by this
analysis can be used for different purpose as, for instance,
database enumeration. In this work, the Bemis-Murcko
scaffolds have been calculated for each input RDKit molecule
by using the ChemAxon Bemis-Murcko node of the KNIME
platform (https://www.knime.com/knime-analytics-platform).
The resulted scaffolds were finally clustered according to their
canonical SMILES codes.

FIGURE 1
Chemical scaffolds for the first 10 most populated clusters of the MBC v.2022 library.
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TABLE 1 Quantitative distributions for the most relevant pharmacokinetic properties of the MBC and ECBL libraries calculated with QikProp.

Property Intervals MBC v.2016 MBC v.2022 ECBL

Lipinski’s rule of 5 0 violations 85.1% 85.3% 98.7%

1 violation 13.4% 12.0% 1.0%

2 violations 1.5% 2.3% 0.2%

3 violations 0.0% 0.4% 0.1%

4 violations 0.0% 0.0% <0.1%

Jorgensen’s rule of 3 0 violations 76.0% 76.1% 92.4%

1 violation 23.5% 23.1% 7.3%

2 violations 0.5% 0.8% 0.2%

3 violations 0.0% 0.0% <0.1%

Veber filter Meet the criteria 96.4% 95.1% 95.4%

Ghose filter Meet the criteria 85.8% 85.8% 94.9%

MW (Da) 0–200 9.6% 5.9% 0.2%

201–300 36.5% 34.4% 21.0%

301–400 39.2% 42.0% 64.0%

401–500 12.9% 14.4% 14.1%

>500 1.8% 3.3% 0.7%

Nr. of rotatable bonds 0–5 82.1% 79.5% 66.9%

6–10 7.1% 17.1% 27.0%

>10 0.8% 3.4% 6.1%

donorHB (HBD) ≤5 99.9% 99.8% 99.9%

>5 0.1%) 0.2% 0.1%

accptHB (HBA) ≤10 99.4% 98.0% 94.0%

>10 0.6% 2.0% 6.0%

QPlogPo/w ≤5 91.0% 87.5% 99.5%

>5 9.0% 12.5% 0.5%

QPlogS −12.0/−7.0 11.6% 6.7% 0.4%

−6.9/−3.0 73.3% 82,9% 67.0%

−2.9/2.0 15.1% 10.4% 32.6%

QPlogBB −9.0/−5.0 0.0% 0.0% <0.1%

−4.0/−1.0 61.2% 62.0% 20.2%

−0.9/2.0 38.8% 38.0% 79.8%

Human oral absorption in GI 0%–50% 1.9% 2.1% 0.7%

51%–75% 9.6% 8.5% 12.5%

76%–100% 88.5% 89.4% 86.8%

Probability of highly promiscuous activities in target-based assays 0.00–0.50 - 93.2% 99.3%

0.51–0.75 - 0.7% 0.1%

0.76–1.00 - 2.6% 0.4%
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3 Results and discussion

Successful screening projects begin with the selection of
appropriate chemical libraries in terms of size, quality, and
chemical diversity. Unlike ultra-large libraries, which are
computationally expensive to use, quality-focused chemical
libraries represent a useful source of chemical entities enriched
with active chemotypes that may be designed to efficiently
combine chemical diversity along with a significant reduction of
the computational resources eventually required for a screening
campaign. Moreover, these libraries may be built according to drug
likeness properties (e.g., ADME/Tox properties), offering promising
starting-points that can accelerate hits finding and hit-to-lead
protocols (Gong et al., 2017).

3.1 The Medicinal and Biological Chemistry
(MBC) library from 2016 to 2022

The MBC library has originated from more than 30 years of
experience in drug discovery of our research group. It has been
conceived as a collection of focused sets of chemical probes with
common therapeutic profiles mostly in the field of
neurodegenerative and infectious diseases as such as Alzheimer’s
and Parkinson’s diseases, amyotrophic lateral sclerosis (ALS),
schistosomiasis, and leishmaniasis, among others. It represents a
source of fully accessible, ready-to-use compounds with proved
efficacy. The library has been growing from 1,096 compounds in
2016 to 2,577 compounds in 2022 with a significant exploitation in
the field of infectious diseases. The utility of the MBC library to
initiate drug discovery programs is reflected mainly in the
neurodegenerative and anti-infective fields. Particularly, successful
families of CK1 inhibitors with a benzothiazole core (Salado et al.,

2014; Martínez-González et al., 2020) and CDC7 inhibitors with a 6-
mercaptopurine scaffold (Rojas-Prats et al., 2021) useful for ALS
were developed till the in vivo proof of concept after initial hit
identification using the MBC library as reported. Very recently new
mitophagy modulators having chemically diverse scaffolds were also
discovered (Maestro et al., 2023). In the anti-infective field it is
remarkable the discovery of N′-phenylacetohydrazide derivatives as
potent Ebola virus entry inhibitors (Garcia-Rubia et al., 2023)
starting with a carbazole hit identified from the MBC library
(Lasala et al., 2021) (Figure 2). The increased potentialities of the
new version of our MBC library have been addressed here and
compared with the previous version (Sebastián-Pérez et al., 2017).

3.2 The European Chemical Biology Library
(ECBL)

The selected EU-OPENSCREEN (EU-OS) compound collection
is centrally stored and managed at the EU-OS laboratory facility on
the Research-Campus Berlin-Buch (Germany). All compound
structures and primary screening data will be published in the
open-access European Chemical Biology Database, where they
are made available to a wide scientific audience. The European
research infrastructure EU-OS collaboratively develops novel
molecular tool compounds and early therapeutic candidate
molecules together with external users from various disciplines of
the life sciences. Access to the EU-OS resources is open to
researchers from academia and industry from countries inside
and outside of the European Union. The current version (v.2022)
of the ECBL integrates 101,021 available, ready-to-use compounds
with unbiased chemical diversity, designed by five renowned
academic computational chemistry groups. To maximize the
coverage of chemical space, criteria followed by these groups in

FIGURE 2
Hit-to-lead approach followed around the carbazole hit identified as Ebola virus entry inhibitor by virtual screening using the MBC library
(Garcia-Rubia et al., 2023).

Frontiers in Pharmacology frontiersin.org05

Ginex et al. 10.3389/fphar.2023.1244317

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1244317


FIGURE 3
Join scatter and distribution plots of the main principal descriptors and properties calculated with QikProp for the MBC v.2016 (A; in blue), MBC
v.2022 (B; in red) and for ECBL (C; in green) libraries.
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the molecules selection were completely different but chemical
stability, drug-likeness criteria, and practical availability were
pursued in all the cases (Horvath et al., 2014). Recently, this
library have started to be used providing valuable hits to fight
against COVID-19 (Kuzikov et al., 2021; Schuller et al., 2021).

3.3 Comparative analysis

The most relevant physicochemical and pharmaceutical
properties for each of the compound of the MBC library have
been predicted with the QikProp module of Schrödinger.
Quantitative distributions for the most relevant pharmacokinetic
properties of the two versions of the MBCs library are reported in
Table 1. For a comparative description, relative dispersion and
distribution for some salient pharmacokinetics (PK) properties as
molecular weight (MW), predicted octanol/water logP (QP logP),
predicted logS (QP logS), hydrogen-bond donor (HBD), hydrogen-
bond acceptor (HBA), predicted blood-brain barrier (BBB)
permeability (QP logBB) and human oral absorption (OA) are
showed in Figure 3.

A traditional method to evaluate drug likeness is represented by
the Lipinski’s Rule of Five (Lipinski et al., 2001; Lipinski, 2004). In
line with the previous version of the library, the 97.3% (85.3% with
0 violations and 12.0% with 1 violation) of the compounds in the
MBC v.2022 have less than 2 violations of the Lipinski’s Rule of Five.
Less than 3% have more than 2 violations. The Jorgensen’s Rule of
Three (Lionta et al., 2014) is another widely followed rule for lead
like properties and states that the aqueous solubility measured as
logS should be greater than −5.7, the apparent Caco-2 cell
permeability should be faster than 22 nm/s, and the number of
primary metabolites should be less than 7. In both versions of the
MBC library, the majority of the compounds (76.0%) have no
violations with the 23% showing only 1 violation.

Molecular flexibility, number of hydrogen-bonding donor/
acceptor groups and molecular weight are critical parameters for
drug likeness. In the MBC library, most of compounds (90.8% of the
MBC v.2022 and 88.6 of the MBC v.2016 library) have a MW
between the recommended interval of 200–500 Da (see Table 1;
Figure 3). More than 90% of the MBC compounds have up to
10 rotatable bonds. More than 98% have less than 5 hydrogen-bond
donor and less than 10 hydrogen-bond acceptor groups (see
Figure 3).

Lipophilicity (Ginex et al., 2019) and thus solubility (Bergström
and Larsson, 2018) have a great impact on the pharmacokinetic
profile of a potential drug. Most of the compounds of our MBC
library have suitable lipophilicity and solubility predicted values
(more than 80% with QP logPo/w below 5 and QP logS
between −6.5 and 0.5; see Table 1; Figure 3). This is also
reflected in a good BBB predicted permeability with about 60%
of compounds with QPlogBB values between −1 and −4 (see
Table 1). Here, a close look at the distributions for the QPlogBB
values reported in Figure 3 allows to see that most of the compounds
specifically fall within 0 and −1. Finally, more than 95% of the
compounds have a predicted oral absorption (hOA) rate in the
gastrointestinal (GI) tract higher than 50% (see Table 1; Figure 3).
Moreover, potentially promiscuous compounds should be carefully
treated and analyzed in order to avoid false-positive results. There is

a wide range of strategies to afford this, from classical substructure
detection [e.g., Pan Assay Interference Compounds (PAINS) filter
(Baell and Holloway, 2010)] to more refined machine learning
methodologies (Blaschke et al., 2019). In this sense, the
probability of triggering a positive result in a target-based
screening, understood as a false positive due to the chemical
promiscuity of the molecule, was calculated here using HitDexter
3.0 server (https://nerdd.univie.ac.at/hitdexter3), a machine learning
approach that shows how the vast majority of the MBC library (93.
2%) avoid this alert.

The analysis of the most relevant physicochemical and
pharmacokinetic properties for ECBL has been reported in
Table 1 and Figure 3C. In brief, the 98.7% and the 92.4% of the
compounds have no violations of respectively the Lipinski’s Rule of
Five and Jorgensen Rule of Three which is globally indicative of the
high pharmaceutical relevance of the dataset. As demonstrated by
the data in Table 1 and plots in Figure 3C, this dataset guarantees an
excellent coverage of the drug-like chemical space with MW lower
than 600 Da, a number of rotatable bonds lower than 10, less than
5 hydrogen-bond donor and less than 10 hydrogen-bond acceptor
atoms. QPlogBB values fall in the interval of 2 and −4 (see Table 1),
with the majority of the compounds within 1 and −2.5 (see Figure 3).
The good characterization, data curation and immediate availability
of the compounds of the ECBL make it also a good reservoir of
potential hits. Finally, the HitDexter program shows how the 99.3%
of this library present low probability of trigger a false-positive
readout in target-based assays.

3.4 Tanimoto similarity

Beside physicochemical and PK properties, a wide chemical
variability or diversity is also a pivotal feature since it could influence
the success rate of a screening protocol (López-Vallejo et al., 2012).
The use of small-sized libraries with low chemical variability and
high structural redundancy could in fact reduce the possibility to
find useful hits.

In this regard, the Tanimoto metric has been widely used to
evaluate molecule similarity thus it represents a valid way tomeasure
the qualitative chemical variability of a compound’s library (Sankara
Rao et al., 2011; Bajusz et al., 2015; Xia and Yan, 2017). The chemical
variability of ourMBC library has been subjected to Tanimoto-based
fingerprint similarity analysis (see Figure 4). With the exception of a
small cluster of structurally-related, relatively similar compounds
with values among 0.5 and 0.7 (white/pink square in the similarity
matrix for MBC v.2016 and v.2022), a clear predominance of
fingerprint values lower than 0.5 is generally observed thus
confirming the suitable chemical diversity of our library.
Regarding the ECBL, no similarity clusters were found as shown
by the low values of the Tanimoto coefficients. This once again
highlights the valuable chemical diversity of this library.

3.5 Scaffold clustering

Bemis and Murcko outlined a popular method for deriving
scaffolds from molecules by removing side chain atoms (Bemis and
Murcko, 1996). Widely speaking, the Bemis-Murcko framework
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algorithm represents an effective indicator of the chemical diversity
of the chemical libraries. The ChemAxon extended version of the
Bemis-Murcko framework algorithm implemented in KNIME (Hu
et al., 2016) has been used here to perform scaffold clustering to
check the chemical diversity of the MBC v.2022 and the ECBL.
More details about the procedure can be found in the Materials &
Methods section. For comparative purposes, the old version of the
MBC library (v.2016) has been also included in the analysis (see
Figure 5).

A total of 465 and 1123 Bemis-Murcko scaffolds have been
found respectively for the MBC v.2016 and v.2022 libraries thus
confirming the enrichment in chemical variability of the new
version. The most representative new scaffolds from MBC

v.2022 with respect to the v.2016 are depicted in Figure 6. As
observed in Figures 5A,B, a high level of chemical diversity
generally characterizes the MBC v.2022 database with only
2 Bemis-Murcko scaffolds having a population above the 2% of
the structures present in the MBC v.2022 database, showing that the
vast majority of the compounds are distributed over different
chemotyes (Figure 5B). Library expansion could be due to two
possible factors as 1) the enrichment of already present scaffolds by
means of further enumeration or 2) the introduction of totally new
chemical entities. In case of the MBC library, analysis of the
common scaffolds (see Figure 5C) between the two versions
allowed to see that the library expansion generally came from the
introduction of new chemical species with a limited enumeration of

FIGURE 4
Tanimoto-based fingerprint similarity analysis for the MBC v.2016 (A), MBC v.2022 (B) and ECBL (C) libraries.

FIGURE 5
Bemis-Murcko scaffold distribution (%) for the MBC v.2016 (A) and the MBC v.2022 (B). Analysis of the common scaffolds between MBC v.2022 and
MBC v.2016 or ECBL is reported respectively in (C, D). For clarity, only the scaffolds with a population >5 compounds have been shown.
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the scaffolds already present in the previous version
(see Bemis-Murcko scaffolds IDs 1-59 in Figure 5C). Finally, the
uniqueness of the chemical scaffolds collected in the MBC
v.2022 library has been evaluated with respect to the ECBL. On a
total of 94 scaffolds with population higher that 5 compounds, there
are 62 unique structures in the MBC v.2022 library (see Figure 5D)
and only 32 are shared with the ECBL.

3.6 Comparison with other libraries

The physicochemical and drug-like properties of the MBC
library have been also compared with those of some publicly
available chemical databases as ZINC, DrugBank, ChEMBL,
NuBBE and approved drug library from Selleck Chemicals
(henceforth referred to as Approved drug library). ZINC (Irwin
et al., 2020) is a freely available database of commercially available
compounds developed by the Department of Pharmaceutical
Chemistry at the University of California, San Francisco (UCSF).
One of the most recent versions, ZINC20 (Irwin et al., 2020),
contains over 10 millions of drug-like compounds. The
DrugBank (Wishart et al., 2018) is a freely available database that
includes drug information, drug targets, 3D structure and metabolic
pathways. The database contains about 11,000 small compounds.
ChEMBL (Mendez et al., 2019) is an open-source database
developed by the European Bioinformatics Institute (EMBL-EBI)
in Cambridge (United Kingdom). It also contains structures from
the U.S. Food and Drug Administration (FDA). Information about
approved products (from the FDA Orange Book), including dosage
information and administration routes, is also included in the
database. Currently, the database contains about 1.9 million
drug-like compounds. The NuBBE database (Saldívar-González
et al., 2019) is a natural product library created in 2013 that aims
to collect the chemical structural diversity of Brazilian natural

biodiversity, resulting in an extraordinary curated source of
2,223 natural compounds. Finally, the approved drug library used
in this work is a collection of compounds downloaded from Selleck
Chemicals that are ready to be used for HTS. The 3,104 compounds
in this library are approved by different regulatory agencies such as
the FDA or the European Medicines Agency (EMA), among others.

Density distributions relative to the molecular weight, SASA, QP
logPo/w, QP logS, donorHB (HBD) and accptHB (HBA) properties are
reported in Figure 7. As shown, most of the compounds fall within the
range of Lipinski’s rule of Five (that is, less than 500 Da) forMWwith the
MBC andECBLhaving a slightly betterfit among the analyzed databases.
The solvent accessible surface area (SASA) for ECBL, ChEMBL and
ZINC ranges between 400 and 900 Å2. A slightly shifter profile can be
seen for MBC, DrugBank and the Approved drugs library, with SASA
values from 200 to 800 Å2. Regarding NuBBE, the distribution seems to
be an intermediate case compared to the previous ones, covering wider
values from 200 to 1000 Å2 with a maximum population density close to
that of the ECBL or ChEMBL. In the case of hydrogen-bond donor
(donorHB) and acceptor (accptHB) properties, all the libraries apart from
DrugBank, Approved drug library and ChEMBL for HBD, the vast
majority agree with Lipinski’s rule of five and are in the range of
0.0–6.0 for HBD and 2.0–20.0 for HBA. This is likely due to the
presence of small peptidomimetics and complex sugars in the
previously cited libraries. Regarding lipophilicity (QP logPo/w), similar
distributions in the range of −2.5 to 7.5 have been registered for all the
libraries except for DrugBank and Approved drug library that have also
some compounds with QP logPo/w values below −2.5. Finally,
compounds from MBC, ECBL, and ZINC are in the optimal range of
solubility (−6.5 < QP logS <0.5). NuBBE and ChEMBL show a similar
distribution with a small set of compounds with QP logS values lower
than −6.5. However, the remaining compounds show an appropriate
solubility profile. DrugBank and Approved drug library slightly deviate
from the ideal range having a small number of compounds with QP logS
values than 0.5.

FIGURE 6
Most representative new scaffolds from the MBC v.2022 with respect to the MBC v.2016.
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4 Conclusion

The screening of quality-focused libraries could represent a way
to efficiently provide a useful source of probes that help characterize
the protein targets emerging from research studies. In this direction,
efficient synthetic routes, availability, good characterization, suitable
physicochemical and pharmacokinetic properties can really make
the difference since they can contribute to rise the success rate and
shorten the drug discovery process.

We here presented an updated version of our in-house MBC
library which is a unique collection of small molecules with enriched

drug-like properties and chemical diversity. From the first
publication in 2016, the library has been constantly enriched
with new compounds becoming 2.3 times bigger than the
previous version with over 2,500 ready-to-use chemical
compounds. To test its potential impact on drug discovery, the
quality and variability of the chemical structures collected in the new
version of the MBC library has been analyzed by using the QikProp
module of Schrödinger and RDKit. As official partners and active
collaborators of the EU-OPENSCREEN ERIC, we also presented
and discussed the potentialities of the open-access European
Chemical Biology Library (ECBL) that collect data from several

FIGURE 7
Probability density distribution of MW, SASA, QP logPo/w, QP logS, donorHB and accptHB properties for all the analyzed libraries.
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countries in EU. Finally, a wider comparison with other well-known
publicly available libraries has been provided and discussed. Results
of this analysis remark the high quality in terms of structural
diversity and drug-like properties of the MBC and ECBL, making
them suitable reservoirs of hits for drug discovery.
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