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Background: The liver is the major metabolic organ of the human body, and
abnormal metabolism is the main factor influencing hepatocellular carcinoma
(HCC). This study was designed to determine the effect of glutamine metabolism
on HCC heterogeneity and to develop a prognostic evaluator based on the
heterogeneity study of glutamine metabolism within HCC tumors and between
tissues.

Methods: Single-cell transcriptome data were extracted from the
GSE149614 dataset and processed using the Seurat package in R for quality
control of these data. HCC subtypes in the Cancer Genome Atlas and the
GSE14520 dataset were identified via consensus clustering based on glutamine
family amino acid metabolism (GFAAM) process genes. The machine learning
algorithms gradient boosting machine, support vector machine, random forest,
eXtreme gradient boosting, decision trees, and least absolute shrinkage and
selection operator were utilized to develop the prognosis model of
differentially expressed genes among the molecular gene subtypes.

Results: The samples in the GSE149614 dataset included 10 cell types, and there
was no significant difference in the GFAAM pathway. HCCwas classified into three
molecular subtypes according to GFAAM process genes, showing molecular
heterogeneity in prognosis, clinicopathological features, and immune cell
infiltration. C1 showed the worst survival rate and the highest immune score
and immune cell infiltration. A six-genemodel for prognostic and immunotherapy
responses was constructed among subtypes, and the calculated high-risk score
was significantly correlated with poor prognosis, high immune abundance, and a
low response rate of immunotherapy in HCC.

Conclusion: Our discovery of GFAAM-associated marker genes may help to
further decipher the role in HCC occurrence and progression. In particular, this
six-gene prognostic model may serve as a predictor of treatment and prognosis in
HCC patients.
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Introduction

Liver cancer is a malignant tumor with the fastest increasing
mortality and has become the second leading cause of cancer-
induced death (Siegel et al., 2023). The main types of liver cancer
include hepatocellular carcinoma (HCC) and cholangiocarcinoma.
HCC is the most common form of liver cancer, accounting for 90%
of the cases (Llovet et al., 2021). Most HCC cases occur in Asia, and the
main known risk factors relevant toHCC are viruses (chronic hepatitis B
and C), metabolism disorders (diabetes and non-alcoholic fatty liver
disease, or NAFLD), toxicity (alcohol and aflatoxin), and immune
system-related diseases (Chakraborty and Sarkar, 2022). The
United States Food and Drug Administration approved liver cancer
treatment options involving multi-kinase inhibitors (lenvatinib,
regorafenib, ramucirumab, and cabozantinib), immune checkpoint
blockades (ICBs) (pembrolizumab and nivolumab), and combination
therapies, such as atezolizumab along with bevacizumab (Butt and
Baytas, 2023). Although substantial breakthroughs have been made
in systemic treatment, the mortality rate of HCC has remained high
owing to drug resistance and frequent relapse (Chidambaranathan-
Reghupaty et al., 2021; Chen et al., 2023). Individual and intratumoral
heterogeneity greatly affects the recurrence and drug resistance in
patients with HCC (Zhang et al., 2020). Therefore, understanding the
causes, characteristics, and consequences of HCC tumor heterogeneity is
necessary to guide clinical practice and improve survival.

The liver is the main metabolic organ in the human body
(Chakraborty and Sarkar, 2022). Metabolomics and metabolite
profiling of HCC have been in the spotlight for cancer diagnosis,
monitoring, and therapy (Ganesan et al., 2022). Small molecular
metabolites play an important role in biological systems and are
attractive candidates for understanding the HCC phenotype (Wang
et al., 2013). The catabolism, anabolism, and transport of glutamine are

essential for the survival and development of HCC (Altman et al., 2016).
Targeting glutamine metabolism is a promising anti-cancer therapy.
Several inhibitors targeting glutamine metabolism have been created,
such as allosteric inhibitors of kidney-type glutaminase (GLS) and CB-
839 (telaglenastat), which have entered different stages of clinical trials
for cancer treatment (Yang et al., 2021). However, it is noteworthy that
the metabolism of glutamine in cancer is highly heterogeneous. Even in
tumors in specific organs, different cancer subtypes have different
patterns of glutamine metabolism (Cluntun et al., 2017). Therefore,
exploring the glutamine metabolism model will help in the accurate
classification and patient stratification of HCC.

In this study, we identified, for the first time, cellular subtypes of
HCC based on glutamine metabolism-related genes and explored
the heterogeneity of these genes within HCC tumors and among
tissues. In addition, we classified the HCC subtypes according to the
genes in the glutamine metabolic pathway and used six different
machine learning methods to construct a risk evaluator that
explored the relationship between potential factors affecting HCC
prognosis (clinicopathological features, somatic mutations, tumor
microenvironment (TME) indicators, signal pathways, and
indicators of immunotherapy response) and different glutamine
metabolic subtypes of HCC.

Materials and methods

Single-cell RNA sequencing dataset and the
RNA-seq dataset of HCC samples

Sample data from the GSE149614 dataset were extracted from the
GEO database. The dataset included 71,915 single-cell transcriptome
data from four HCC-related tissue types: non-tumor liver (NTL, n = 8),

FIGURE 1
Cell types andGFAAM pathway characteristics of HCC. (A)Cell types are highlighted in a two-dimensional UMAP plot. (B) The proportion of each cell
type in each sample of the GSE149614 dataset. (C) The enrichment score of the GFAAM pathway in nine cell types of four tissues; the size of the dots
corresponded to the GFAAM score; and the color of the dots corresponded to each cell type. (D) Expression of GFAAM process genes in four tissue types.
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primary tumor (PT, n = 10), portal vein tumor thrombus (PVTT, n =
2), and metastatic lymph node (MLN, n = 1). There were three source
databases of RNA-seq data for HCC samples: the Cancer GenomeAtlas
(TCGA) (title = "https://portal.gdc.cancer.gov/, >https://portal.gdc.
cancer.gov/), the Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/), and the HCCDB (http://lifeome.net/database/
hccdb.html). Two HCC cohorts from the GEO database were
GSE14520 and GSE76427. The screening conditions for samples in
each liver cancer dataset were the same; that is, the survival time was
clearly recorded, and the number of days was more than 0 days. Based
on the TCGA dataset, we screened a total of 365 HCC tissues and
50 paracancerous normal tissues for further study. The number of
samples meeting the screening criteria in the GSE14520 and
GSE76427 datasets was 242 and 115, respectively. The dataset whose
ID was HCCDB18 was obtained in HCCDB, and included 21 HCC
samples that met the filtering criteria.

Single-cell RNA sequencing data processing

The single-cell RNA sequencing (scRNA-seq) data in the
GSE149614 dataset was processed using Seurat v3 (Stuart et al., 2019).
The steps included quality control, normalization, scaling, dimension
reduction, clustering, and visualization. Quality control standards
included the number of genes in each cell <6000, the number of
unique molecular identifiers in cells >100, and the distribution ratio of
mitochondrial gene content in cells<15%. The log-normalization function
was specified as the normalization function for all data, and the expression
value of each gene in all cells was also converted to a z-score. The
FindVariableFeatures function (selection.method = “vst”) in Seurat then

selected the 2,000 genes with the highest standardized variance as “highly
variable.” Anchors for reference assembly were calculated using the
FindIntegrationAnchors function, and data were integrated using the
IntegrateData function. Principal component analysis (PCA) was
implemented on highly variable genes. FindNeighbors and
FindClusters functions were produced to implement the shared nearest
neighbor (SNN)modularity optimization-based clustering algorithm. Two
dimensions were projected with Uniform Manifold Approximation and
Projection (UMAP).

Cell type annotation

The cell clusters were annotated manually according to the
cluster gene marker information provided in the CellMarker
database and related literature. The differentially expressed genes
(DEGs) across cell types were identified by setting logfc = 0.5 and
minpct = 0.35 in the FindAllMarker function in Seurat.

Analysis of the performance of the
glutamine metabolic pathway in the
GSE149614 dataset

The “glutamine family amino acid metabolism (GFAAM)” process
gene set was downloaded from the Kyoto Encyclopedia of Genes and
Genomes (KEGG), which comprises genes involved in chemical
reactions and pathways of amino acids of the glutamine family.
Using the single sample gene set enrichment analysis (ssGSEA)
method of the “GSVA” package, GFAAM pathway scores of

FIGURE 2
Three molecular subtypes for HCC were identified according to the expression of GFAAM process genes. (A) CDF curves for different subtype
numbers in the TCGA-LIHC cohort. (B) Sample clustering for the TCGA-LIHC cohort under k = 3. (C) Threemolecular subtypes in the TCGA-LIHC cohort
are shown on a two-dimensional scatter plot based on PCA. (D) The expression of genes in the GFAAM pathway in the three molecular subtypes of the
TCGA-LIHC cohort. (E)CDF curves for different subtype numbers in theGSE14520 database. (F) Sample clustering for the GSE14520 database under
k = 3. (G) Three clusters in the GSE14520 database are displayed on a two-dimensional scatter plot based on PCA. (H) The heatmap shows the expression
of genes in the GFAAM pathway in the three molecular clusters of the GSE14520 database.
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different cell types in each sample of the GSE149614 dataset were
calculated and visualized as a bubble diagram.

Consensus clustering analysis

ConsensusClusterPlus was used to cluster the samples in the
TCGA-LIHC cohort. The input was a matrix of genes in the GFAAM
pathways expressed in the TCGA-LIHC cohort. The clustering
algorithm was selected as “pam,” the distance was “pearson,” the
maximum evaluated k was 10, the number of iterations was 500, and
the proportion of sampling in each iteration was 80%. The optimal
clustering number was judged by the cumulative distribution function
(CDF) curve and verified by PCA.

Identification, expression analysis, and
correlation with biological signaling
pathways of mutated GFAAM genes in
molecular clusters of HCC

The data on single-nucleotide variation (SNV) and copy number
variation (CNV) were extracted from TCGA. The GFAAM gene
mutation in each molecular cluster was analyzed by the “maftools”
package, and the expression of the mutated GFAAM gene was
analyzed by the Kruskal–Wallis test. The gene set of the KEGG
pathway was searched from GSEA (Subramanian et al., 2005), and
ssGSEA was implemented with the “GSVA” package. The
correlation between the enrichment score of the KEGG pathway

and the expression of GFAAM mutant genes in each sample was
analyzed by the Spearman correlation analysis.

Analysis of the matrix content and immune
infiltration in the TME

The matrix and immune contents in the TME were quantified using
the “ESTIMATE” package by calculating the ssGSEA score of the two
gene signatures (i.e., stromal score and immune score). At present, the
algorithms developed for immune infiltration estimation are divided into
two categories: gene signature-based algorithms and deconvolution-based
algorithms (Li et al., 2020). CIBERSORT (Newman et al., 2015) is an
algorithmbased ondeconvolution, which calculates the relative content of
22 infiltrating immune cells in eachmolecule cluster by giving a leukocyte
gene signature matrix. The other deconvolution method, TIMER,
quantified the abundance of six tumor-infiltrating immune cells in
HCC. Two “single-sample” algorithms, microenvironment cell
population (MCP) counter (Becht et al., 2016) and ssGSEA, also
quantified the infiltration levels of a variety of matrix and immune cells.

DEG identification in clusters and the
construction of a risk model based on
machine learning algorithms

DEGs between subtypes were screened by the criteria of log2 (fold
change) | > 1 and FDR <0.05 in the “limma” package. The HCC
prognostic-related genes in DEGs were identified using the “survival”

FIGURE 3
Clinicopathological characteristics of three molecular subtypes related to the GFAAM pathway. (A) The Kaplan–Meier survival curve of the three molecular
subgroups in theTCGA-LIHCcohort. (B)Differences in survival rates among the threemolecular subgroups in theGSE14520dataset. (C–H)Theproportionof the
three molecular subtypes was calculated according to the clinical characteristics of sex (C), age (D), T stage (E), survival status (F), AJCC stage (G), and grade (H).
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package in R with p < 0.0001 as the threshold. Six machine learning
algorithms, namely, gradient boosting machine (GBM), support vector
machine (SVM), random forest, eXtreme gradient boosting (XGBoost),
decision tree, and least absolute shrinkage and selection operator
(LASSO), were used to develop the prognosis model. GBM is a
boosting-based learning algorithm where each basic learner pays
attention to the residual of the previous learner and repeats the
process until the error is less than the predetermined threshold
(Friedman, 2000; Shojaie et al., 2022). SVM is a two-classification
model. It is unique as it runs in feature space with increasing dimensions
to search the hyperplane of linearly separated positive and negative
training data (Rodriguez-Perez and Bajorath, 2022). Random forest is a
regression tree technique that uses bootstrap aggregation and
randomization of prediction factors to achieve a high degree of
prediction accuracy (Rigatti, 2017). XGBoost is an optimized GBM
that has the remarkable characteristics of efficiently and flexibly dealing
with missing data and assembling weak prediction models to build
accurate prediction models (Chen and Guestrin, 2016). A decision tree
can model nonlinear effects in the algorithmic relationship of
combinatorial risk factors to produce a quantitative percentage of
sensitivity to mortality (Deist et al., 2018). LASSO is a regression
statistical method that enjoys some of the favorable characteristics of

both subset selection and ridge regression and has been frequently used
in the construction of prognostic risk models (Tibshirani, 2011). The
genes involved in all six machine learning models were screened by
Venn diagrams, and the constituent factors of the most concise risk
model were found by stepwise regression. Multivariate Cox regression
analysis gave the risk coefficient of each component gene in the risk
model, and after multiplying with the expression, the risk score of each
sample was obtained.

Prediction of immunotherapy response by
Tumor Immune Dysfunction and Exclusion

The Tumor Immune Dysfunction and Exclusion (TIDE) tool
provides a TIDE signature, trained from treatment-naive tumor data
that can predict immune checkpoint blockade (ICB) clinical
response based on pre-treatment tumor profiles (Jiang et al.,
2018). Higher tumor TIDE predictive scores were associated with
worse ICB responses. We calculated the TIDE score for each sample
in the TCGA-LIHC cohort in the TIDE web application and tested
for differences among the molecular clusters and between the risk
groups, respectively.

FIGURE 4
Mutant GFAAM process genes and their expression and influence on signaling pathways for three molecular subtypes. (A) Mutation of GFAAM
process genes in the three molecular subtypes. (B) The mountain map shows the expression trend of nine mutated GFAAM process genes in the three
molecular subgroups. (C) Spearman correlation analysis between the pathways shows significant enrichment differences among the three molecular
subtypes and mutated GFAAM process genes.
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Tissue microarray cohort

HCC tissue microarray (TMA) was performed as described
previously (Liu et al., 2023).

Cell lines and cell culture

Six HCC cell lines, e.g., MHCC97, HepG2, Hep3B, SMMC7721,
HCCLM3, and Huh7, in addition to the normal-type hepatocyte
L02 cell line, were purchased from the Shanghai Cell Bank of the
Chinese Academy of Sciences (Shanghai, China) and cultured under
routine conditions.

Statistical analysis

All statistical analyses and tests were implemented in the R
program. The Kruskal–Wallis test was performed to compare the
subtype-related variables. A Student’s t-test and a Wilcoxon rank-
sum test were used to compare variable differences between the two
risk groups. Kaplan–Meier survival analyses were tested by log-rank.
The accuracy of the risk model was judged by the receiver operating
characteristic (ROC) curve drawn by the “timeROC” package. All
statistical tests were two-sided, and statistical significance was set
at 0.05.

Results

Cell types and GFAAM pathways distinctive
of HCC

The results of preprocessing and quality control of scRNA-seq
data are presented in Supplementary Figure S1. High-quality cells
were obtained for each sample, totaling 67,904 (Supplementary
Figure S1A). By integrating all high-quality cells, we detected
batch effects between the samples (Supplementary Figure S1B).
To ensure the maximum extent of data recombination in
different samples, batch effect correction was performed
(Supplementary Figure S1C). For PCA dimensionality reduction,
ElbowPlot was adopted to select all PC axes before the point with a
smooth slope, where each axis was roughly distinguishable at PC 40
(Supplementary Figure S1D). Cell clustering revealed 11 cell
clusters, and UMAP visualized the distribution of these clusters
(Supplementary Figure S1E). Each cluster was assigned a cell-type
identity according to cell-specific markers. We concluded that
cluster 0 was a T cell, where CD3D, CD3E, and CD3G were
highly expressed; GPC3, CD24, and MDK were highly expressed
in cluster 1, which was an HCC cell; and cluster 2 was a macrophage,
where CD163 and CD68 were highly expressed. There was a highly
specific expression of PECAM1 in cluster 4, which was an
endothelial cell. Cluster 5 was a B cell with a highly specific
expression of CD19 and CD79A. MKI67 was highly expressed in
cluster 6, which was a proliferating cell. Cluster 7 comprised a
fibroblast, which showed a highly specific expression of ACTA2,
PDGFRB, and NOTCH3. Cluster 9 had a high expression of
FCER1A and LILRA4, which was a pDC. Cluster 10 consisted of

a mast cell with a highly specific expression of TPSAB1 and CPA3.
As the highly specific expression of typical marker genes was not
detected in clusters 3 and 8, the cell types of these two clusters could
not be determined (Supplementary Figure S1F). The distribution of
each cell type is represented in the UMAP diagram (Figure 1A). The
proportion of each cell type in each sample was evaluated. HCC and
macrophages accounted for the highest proportion of MLN
organizations. T cells accounted for the highest proportion in
NTL organizations. Among the two PVTT organizations, the
highest proportion was accounted for by HCC in one and
macrophages in the other. HCC, macrophages, and T cells
constituted the main cell types in the 10 PT tissues (Figure 1B).
The enrichment score of the GFAAM pathway was the highest in
HCC and proliferating cells of four types of tissues; however, there
was no significant difference among the other seven types of cells
(Figure 1C). The expression patterns and levels of GFAAM process
genes varied across the four tissue types, indicating the tissue-
specific heterogeneity of GFAAM molecules (Figure 1D).

Three molecular subtypes of HCC were
identified according to the expression of
GFAAM process genes

Because of the heterogeneity of GFAAM molecules in HCC, we
clustered the samples from the TCGA and the GSE14520 datasets
according to the GFAAM process gene expression. The clustering
results of the two datasets were similar, and the CDF curves of k =
3 showed continuity and stability; therefore, HCC was divided into
three molecular subtypes (Figures 2A, B; Figures 2E, F). These three
clusters were presented on a two-dimensional scatter plot based on
PCA and showed different distributions (Figures 2C, G). Genes in
the GFAAM pathway showed different expression patterns among
the three molecular subtypes. GFAAM process genes lacking
expression in C1 were overexpressed in C3, whereas those
overexpressed in C1 were significantly inhibited in C3
(Figures 2D, H).

Clinicopathological characteristics of three
molecular subtypes related to the GFAAM
pathway

Based on TCGA-LIHC and the GSE14520 datasets, the
differences in survival time among the three molecular subtypes
were analyzed. In both datasets, the survival rates of the three
molecular subgroups showed significant differences, and the
trend was always C1 < C2 < C3 (Figures 3A, B). The proportion
of the three molecular subtypes was calculated according to clinical
characteristics, such as sex, age, T stage, survival state, AJCC stage,
and grade, and it was found that the three subtypes accounted for
different proportions of these clinical features, showing significant
differences. There was a significant increase in the proportion of
C1 and a significant decrease in the proportion of C2 in female
patients compared to that in male patients. T2–T4 showed a
significantly increased ratio of C1 relative to T1. The ratio of
C1 in stages II and III was also significantly higher than that in
stage I. C1 accounted for a significantly higher proportion in
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age ≤60 years, death, and G3–G4 samples than in age >60 years,
survival, and G1–G2 samples (Figures 3C–H).

Mutant GFAAM process genes and their
expression and influence on signaling
pathways for three molecular subtypes

The mutations of GFAAM process genes in the three molecular
subtypes were analyzed, and nine GFAAM process gene mutations
were detected. PFAS was the GFAAM process gene with the highest
mutation rate, with a mutation rate of 20%; the mutation rates of
OAT and ATCAYwere 9% and 8%, respectively. The mainmutation
mode of the three genes with the highest mutation rate in the three
molecular subgroups was frameshift deletion (Figure 4A). For the
nine mutated GFAAM process genes, we analyzed their expression
trend in the three molecular subgroups. In the violin map, we
observed that the expression level of PFAS and OAT in C3 and

C2 was higher than that in C1 (Figure 4B). The pathways that
showed significant differences in enrichment scores among the three
molecular subtypes included the Wnt signaling pathway, oxidative
phosphorylation, pyruvate metabolism, cysteine, and methionine
metabolism, the Nod-like receptor signaling pathway, ECM receptor
interaction, DNA replication, β alanine metabolism, the MAPK
signaling pathway, the TGF β signaling pathway, pathways in
cancer, and other pathways. The expression of PFAS in mutated
GFAAM process genes was positively correlated with the Wnt
signaling pathway in these pathways and negatively correlated
with oxidative phosphorylation. The expression of OAT was also
positively connected with the Wnt signaling pathway and negatively
connected with pyruvate metabolism. The expression of CPS1 was
positively related to cysteine and methionine metabolism and
negatively relevant to the Nod-like receptor signaling pathway.
The pathways with the most significant positive and negative
correlations with NOS3 expression were ECM receptor
interaction and DNA replication, respectively. The pathways

FIGURE 5
Stromal and immune status of three molecular subtypes related to the GFAAM pathway. (A) The differences in stromal score, immune score, and
ESTIMATE score among the three subgroups. (B) The content of immune cells in the three molecular subgroups calculated by CIBERSORT. (C) Statistical
differences IN the scores of 28 immune cells among the three molecular subgroups. (D) Differences in the abundance of stroma and immune cells
concluded by MCP-counter among the three molecular subgroups. (E) Six immune cell scores quantified by TIMER for the three molecular
subgroups. * indicates significant differences in immune scores among the subtypes; * is p < 0.05, ** is p < 0.01, *** is p < 0.001, and **** is p < 0.0001.
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with the highest positive and negative correlations with LGSM
expression were β alanine metabolism and the MAPK signaling
pathway, respectively. There was a significant positive
correlation between the expression of the TGF β signaling
pathway and NOS2 and between cancer pathways and
SLC25A12 (Figure 4C).

Stromal and immune status of three
molecular subtypes related to the GFAAM
pathway

The stromal and immune status of the three GFAAM pathway-
relatedmolecular subtypes were characterized based on their expression

FIGURE 6
Construction of a risk model using six machine learning algorithms and verification in verification cohorts. (A) Venn diagram presents HCC
prognosis-related genes that were involved in all six machine learningmodels. (B) Prognostic prediction and performance evaluation of the risk evaluator
in the TCGA-LIHC dataset. (C) The relationship between the risk evaluator and sample survival and THE ROC curve in the HCCDB18 dataset. (D)
Kaplan–Meier curve and ROC curve of risk score in the GSE14520 dataset. (E) The protein level of six evaluators in HCC cell lines and normal liver
cells determined byWestern blot. (F) Representative images of IHC staining of the risk evaluator in HCC TMA cohorts (left). The IHC score of six proteins in
HCC tissues and adjacent normal tissues was further quantified (right). * is p < 0.05, ** is p < 0.01, *** is p < 0.001, and **** is p < 0.0001.
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profiles in the TCGA-LIHC cohort. The stromal and immune scores
quantified by ESTIMATE were the lowest in C2 and significantly lower
than in C1 and C3 (Figure 5A). Immune cell infiltration was calculated
according to the various algorithms provided by the R program. Among
the immune cells calculated by CIBERSORT, CD8+ T cells, resting
memory CD4+ T cells, regulatory T cells (Tregs), activated NK cells,
M0 macrophages, M1 andM2macrophages, and resting mast cells had

a high content in the three molecular subtypes. Among them, the
contents of resting memory CD4+ T cells, M0 macrophages, M1 and
M2 macrophages, and resting mast cells significantly differed among
the three molecular subgroups. The contents of resting memory CD4+

T cells, activated NK cells, M1 macrophages, M2 macrophages, and
resting mast cells in C3 were significantly higher than those in C1. The
contents of Tregs and M0 macrophages in C1 were significantly higher

FIGURE 7
Characteristics of potential factors affecting the prognosis of HCC. (A) The distribution heatmap of clinicopathological features in high-risk and low-
risk groups of the TCGA-LIHC dataset. (B) The difference in tumor mutation burden between the high-risk and low-risk groups. (C) The heatmap
summarizes the immune microenvironment indexes in the high-risk and low-risk groups. (D) The signaling pathway shows significant enrichment
differences between the high-risk and low-risk groups.
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than those in C3 (Figure 5B). The infiltration score trend of most of the
28 immune cells assessed using ssGSEA in the three molecular subtypes
was consistent with the performance of their immune score assessed by
ESTIMATE, among themmultiple types of B-cell subsets (activated and
immature B cells), T-cell subsets (activated CD4+ T, central memory
CD4+ T, central memory CD8+ T, effector memory CD4+ T, regulatory
T, type 1 helper, type 2 helper, type 17 helper, and natural killer T cells),

activated dendritic cell, CD56 dim natural killer cell, macrophage, mast
cell, myeloid-derived suppressor cell (MDSC), monocyte, natural killer
cell, neutrophil, and plasmacytoid dendritic cell (Figure 5C). The
stromal and immune cells evaluated by MCP-counter and TIMER
also showed significant differences among the three molecular
subgroups, and the infiltration abundance in C2 and C3 was
significantly lower than that in C1 (Figures 5D, E).

FIGURE 8
Indicators related to the immunotherapy response of GFAAM pathway-related molecular subtypes and risk groups. (A) TIDE score differences
amongmolecular subtypes related to theGFAAM pathway in the TCGA-LIHC cohort. (B) The comparison of TIDE scores between the high-risk group and
the low-risk group defined by the risk evaluator in the TCGA-LIHC cohort. (C) The proportion of each GFAAM pathway-related molecular subtype in the
ICB treatment response and non-response groups. (D) The proportion of high-risk and low-risk samples in the ICB treatment response and non-
response groups. (E) Differences in the expression of immune checkpoint molecules among molecular subtypes related to the GFAAM pathway. (F)
Comparison of immune checkpoint molecular expression between the high-risk and low-risk groups. Statistically significant differences are marked by *,
* is p < 0.05, ** is p < 0.01, *** is p < 0.001, and **** is p < 0.0001.
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Construction of a risk model using six
machine learning algorithms and verification
in verification cohorts

Although HCC has been divided into three subgroups according
to GFAAM process genes, it does not quantify the state of the
individual. Therefore, we constructed a risk model based on the
characteristic genes of the GFAAM pathway-related subtypes, that
is, DEGs, among the three subgroups. By identifying the DEGs
between C1, C2, and C3 and the DEGs between C2 and C3, a total of
2,250 characteristic genes related to the GFAAM pathway were
obtained (Supplementary Figure S2). Among the 2,250 genes,
211 were prognostic genes that met the screening criteria of the
univariate COX regression analysis. Six machine learning algorithms
were used to verify 211 genes, and 30 genes were found to be
significant in all the machine learning models (Figure 6A). Using
stepped-regression analysis, six genes were obtained from the
30 genes and used to construct the risk evaluator: Risk
Score = −0.231×PLXNA1+0.192×MARCKSL1+0.318×IQGAP3+
0.141×PFN2-0.102×PON1+0.157×TKT.

The risk evaluator calculated the risk score of each sample in the
TCGA-LIHC (training set), HCCDB18 (validation set 1), and
GSE14520 datasets (validation set 2). After standardization by
z-score, the high- and low-risk groups were separated by linking
the risk score to survival data to determine the prognosis of the
sample. In the TCGA-LIHC dataset, high-risk samples had
significant survival advantages over low-risk samples. The ROC
curve showed that the risk evaluator effectively predicted the
survival of patients in the TCGA-LIHC dataset, with the 1-year
area under the curve (AUC) = 0.79, 3-year AUC = 0.69, and 5-year
AUC = 0.71 (Figure 6B). Similarly, in verification sets 1 and 2, the
Kaplan–Meier curves of high- and low-risk samples were
significantly separated, and the survival results of high-risk
samples were significantly better than those of low-risk samples.
The AUC value of the ROC curve for the HCCDB18 cohort
(determined annually) was high (>0.7) for 1–4 years. The ROC
curve for the GSE14520 dataset showed effective predictive ability at
1, 3, and 5 years (Figures 6C, D). Furthermore, we evaluated the
protein expression level of the abovementioned risk evaluator in
several HCC cells (Figure 6E) and validated it in a relatively large
sample of HCC tissue microarray (Figure 6F). The results showed
that the expressions of TAK and PFN2 were markedly upregulated,
whereas MARCKSL1 expression was downregulated in HCC tissues
compared with that in surrounding non-tumorous tissues,
indicating the promising prognostic value of the abovementioned
model.

Characteristics of potential factors affecting
the prognosis of HCC

The TCGA-LIHC data were employed to explore the differences in
potential factors affecting the prognosis of HCC between the high- and
low-risk groups, which included clinicopathological features, somatic
mutations, TME index, and signaling pathways. There were significant
differences in the distribution of molecular subtypes related to the
GFAAM pathway and the proportion of grade, AJCC stage, and
survival state between the high- and low-risk groups. In the high-

risk group, the dominant GFAAM pathway-related molecular subtype
was C1, the grade was G3, the AJCC stage was stage III, and the
proportion of deceased patients was also high. In the low-risk group, the
dominant molecular subtypes of the GFAAM pathway, grade, and
AJCC stage were C3, G2, and stage Ⅰ, respectively, and the proportion in
samples from live patients was much higher than that from deceased
patients (Figure 7A). As shown in Figure 7B, the high-risk group had a
higher tumor mutation load relative to the low-risk group, but the
difference was not significant (Figure 7B). In the heatmap representing
the immune landscape, immune indicators included the immune score,
indicating the level of immune cell infiltration was higher in the high-
risk group (Figure 7C). In terms of enriched pathway scores, many
immune-regulatory and carcinogenic signaling pathways were
significantly upregulated in the high-risk group compared with those
in the low-risk group, whereas a considerable number of metabolic
pathways were significantly inhibited in the high-risk group compared
with those in the low-risk group (Figure 7D).

Indicators related to the immunotherapy
response of GFAAM pathway-related
molecular subtypes and risk groups

Understanding the potential indicators that affect ICB treatment
response can help select patients who can benefit from it. For the
samples in the TCGA-LIHC cohort, the TIDE scores of C2 and
C3 were significantly lower than those of C1, and the response rates
of C2 and C3 to ICB therapy were lower than those of C1 (Figures
8A, C). The TIDE score of the low-risk group, as defined by the risk
evaluator, was significantly lower than that of the high-risk group,
and the response rate of the low-risk group to ICB treatment was
higher than that of the high-risk group (Figures 8B, D). The TIDE
score, response rate of ICB treatment, and expression of immune
checkpoint molecules (another important indicator of ICB
treatment response) were compared between molecular subtypes
and risk groups. Numerous immune checkpoint molecules showed
significantly higher expression levels in C1 than in C2 or C3
(Figure 8E). The levels of most immune checkpoint molecules in
the high-risk group were significantly higher than those in the low-
risk group (Figure 8F). In terms of the abovementioned indicators
related to ICB therapy, C1 was the least suitable for ICB therapy
among the three GFAAM pathway-related molecular subgroups.
Moreover, the potential effect of ICB therapy in the high-risk group
was not as beneficial as that in the low-risk group.

Discussion

The liver is a metabolic center with a unique immunosuppressive
microenvironment (Jenne and Kubes, 2013; Scagliola et al., 2023).
Metabolic disorders are considered an important driving force in the
pathogenesis of HCC, leading to profound changes in the TME (Leone
and Powell, 2020; Chen et al., 2023). Glutamine is the primary substrate
that supports bioenergetics and biosynthesis activity in cancer cells and
provides them with supplementary energy (Delgir et al., 2021). Increased
glutamine catabolism is one of the critical metabolic features of cancer
cells (Du et al., 2022), whose fate varieswith a range of parameters, such as
their tissue of origin, the genetic aberration that drives them, and theTME
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(Cluntun et al., 2017). There are few studies simultaneously focusing on
glutamine metabolism, TME, cancer tissue subtypes, and related genetic
mutation disturbances, which is a moremeaningful research direction. In
this study, we first identified 10 cell types in HCC. The overall level of the
GFAAMpathway did not show significant differences among these types
of cells but showed significant heterogeneity among different HCC tissue
types. Therefore, we classified HCC molecular subtypes according to the
genes in the GFAAM pathway and simultaneously studied the
clinicopathological characteristics, GFAAM pathway gene mutations,
and TME of each subtype. We also used the newly obtained
molecular typing to develop marker combinations (based on machine
learning) to evaluate the prognosis, mutation pattern, TME, and response
to the ICB treatment of HCC.

In the molecular classification of HCC, we identified three
molecular subtypes related to the GFAAM pathway: C1, C2, and
C3. These subtypes have great heterogeneity, showing different
clinicopathological features, GFAAM process gene mutations, and
TME features. C1 had the worst prognosis; patients aged 60 years
and below; middle-, late-, and high-grade samples; and deceased
patients. C1 also showed higher immune scores for B, T, CD4+ T,
and CD8 + T cells, macrophages, MDSC, Treg cells, dendritic cells, and
fibroblasts than C2 and C3. Cytotoxic CD8+ T, CD4+ T, and NK cells
work together to maintain immune surveillance, whereas the abundant
immune cells in HCC, such as MDSC, Tregs, and tumor-associated
macrophages, help the immune evasion to accelerate tumor progression
(Chen et al., 2023). Ma et al. (2022) showed that reprogramming of
glutaminemetabolism plays a key role in the survival of immune cells in
the TME, largely due to the fact that there is competition for glutamine
uptake between these cells in the TME (31). It has been shown that in
clear cell renal cell carcinoma, competitive depletion of glutamine by
tumor cells leads to local deprivation of extracellular glutamine, which
in turn activates the production of HIF-1α and induces cytokine
secretion from tumor-infiltrating macrophages. In addition, in triple-
negative breast cancer, tumor cells have been found to competitively
uptake glutamine from the TME, which in turn affects glutamine
availability to tumor-infiltrating T lymphocytes and influences their
antitumor immune response (Fu et al., 2019). These results suggest that
in the TME of HCC, abnormal metabolism of glutamine directly affects
the degree of infiltration of tumor immune cells, which in turn affects
the antitumor activity of immune cells.

Our results agree with the development trend of cancer because
the tumor-antagonistic immune cells within the TME tend to target
and kill cancer cells in the early stage of tumorigenesis; however, as
cancer continues to develop, cancer cells eventually escape immune
surveillance. In the immune escape phase, tumor cells continue to
grow and proliferate uncontrolled and are no longer restricted by
host immunity (Gajewski et al., 2013; Vinay et al., 2015). In this
study, there were more mid-late and high-grade samples in C1,
indicating a higher malignant degree where immune escape
occurred. This was further confirmed by the results of the TIDE
analysis. C1 showed a significantly higher TIDE score compared to
C2 and C3, which indicated a higher immune escape potential.

Models of specific cancer diagnoses and prognostic indicators
constructed from subtype studies have been widely used in clinical
research, usually relying on machine learning algorithms (Zhao et al.,
2019). In this study, we used six machine learning algorithms to
construct a model of prognosis-related DEGs between subtypes,
identified 30 genes involved in each machine learning model, and

captured six of them to develop a risk evaluator. Each gene in the risk
evaluator, PLXNA1 (Ho, 1988), MARCKSL1 (Egeland et al., 2019),
IQGAP3 (Leone et al., 2021), PFN2 (Cui et al., 2016), PON1 (Bobin-
Dubigeon et al., 2012), and TAK (Li et al., 2022), has been reported to be
associated with the prognosis or progression of cancer. Here, the risk
evaluator developed using these six genes was associated with potential
factors affecting the prognosis of HCC, such as clinicopathological
features, somatic mutations, tumor microenvironment indicators, and
signaling pathways. These features had significant predictive value for
the prognosis of HCC and the response to ICB treatment. However,
some limitations should also be noted. The data for our study were
extracted only from the TCGA, GEO, and HCCDB18 databases, which
are only at the level of bioinformatics. Further in vivo and in vitro
validation tests are needed to verify that our prognostic model is
excellent for prediction. Furthermore, the molecular mechanisms
involved in glutamine metabolism in HCC still require more in-
depth studies.

In conclusion, we identified 10 cell types and three GFAAM
pathway-related molecular subtypes with clinical and molecular
heterogeneity in HCC and constructed a model for the
prognostic prediction of immunotherapeutic response among the
subtypes. Our study offers new perspectives on the use of glutamine
metabolism in clinical research on HCC.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by the First
Affiliated Hospital of Zhengzhou University. The studies were
conducted in accordance with local legislation and institutional
requirements. Written informed consent for participation was
not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation
and institutional requirements.

Author contributions

YY and JB designed the study. YY collected and analyzed the
data. JB drafted the manuscript. YY and JB interpreted the data. JB
revised and edited the manuscript. All authors contributed to the
article and approved the submitted version.

Funding

This work was supported by grants from the 2019 Henan
Province Medical Science and Technology Research Plan Joint
Construction Project (LHGJ20190244 and 202102310058) and
the National Natural Science Foundation of China
(82002626 and 82002552).

Frontiers in Pharmacology frontiersin.org12

Bao and Yu 10.3389/fphar.2023.1241677

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1241677


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1241677/
full#supplementary-material

References

Altman, B. J., Stine, Z. E., and Dang, C. V. (2016). From krebs to clinic: glutamine
metabolism to cancer therapy. Nat. Rev. Cancer 16 (10), 749–834. doi:10.1038/nrc.
2016.114

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al.
(2016). Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol. 17 (1), 218. doi:10.1186/s13059-
016-1070-5

Bobin-Dubigeon, C., Jaffre, I., Joalland, M. P., Classe, J. M., Campone, M., Herve, M.,
et al. (2012). Paraoxonase 1 (PON1) as a marker of short term death in breast cancer
recurrence. Clin. Biochem. 45 (16-17), 1503–1505. doi:10.1016/j.clinbiochem.2012.
05.021

Butt, N. U., and Baytas, S. N. (2023). Advancements in hepatocellular carcinoma:
potential preclinical drugs and their future. Curr. Pharm. Des. 29 (1), 2–14. doi:10.2174/
1381612829666221216114350

Chakraborty, E., and Sarkar, D. (2022). Emerging therapies for hepatocellular
carcinoma (HCC). Cancers (Basel). 14 (11), 2798. doi:10.3390/cancers14112798

Chen, C., Wang, Z., Ding, Y., and Qin, Y. (2023). Tumor microenvironment-
mediated immune evasion in hepatocellular carcinoma. Front. Immunol. 14,
1133308. doi:10.3389/fimmu.2023.1133308

Chen, T., and Guestrin, C. (2016). XGBoost: a scalable tree boosting system. arXiv.

Chidambaranathan-Reghupaty, S., Fisher, P. B., and Sarkar, D. (2021). Hepatocellular
carcinoma (HCC): epidemiology, etiology andmolecular classification.Adv. Cancer Res.
149, 1–61. doi:10.1016/bs.acr.2020.10.001

Cluntun, A. A., Lukey, M. J., Cerione, R. A., and Locasale, J. W. (2017). Glutamine
metabolism in cancer: understanding the heterogeneity. Trends Cancer 3 (3), 169–180.
doi:10.1016/j.trecan.2017.01.005

Cui, X. B., Zhang, S. M., Xu, Y. X., Dang, H. W., Liu, C. X., Wang, L. H., et al. (2016).
PFN2, a novel marker of unfavorable prognosis, is a potential therapeutic target
involved in esophageal squamous cell carcinoma. J. Transl. Med. 14 (1), 137. doi:10.
1186/s12967-016-0884-y

Deist, T. M., Dankers, F., Valdes, G., Wijsman, R., Hsu, I. C., Oberije, C., et al. (2018).
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an
empirical comparison of classifiers. Med. Phys. 45 (7), 3449–3459. doi:10.1002/mp.
12967

Delgir, S., Bastami, M., Ilkhani, K., Safi, A., Seif, F., and Alivand, M. R. (2021).
The pathways related to glutamine metabolism, glutamine inhibitors and their
implication for improving the efficiency of chemotherapy in triple-negative breast
cancer. Mutat. Res. Rev. Mutat. Res. 787, 108366. doi:10.1016/j.mrrev.2021.
108366

Du, D., Liu, C., Qin, M., Zhang, X., Xi, T., Yuan, S., et al. (2022). Metabolic
dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta
Pharm. Sin. B 12 (2), 558–580. doi:10.1016/j.apsb.2021.09.019

Egeland, N. G., Austdal, M., van Diermen-Hidle, B., Rewcastle, E., Gudlaugsson, E. G.,
Baak, J. P. A., et al. (2019). Validation study of MARCKSL1 as a prognostic factor in
lymph node-negative breast cancer patients. PLoS One 14 (3), e0212527. doi:10.1371/
journal.pone.0212527

Friedman, J. H. (2000). Greedy function approximation: a gradient boosting machine.
Ann. Statistics 29 (5). doi:10.1214/aos/1013203451

Fu, Q., Xu, L., Wang, Y., Jiang, Q., Liu, Z., Zhang, J., et al. (2019). Tumor-
associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine
addiction with immune evasion. Eur. Urol. 75 (5), 752–763. doi:10.1016/j.eururo.
2018.09.030

Gajewski, T. F., Schreiber, H., and Fu, Y. .X. (2013). Innate and adaptive immune cells
in the tumor microenvironment. Nat. Immunol. 14 (10), 1014–1022. doi:10.1038/ni.
2703

Ganesan, R., Yoon, S. J., and Suk, K. T. (2022). Microbiome and metabolomics in
liver cancer: scientific technology. Int. J. Mol. Sci. 24 (1), 537. doi:10.3390/
ijms24010537

Ho, D. D. (1988). Biology of the human immunodeficiency virus. Kansenshogaku
Zasshi 62, 287–295.

Jenne, C. N., and Kubes, P. (2013). Immune surveillance by the liver. Nat. Immunol.
14 (10), 996–1006. doi:10.1038/ni.2691

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10),
1550–1558. doi:10.1038/s41591-018-0136-1

Leone, M., Cazorla-Vazquez, S., Ferrazzi, F., Wiederstein, J. L., Grundl, M.,
Weinstock, G., et al. (2021). IQGAP3, a YAP target, is required for proper cell-cycle
progression and genome stability. Mol. Cancer Res. 19 (10), 1712–1726. doi:10.1158/
1541-7786.MCR-20-0639

Leone, R. D., and Powell, J. D. (2020). Metabolism of immune cells in cancer.Nat. Rev.
Cancer 20 (9), 516–531. doi:10.1038/s41568-020-0273-y

Li, M., Zhao, X., Yong, H., Xu, J., Qu, P., Qiao, S., et al. (2022). Transketolase promotes
colorectal cancer metastasis through regulating AKT phosphorylation. Cell. Death Dis.
13 (2), 99. doi:10.1038/s41419-022-04575-5

Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., et al. (2020). TIMER2.0 for analysis
of tumor-infiltrating immune cells. Nucleic Acids Res. 48 (W1), W509-W514–W14.
doi:10.1093/nar/gkaa407

Liu, L., Hu, Q., Zhang, Y., Sun, X., Sun, R., and Ren, Z. (2023). Classificationmolecular
subtypes of hepatocellular carcinoma based on PRMT-related genes. Front. Pharmacol.
14, 1145408. doi:10.3389/fphar.2023.1145408

Llovet, J. M., Kelley, R. K., Villanueva, A., Singal, A. G., Pikarsky, E., Roayaie, S., et al.
(2021). Hepatocellular carcinoma.Nat. Rev. Dis. Prim. 7 (1), 6. doi:10.1038/s41572-020-
00240-3

Ma, G., Zhang, Z., Li, P., Zhang, Z., Zeng, M., Liang, Z., et al. (2022). Reprogramming
of glutamine metabolism and its impact on immune response in the tumor
microenvironment. Cell. Commun. Signal. CCS 20 (1), 114. doi:10.1186/s12964-022-
00909-0

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015).
Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 (5),
453–457. doi:10.1038/nmeth.3337

Rigatti, S. J. (2017). Random forest. J. Insur Med. 47 (1), 31–39. doi:10.17849/insm-
47-01-31-39.1

Rodriguez-Perez, R., and Bajorath, J. (2022). Evolution of support vector machine and
regression modeling in chemoinformatics and drug discovery. J. Comput. Aided Mol.
Des. 36 (5), 355–362. doi:10.1007/s10822-022-00442-9

Scagliola, A., Miluzio, A., and Biffo, S. (2023). Translational control of metabolism
and cell cycle progression in hepatocellular carcinoma. Int. J. Mol. Sci. 24 (5), 4885.
doi:10.3390/ijms24054885

Shojaie, M., Cabrerizo, M., DeKosky, S. T., Vaillancourt, D. E., Loewenstein, D.,
Duara, R., et al. (2022). A transfer learning approach based on gradient boosting
machine for diagnosis of Alzheimer’s disease. Front. Aging Neurosci. 14, 966883. doi:10.
3389/fnagi.2022.966883

Siegel, R. L., Miller, K. D., Wagle, N. S., and Jemal, A. (2023). Cancer statistics, 2023.
CA Cancer J. Clin. 73 (1), 17–48. doi:10.3322/caac.21763

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., et al.
(2019). Comprehensive integration of single-cell data. Cell. 177 (7), 1888–1902. doi:10.
1016/j.cell.2019.05.031

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M.
A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for

Frontiers in Pharmacology frontiersin.org13

Bao and Yu 10.3389/fphar.2023.1241677

https://www.frontiersin.org/articles/10.3389/fphar.2023.1241677/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1241677/full#supplementary-material
https://doi.org/10.1038/nrc.2016.114
https://doi.org/10.1038/nrc.2016.114
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1016/j.clinbiochem.2012.05.021
https://doi.org/10.1016/j.clinbiochem.2012.05.021
https://doi.org/10.2174/1381612829666221216114350
https://doi.org/10.2174/1381612829666221216114350
https://doi.org/10.3390/cancers14112798
https://doi.org/10.3389/fimmu.2023.1133308
https://doi.org/10.1016/bs.acr.2020.10.001
https://doi.org/10.1016/j.trecan.2017.01.005
https://doi.org/10.1186/s12967-016-0884-y
https://doi.org/10.1186/s12967-016-0884-y
https://doi.org/10.1002/mp.12967
https://doi.org/10.1002/mp.12967
https://doi.org/10.1016/j.mrrev.2021.108366
https://doi.org/10.1016/j.mrrev.2021.108366
https://doi.org/10.1016/j.apsb.2021.09.019
https://doi.org/10.1371/journal.pone.0212527
https://doi.org/10.1371/journal.pone.0212527
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.eururo.2018.09.030
https://doi.org/10.1016/j.eururo.2018.09.030
https://doi.org/10.1038/ni.2703
https://doi.org/10.1038/ni.2703
https://doi.org/10.3390/ijms24010537
https://doi.org/10.3390/ijms24010537
https://doi.org/10.1038/ni.2691
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1158/1541-7786.MCR-20-0639
https://doi.org/10.1158/1541-7786.MCR-20-0639
https://doi.org/10.1038/s41568-020-0273-y
https://doi.org/10.1038/s41419-022-04575-5
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.3389/fphar.2023.1145408
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1186/s12964-022-00909-0
https://doi.org/10.1186/s12964-022-00909-0
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.1007/s10822-022-00442-9
https://doi.org/10.3390/ijms24054885
https://doi.org/10.3389/fnagi.2022.966883
https://doi.org/10.3389/fnagi.2022.966883
https://doi.org/10.3322/caac.21763
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1241677


interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (43),
15545–15550. doi:10.1073/pnas.0506580102

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. J. R.
Stat. Soc. Ser. B Stat. Methodol. 73 (3), 273–282. doi:10.1111/j.1467-9868.2011.00771.x

Vinay, D. S., Ryan, E. P., Pawelec, G., Talib, W. H., Stagg, J., Elkord, E., et al. (2015).
Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer
Biol. 35, S185–S98. doi:10.1016/j.semcancer.2015.03.004

Wang, X., Zhang, A., and Sun, H. (2013). Power of metabolomics in diagnosis and
biomarker discovery of hepatocellular carcinoma.Hepatology 57 (5), 2072–2077. doi:10.
1002/hep.26130

Yang,W. H., Qiu, Y., Stamatatos, O., Janowitz, T., and Lukey, M. J. (2021). Enhancing
the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer 7 (8),
790–804. doi:10.1016/j.trecan.2021.04.003

Zhang, Q., Lou, Y., Bai, X. L., and Liang, T. B. (2020). Intratumoral
heterogeneity of hepatocellular carcinoma: from single-cell to population-
based studies. World J. Gastroenterol. 26 (26), 3720–3736. doi:10.3748/wjg.
v26.i26.3720

Zhao, L., Lee, V. H. F., Ng, M. K., Yan, H., and Bijlsma, M. F. (2019). Molecular
subtyping of cancer: current status and moving toward clinical applications. Brief.
Bioinform 20 (2), 572–584. doi:10.1093/bib/bby026

Frontiers in Pharmacology frontiersin.org14

Bao and Yu 10.3389/fphar.2023.1241677

https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1016/j.semcancer.2015.03.004
https://doi.org/10.1002/hep.26130
https://doi.org/10.1002/hep.26130
https://doi.org/10.1016/j.trecan.2021.04.003
https://doi.org/10.3748/wjg.v26.i26.3720
https://doi.org/10.3748/wjg.v26.i26.3720
https://doi.org/10.1093/bib/bby026
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1241677

	Identification of a prognostic evaluator from glutamine metabolic heterogeneity studies within and between tissues in hepat ...
	Introduction
	Materials and methods
	Single-cell RNA sequencing dataset and the RNA-seq dataset of HCC samples
	Single-cell RNA sequencing data processing
	Cell type annotation
	Analysis of the performance of the glutamine metabolic pathway in the GSE149614 dataset
	Consensus clustering analysis
	Identification, expression analysis, and correlation with biological signaling pathways of mutated GFAAM genes in molecular ...
	Analysis of the matrix content and immune infiltration in the TME
	DEG identification in clusters and the construction of a risk model based on machine learning algorithms
	Prediction of immunotherapy response by Tumor Immune Dysfunction and Exclusion
	Tissue microarray cohort
	Cell lines and cell culture
	Statistical analysis

	Results
	Cell types and GFAAM pathways distinctive of HCC
	Three molecular subtypes of HCC were identified according to the expression of GFAAM process genes
	Clinicopathological characteristics of three molecular subtypes related to the GFAAM pathway
	Mutant GFAAM process genes and their expression and influence on signaling pathways for three molecular subtypes
	Stromal and immune status of three molecular subtypes related to the GFAAM pathway
	Construction of a risk model using six machine learning algorithms and verification in verification cohorts
	Characteristics of potential factors affecting the prognosis of HCC
	Indicators related to the immunotherapy response of GFAAM pathway-related molecular subtypes and risk groups

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


