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Background: Reprogramming in glutamine metabolism is a hallmark of cancers,
while its role in cutaneous melanoma has not been studied at great length.

Methods: Here, we constructed a glutamine metabolism-related prognostic
signature in cutaneous melanoma with a variety of bioinformatics methods
according to the glutamine metabolism regulatory molecules. Moreover,
experimental verification was carried out for the key gene.

Results:Wehave identified two subgroups of cutaneousmelanoma patients, each
with different prognoses, immune characteristics, and genetic mutations.
GOT2 was the most concerned key gene among the model genes. We verified
its role in promoting tumor cell proliferation by CCK-8 and clone formation assays.

Conclusion: Our study cast new light on the prognosis of cutaneous melanoma,
and the internal mechanism regulating glutamine metabolism of GOT2 may
provide a new avenue for treating the cutaneous melanoma disease precisely.
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1 Introduction

Melanoma is a potentially fatal malignancy resulting from the transformation and
uncontrolled proliferation of pigment-producing melanocytes in the human epidermis
(Curti and Faries, 2021). CM is the most aggressive form of melanoma due to its high
incidence and metastasis rate. Only 14% of CM patients who develop metastasis survive
beyond 5 years (Siegel et al., 2023). For advanced/metastatic CM, chemotherapy is usually
ineffective, while radiotherapy is only effective in cases where brain metastases have
occurred. A current guideline only recommends targeted therapy for patients with
BRAF-mutated CM, whereas other types of mutations do not have sufficient evidence to
support treatment recommendations (Seth et al., 2020). Recently, a series of important
advances have been made in immunotherapy, such as anti-PD-1 and anti-CTLA-
4 antibodies, which greatly reduce the mortality of CM (Seth et al., 2020; Huang and
Zappasodi, 2022). Notably, due to specific environmental stresses induced by the treatment,
many CM cases can develop genetic progression even under targeted or immunotherapies
(Yen et al., 2021).
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There is increasing evidence that during cancer development,
not only do cancer cells themselves undergo metabolic alterations,
but the TME also undergoes metabolic reprogramming due to
metabolic competition (Pavlova and Thompson, 2016; Ruocco
et al., 2019). Metabolic reprogramming of the TME would lead
to invasive migration, metastasis, and even drug resistance of tumor
cells, which is an important driver of cancer progression and
immune impairment (Viale et al., 2014). For example, glycolysis
is one of the key metabolic reprogramming processes in tumor cells,
which provides immediate and sufficient energy for rapid
proliferation, adaptation to hypoxic environments, and
construction of an immunosuppressive TME. Lactate, a major
metabolite of glycolysis involved in the construction of an acidic
TME, promotes tumor progression and suppresses anti-tumor
immunity by inhibiting T cells and PD-L1 upregulation (Feng
et al., 2017). Therefore, metabolic reprogramming of tumor cells
and immune cells is one of the key barriers to tumor
immunotherapy (Kouidhi et al., 2018).

In hyperproliferative cells, glutamine plays an essential role in
providing intermediates to the TCA cycle, which contributes to cell
proliferation and biosynthesis (Yoo et al., 2020). As well as serving as
a nitrogen donor for purines and pyrimidines, glutamine also serves
as a precursor for GSH synthesis (Zhu et al., 2022). Glutamine is
transported across membranes with the assistance of amino acid
transporters and hydrolyzed into glutamate and ammonia through
the catalysis of glutaminase. Then glutamate becomes α-KG
catalyzed by dehydrogenase or aminotransferase and enters the
TCA cycle (Yang et al., 2017). Meanwhile, glutamate can be
oxidized into GSH via the glutamate-cysteine ligase, which
participates in the immune defense, nutritional metabolism, and
antioxidant function of cells by neutralizing mitochondrial ROS
(Wang et al., 2019). Previous studies have reported that CM
upregulates mitochondrial oxidative phosphorylation by
enhancing glutamine anaplerotic metabolism, thereby promoting
tumor cell resistance to targeted therapy (Haq et al., 2013;
Hernandez-Davies et al., 2015; Baenke et al., 2016; Zhang et al.,
2016; Vashisht Gopal et al., 2019). Several small molecule inhibitors
have been utilized to take advantage of the “glutamine fragility” in
cancer treatment due to the crucial role it plays in metabolic
reprogramming (Li et al., 2019). Nonetheless, the clinical
development of these drugs as monotherapies has been limited
by toxicity or ineffectiveness (Wu et al., 2018; Leone et al., 2019).

It is important to note that glutamine is not just an important
nutritional supplement for tumor cells, but also an essential
component of immune cell function, including its role in
activating T lymphocytes (Wang and Green, 2012; Cruzat et al.,
2018). A recent study found that glutamine metabolizing enzyme
inhibitors could promote Th1 and cytotoxic T-cell proliferation and
viability by altering the epigenome (Johnson et al., 2018). The
consumption and metabolism of glutamine may differ between
tumor cells and TILs. Targeting the fragility of glutamine
metabolism in tumor cells may change the fate of the TME and
strengthen the anti-tumor ability of the TILs (Halama and Suhre,
2022; Ma et al., 2022).

In the current study, we established a glutamine metabolism risk
score model based on GMRGs and evaluated the immune
characteristics and tumor burden characteristics of the high- and
low-GMRS groups under this characterization. The mechanism by

which GOT2 regulates glutamine metabolism in tumor cells may
provide new insights into targeted therapy for CM. Abbreviations
and corresponding words and phrases used in this article can refer to
Supplementary Table S1.

2 Materials and methods

2.1 Candidate data sources

ThemRNA-seq datasets and clinical information of CM patients
and normal controls were acquired from the TCGA-SKCM project
and the GTEx website. The key enzymes involved in regulating
glutamine metabolism were summarized from one previous study
(Altman et al., 2016). We defined the genes encoding these
22 proteins as GMRGs. The single-cell count matrix was
obtained from the GSE72056 (Tirosh et al., 2016), GSE115978
(Jerby-Arnon et al., 2018), and GSE120575 (Sade-Feldman et al.,
2018) datasets from the GEO database. The gene expression matrix
and clinical information used to validate the expression of the key
gene and its correlation with clinicopathologic parameters were also
obtained from the GSE3189 (Talantov et al., 2005), GSE15605
(Raskin et al., 2013), GSE114445 (Yan et al., 2019), and
GSE46517 (Kabbarah et al., 2010) datasets from the GEO
database. The online Xiantao tool (https://www.xiantao.love/
products) is a comprehensive bioinformatics analysis website.
Differential analysis, survival analysis, biofunctional enrichment
analysis, and immune-related analyses of target genes were
performed by this tool partly. The predicted 3D structure and
immunohistochemical staining of the protein encoded by the key
gene were obtained from the HPA database. The main R packages
used in the analysis process were displayed in Supplementary
Table S2.

2.2 Construction of the prognostic GMRG
signature

The prognostic GMRGs correlated significantly with the OS of
CM patients were screened out by univariate Cox analysis. The
threshold of screening was p < 0.05. The composition of the optimal
multi-gene signature was determined by successively applying the
LASSO and multivariate Cox regression analyses (Gui and Li, 2005).
The standardized expression value of each signature gene is
multiplied by the corresponding regression coefficient and the
results are summed to obtain the risk score of this signature,
which is defined as GMRS. CM patients were stratified into two
subgroups according to the median GMRSs. Survival analysis was
performed to evaluate survival differences. The Time-dependent
ROC curves were used to evaluate the predictive performance of our
signature. The predictive independence of classical prognostic
factors and our signature was identified by regression analyses.

2.3 Subgroup analysis of the gene signature

To confirm the consistency between our gene signature and
conventional predictors, we performed a hierarchical difference
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analysis. Similarly, we also discussed the distribution of clinical
parameters between GMRS subgroups. Moreover, the subgroup
survival analysis was conducted based on different clinical
parameters to verify the predictive ability of our model in
different clinical signs.

Eight algorithms were used to compare the immune
infiltration status between GMRS subgroups, including the
ssGSEA algorithm and the corresponding gene sets used
(Charoentong et al., 2017). The ESTIMATE algorithm
allowed for a quantitative comparison of immune correlation
status among GMRS subgroups using 4 kinds of scores
(Yoshihara et al., 2013). The TIP tool was used to evaluate
23 standardized immune activity scores between GMRS
subgroups during the cancer immune cycle (Xu et al., 2018).

2.4 Clustering analysis

The molecular subtypes of CM samples were identified by the
consistent clustering method (Wilkerson and Hayes, 2010). The
clustering algorithm is set to K-means and the coefficients k are
set from 2 to 9. The optimal clustering result was presented as a
heat map including the expression of modeled genes and the
distribution of classical clinical parameters across cases. The
distribution of different subtypes was explored by the t-SNE
method (Laurens and Hinton, 2008).

2.5 Biological and mutational analysis

The Wilcoxon test with an adjusted p < 0.05 and a |
log2 FC| > 1 threshold was used to screen out DEGs between
clusters. The pathways enriched in each cluster were evaluated
by GSVA. The GO and KEGG pathway enrichment analyses
based on the above DEGs were also performed. The correlation
between the expression of our key gene GOT2 and immune-
related pathways from the KEGG database and Reactome
database was evaluated by GSEA. The top 20 mutated genes
were evaluated and the oncoplots were generated to provide a
visual representation of the mutational landscape in GMRS
subgroups. The survival analysis of the subgroups stratified
by the TMB state of each sample was conducted.

2.6 Single-cell RNA-seq data processing

The raw data for single-cell analysis first underwent a
process of normalization, dimensionality reduction, and
clustering (Stuart et al., 2019). The criteria for cell filtering
were more than 200 gene expressions and less than 20%
mitochondrial gene expression. The criteria for gene filtering
were expressed in more than 3 cells. The top 30 PCs for UMAP
construction and a resolution of 0.4 for graph-based clustering
were utilized to identify each cell cluster. The InferCNV method
was utilized to estimate the CNV signal for individual cells
(Patel et al., 2014). To define the reference cell-inferred copy
number profiles, B cells, fibroblast, and T cells were utilized.
Epithelial cells were used for the observations. According to the

flow described by Sunny Z. Wu et al., (Wu et al., 2021),
Epithelial cells were classified as either normal epithelial or
malignant. The potential communication molecules between
various cell subtypes were investigated using the CellPhone DB
database (Vento-Tormo et al., 2018). Following that, we
calculated the mean and the significance of cell
communication and visualize the network plot according to
the interaction matrix and the cell count matrix.

2.7 Cell culture and proliferation assay

Human melanoma cell lines A375 and SK-28 were purchased
from the University of Colorado Cancer Center Cell Bank and
cultured in DMEM medium supplemented with 10% FBS
(Invitrogen, Carlsbad, CA, USA) at 37°C in a 5%
CO2 atmosphere. siRNAs were used to knock down the
expression level of GOT2 in cell lines. The siRNA sequences
were as follows: siRNA#1-GCTACAAGGTTATCGGTATTA;
siRNA#2-GCCTTCACTATGGTCTGCAAA. We used RT-qPCR
to determine the knockdown efficiency of siRNA-GOT2.
CCK8 and clone formation were applied to detect the
proliferation activity of melanoma cells.

2.8 Statistical analysis

All analyses were performed using R software (version 4.2.2). All
statistical tests were two-sided. p-value <0.05 or Spearman
correlation coefficient >0.3 was considered statistically significant
unless otherwise noted.

3 Results

3.1 Establishment of the GMRGs related
prognostic signature

The prognostic analysis was first carried out to filtrate
GMRGs significantly related to outcomes in CM patients. As
shown in the forest plot (Figure 1A), 9 GMRGs were found to
be associated with prognosis (p < 0.05). 5 of the above 9 genes
were regarded as protective genes and 6 were considered as risk
genes. Then the multivariate Cox and LASSO regression
analyses were applied in succession to single out the best
model with the TCGA dataset (Figures 1B, C). Furthermore,
A glutamine-metabolism-related prognostic signature for CM
was constructed given the best coefficient value (Figure 1D).
The risk score for our signature, which was defined as GMRS,
was worked out through the established formula method:

GMRS � −0.3806( )*exp DGLUCY + −0.1598( )*exp GLUD2

+ 0.4241( )*exp GOT2 + −0.4854( )*exp LAT

+ 0.2668( )*exp SLC6A14

The GMRS was then calculated for each case. Its mean
threshold divided the CM patients into two subgroups (low-
GMRS (n = 229) and high-GMRS (n = 228)). KM analysis
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confirmed a lower likelihood of survival in the high-GMRS
group (p < 0.05, Figure 1E). An evaluation of the predictive
performance was conducted with the time-dependent ROC
curve of the model and in Figure 1F, the AUC reached 0.696.
Univariate and multivariate Cox analyses were also performed to
further explore the independent predictive ability of our
signature. The univariate Cox regression analysis showed that
Breslow depth, Clark level, age, pathologic T stage, pathologic N
stage, and our GMRS were all significantly associated with
survival (Figure 1G). However, when applying the
corresponding multivariate Cox regression analysis, we found
that only age (p = 0.007), pathologic T stage (p = 0.025),

pathologic N stage (P < 0.001), and our GMRS (p = 0.001)
were clinically independent (Figure 1H).

3.2 The relationship between GMRS and
clinicopathologic factors

In order to evaluate the association between GMRS and
clinicopathologic factors, we performed differential analysis and
evaluated the distribution characteristics of classic clinicopathologic
factors between two risk groups. The bar plots in Supplementary
Figure S1A showed that patients with advanced T stage (p < 0.001),

FIGURE 1
Development of the GMRS model. (A) Nine prognosis-related genes were selected by the univariate Cox regression analysis. (B,C) Nine prognosis-
related genes underwent the LASSO regression analysis. (D) Five genes were selected with the best value of coefficient by themultivariate Cox regression
analysis. (E) The K-M survival curve shows the poorer survival probability of CM patients in the high GMRS group (p < 0.001). (F) The AUC value of the ROC
curve for predicting CMpatients’ prognosis. (G,H) Predictive independence assessment of classical clinical predictors and our GMRS score by the (G)
univariate and (H) multivariate Cox regression analysis.
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overall stage (p < 0.05), and Clark level significantly presented
higher GMRSs. Consistent with this result, the high-GMRS
group exhibited notably higher proportions of advanced T
stage (p = 0.002), N stage (p = 0.043), overall stage (p =
0.004), and Clark level (p = 0.007) (Supplementary Figures
S1A, B). Further, we performed a stratification analysis for

survival probability to determine the prognostic power of our
prognostic signature in subgroups of CM. As was shown in
Supplementary Figure S1C, except for the subgroup of Clark
level I/II (p = 0.088), patients in the high-GMRS group showed a
more abysmal outcome than those in the low-GMRS group (all
p < 0.05).

FIGURE 2
Interpretation of the gene mutation landscape between GMRS groups. (A,B)Oncoplots showing the top 20 mutation profiles in the (A) high-GMRS
and (B) low-GMRS groups. The types of mutation in each gene and the corresponding percentage in the samples were also included. (C–E) The
differential expression of the model genes among the subgroups stratified by the three top gene mutations (C) TTN; (D) MUC16; (E) BRAF). (F) The K-M
survival curve shows the poorer survival probability of CM patients in the low TMB group. (G) The K-M survival curves show the survival differences
between subgroups stratified by both TMB and GMRS scores in the CM cohort. * represents statistical p-value < 0.05, ** represents statistical p-value <
0.01, *** represents statistical p-value < 0.001.
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FIGURE 3
Comparison of the immune characteristics between risk groups. (A)Heatmap showing the distribution of tumor-infiltrating immune cells and GMRS
scores by 7 mainstream algorithms. (B) Spearman correlation analysis of the tumor-infiltrating immune cells under GMRS score in CM. (C) Differential
abundance analysis of tumor-infiltrating immune cells betweenGMRS groups using ssGSEA algorithm. (D)Differential immune function analysis between
GMRS groups. (E)Differential analysis of immune-related scores betweenGMRS groups using the ESTIMATE algorithm. (F)Differential analysis of the
anticancer immune functions of the cancer-immunity-cycle between GMRS groups. * represents statistical p-value < 0.05, ** represents statistical p-
value < 0.01, *** represents statistical p-value < 0.001.
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3.3 Mutation burden between high-GMRS
and low-GMRS groups

Since a large variety of genetic alterations occur in the common
progression trajectories of CM, the gene mutation status was
comprehensively assayed in patients with different GMRSs (Shain
and Bastian, 2016). The top 20 most mutative genes in each group
were displayed (Figures 2A, B). Some of them overlapped, with a
higher mutation frequency in the low-GMRS group. Figures 2C–E
showed the differential expression of the model genes among the
subgroups stratified by the three top gene mutations. Previous
evidence revealed that the TMB severely affected the response to
cancer immunotherapy and the long-term prognosis of tumor
patients (Kang et al., 2020; Moldoveanu et al., 2022). According
to our analysis, patients with high TMB experienced improved OS,
relative to low TMB (p = 0.023, Figure 2F). Next, we evaluated the
collaborative impact of our signature and TMB in predicting
prognosis. The results showed that the high-GMRS group had
worse OS than the low-GMRS group regardless of the TMB
status, which implied that the prognostic value of our signature
was not intervened by the TMB status of individuals (p < 0.001,
Figure 2G).

3.4 Immune microenvironment difference
between High-GMRS and Low-GMRS
groups

Considering CM as immune-related, and immunotherapy as
preferable (Coit et al., 2013), we explored the difference in the
immune infiltration situation between the two risk subgroups. The
heatmap in Figure 3A showed visually some immune cells
demonstrated significant differences according to most of the
algorithms, such as B cells, CD8+ T cells, neutrophils,
macrophages, and NK cells. The specific correlation analysis was
shown in Figure 3B. And we can conclude that most immune cells
have a significant negative correlation with the value of
GMRS (r < −0.3).

Whereafter, the enrichments of 23 immune cell types and
13 immune-related functions were assessed between the low-
GMRS and high-GMRS groups. The significant between-group
difference showed up in most of the active immune cells and
immunocompetent (p < 0.05), with a higher-level immune cell
infiltration in the low-GMRS group (Figure 3C). Both groups
demonstrated significant differences in all immune-related
functions, such as checkpoint, inflammation-promoting, Type
I IFN response, etc. (Figure 3D). By the ESTIMATE algorithm,
we explored differences in immune-related scores between
GMRS groups. Lower immune, stromal, and ESTIMATE
scores were observed in the high-GMRS group, while its
tumor purity scores were significantly higher (all p < 0.05,
Figure 3E).

Chen et al. referred to seven sequential processes of
antitumor immunity as the “cancer-immunity cycle” (Chen
and Mellman, 2013). TIP (a web service for determining
tumor immunophenotype profiling) was utilized to evaluate
the anticancer immunological functions of the seven-step
cancer-immunity cycle between GMRS groups (Xu et al.,

2018). Our results in Figure 3F revealed that patients in low-
GMRS groups owned significant functional enhancement in
step 1 (release of cancer cell antigens), step 3 (priming and
activation of effector T cell responses), step 4 (trafficking of
immune cells to tumors), and step 5 (infiltration of immune cells
into tumors). Specifically in step 4, the low-GMRS group
presented the high activity of recruiting of 10 main immune
cells, including T cells, macrophages, NK cells, Th17 cells, and
so on. Only the process of MDSC recruiting was enhanced in
high-GMRS groups. Taken together, the patients in the high-
GMRS group were predisposed to an immune-silent
microenvironment featuring full down-modulation of
immune cell infiltration and immune functions, which may
be followed by a dismal prognosis.

3.5 Identification of glutamine-metabolism-
related molecular subtypes

According to the expression levels of five GMRGs from our
prognostic signature, CM samples from TCGA were divided by
clustering analysis. When k = 2, the consensus matrix heatmap in
Supplementary Figure S2A exhibited high consistency between
clusters. And the K-M survival curve in Supplementary Figure
S2B showed a significant difference in survival between clusters
(p = 0.015). The area under the CDF curve tended to be stable
starting from k = 2 (Supplementary Figures S3A, B). The PCA plot in
Supplementary Figure S2C also agreed with the clustering outcome
of the two subtypes. The alluvial diagram demonstrated the
distribution overlap of the CM samples between GMRS and
molecular subtypes (Supplementary Figure S3C). The distribution
of cluster A subtype samples was mainly comprised of high GMRSs,
while cluster B subtype achieved a high ratio of the low-GMRS group
in the samples. As shown in Supplementary Figure S2D, the
heatmap illustrated the clinicopathologic features and expression
patterns of five GMRGs.

To explore the between-group differences in biological
features, GSVA was carried out to seek the enriched pathways
in each cluster. Results with adjusted p < 0.05 were shown in
Supplementary Figure S2E. Cluster A subtype was enriched in
more tumor-related pathways such as “MYC_TARGETS_V2”
(adj.p = 0.014), “P53_PATHWAY” (adj.p = 0.006), “WNT_
BETA_CATENIN_SIGNALING” (adj.p = 0.031) and so on,
which may account for the poor prognosis of patients in
cluster A. More details can be obtained from Supplementary
Table S3. Then, the enrichment analyses of the GO functions and
KEGG pathways were performed. Enriched BPs of the DEGs
mainly concluded “negative regulation of protein
phosphorylation” and “cell-substrate adhesion”. Enriched of
CCs were mainly in “cell-cell junction” and “collagen-
containing extracellular matrix”. Enriched MFs consisted of
“integrin binding” and “insulin-like growth factor I binding”
(Supplementary Figure S2F). Enriched KEGG pathways were
listed as “PI3K-Akt signaling pathway” and “Human
papillomavirus infection” (Supplementary Figure S2G). These
significantly enriched GO terms and KEGG pathways can offer a
better understanding of the roles of these DEGs in the initiation
and progression of CM.
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3.6 Identification of the potential key gene
in CM

The differences in prognostic value and immune characteristics
between the two clusters suggested that specific molecular
biomarkers may contribute to CM patients’ prognostication. To
find these key genes, we conducted the differential analysis and
plotted the ROC curve of diagnostic efficiency. We found differential
expressions of all five model genes between tumor and normal
tissues. DGLUCY and SLC6A14 were lowly expressed, while those of
LAT, GOT2, and GLUD2 were highly expressed in CM tissues (all
p < 0.001, Figure 4A). The AUCs of DGLUCY, SLC6A14, GOT2,

and GLUD2 were all greater than 0.7 (Figure 4B), implying that
every one of them owned so adequate diagnostic efficiency to
become an independent diagnostic biomarker. After a validation
and survival analysis of these five genes in the TCGA cohort (Figures
4C–G), only GOT2 with a high expression was found to be
associated with poor prognosis in CM patients (p = 0.015,
Figure 4G). We also validated GOT2 expression in CM and its
correlation with classical prognostic factors in external datasets.
Among the GSE3189, GSE15605, and GSE114445 cohorts, the
expression level of GOT2 was significantly higher in tumor
tissues of CM than in adjacent normal skin tissues (all p < 0.05,
Supplementary Figure S4A–C). Based on data from the

FIGURE 4
Identification of the potential key gene in CM by Xiantao tool. (A) Differential expression analysis of the model genes between CM and normal
tissues. (B) ROC curves of diagnostic efficiency of the model genes. (C–G) K-M survival curves of the CM patients stratified by expression of model
genes (C)GLUD2; (D)DGLUCY; (E) SLC6A14; (F) LAT; (G)GOT2), respectively. (H–I) Enrichment analysis of (H) KEGG and (I) Retcome pathways in CM
patients according to the GOT2 expression. * represents statistical p-value < 0.05, ** represents statistical p-value < 0.01, *** represents
statistical p-value < 0.001. NES, normalized enrichment score. P.adj, adjusted p value.
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GSE46517 cohort, we found that the expression of GOT2 was
significantly higher in subgroups with more severe clinical
predictors, including pathological T stage, distant metastasis, and
overall stage (all p < 0.05, Supplementary Figure S4D–F).

Hence, we hypothesized that GOT2 might have a modest effect
on tumor biological behavior in cancer cells. We then performed
GSEA in CM to evaluate the gene enrichment according to
GOT2 expression levels. In terms of KEGG pathways,
overexpressed GOT2 was negatively associated with immune-
related pathways (Figure 4H), such as “Primary
Immunodeficiency” (NES = −2.308, adj. p < 0.001), “Cytokine
Cytokine Receptor Interaction” (NES = −2.213, adj. p < 0.001),
“Natural Killer Cell Mediated Cytotoxicity” (NES = −2.204, adj. p <
0.001). However, in terms of Retcome pathways, overexpressed
GOT2 was positively associated with tumor-related pathways
(Figure 4I), such as “MTOR Signaling” (NES = 1.44, adj. p <
0.001), “Cellular Response To Hypoxia” (NES = 1.647, adj. p =
0.004), “Signaling By NOTCH4” (NES = 1.661, adj. p = 0.007).

3.7 Potential function of GOT2 in
regulating TME

Since immune-related pathways were primarily enriched via
GSEA, we decided to explore the regulatory effect of GOT2 on the
TME. We first compared the differences in immune infiltration
between high- and low-GOT2 expression groups. The infiltration
levels of “NK CD56 bright cells”, “TFH”, “aDC”, “B cells”,
“CD8 T cells”, “Cytotoxic cells”, “iDC”, “Macrophages”, “pDC”,
“T helper cells”, “T cells”, “Tgd”, “Th1 cells”, and “Treg” were
significantly lower in the high-GOT2 expression group (Figure 5A,
all p < 0.05). The correlation between GOT2 and immune cells was
also identified. The results in Figure 5B revealed that GOT2 was
significantly negatively linked with the infiltration of most immune

cells (|R|> 0.08, p < 0.05), such as CD8 T cells, B cells, Tgd, and
T cells. Then, the ESTIMATE algorithm was conducted to calculate
the immune and stromal scores. The high-GOT2 expression group
showed lower immune, stromal, and ESTIMATE scores than the
low-GOT2 expression group (all p < 0.001, Figure 5C). Our results
demonstrated that GOT2 had the potential to become the diagnostic
biomarker of CM and may pose as an immune-silent modulator in
the TME of CM.

In addition, we also explored the ability of GOT2 as a predictor
of immunotherapeutic response in CM. In three GEO cohorts that
included immunotherapy-related information, we found that
GOT2 expression did not appear to be significantly different
between immunotherapy-responsive and non-responsive groups
(all p > 0.05, Supplementary Figure S5A–C). Also, in the
IMvigor210 cohort, there was no significant difference between
the high- and low-GOT2 subgroups in the percentage of cases
responding to immunotherapy (p > 0.05, Supplementary Figure
S5D). Subsequently, we obtained the IPS scores of immunotherapy
response to predict the efficacy of PD-1 and CTLA4 immune
checkpoint blockers from the TCIA database. We found that
only in the CTLA4-positive-PD-1-positive cohort, the IPS score
was significantly higher in the low-GOT2 subgroup than in the high-
GOT2 subgroup (Supplementary Figure S5E–H). The results
suggested that the efficacy of immunotherapy could be enhanced
by the combination of PD-1 inhibitor, CTLA4 inhibitor, and
GOT2 inhibitor in CM.

3.8 Mapping GOT2 in single-cell data

Because of the tumor heterogeneity, we sought to explore further
at single-cell resolution. The scRNA-seq data of CM samples were
obtained from three GEO datasets. Among the remaining cells after
mass filtration, a total of 11701 single cells and 7 cell clusters were

FIGURE 5
Comparison of the immune characteristics in GOT2 subgroups by Xiantao tool. (A) Differential abundance analysis of tumor-infiltrating immune
cells betweenGOT2 groups using the ssGSEA algorithm. (B) Spearman correlation analysis of the tumor-infiltrating immune cells under GOT2 expression
in CM. (C)Differential analysis of immune-related scores between GOT2 subgroups using the ESTIMATE algorithm. * represents statistical p-value < 0.05,
** represents statistical p-value < 0.01, *** represents statistical p-value < 0.001.
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derived from tumors and non-malignant samples (Figure 6A). The
fundamental markers of eachmajor cell type were shown in the form
of a heatmap in Figure 6B. The GOT2 expression was upregulated in
several epithelial and stromal cells but downregulated in immune
cells (Figure 6C). We further explored the genomic CNA in various
cell subtypes to subdivide and identify malignant epithelial cells
(Figure 6D). The tSNE plots in Figures 6E, F displayed the
distribution of normal and malignant epithelial cells based on the
CNA values. According to the expression abundance of GOT2,
malignant epithelial cells were divided into GOT2+ and GOT2-
malignant cells. Substantially high metabolic activity was observed
in GOT2+ malignant cells compared with GOT2-malignant cells
and normal cells.

3.9 Verification of GOT2 expression in CM

The simulated visualization structure of GOT2 protein was
predicted by AlphaFold and was displayed in Figure 7A
(Tunyasuvunakool et al., 2021). The HPA database provided
the immunohistochemical staining images of GOT2 protein. It
was consistent that GOT2 was highly expressed in the CM
tissues (Figure 7B). Subsequently, the RT-qPCR was
performed and the si-GOT2 molecules were employed to
effectively downregulate GOT2 mRNA expression in both
A375 and SK-28 cell lines (all p < 0.01, Figure 7C).
Furthermore, we used two methods to examine the effect of
knocking down GOT2 on cell proliferation potential. Obviously,

the cell proliferation was significantly restrained once A375 and
SK-28 cells were transfected with si-GOT2 (all p < 0.01, Figures
7D, E). Additionally, the knockdown of GOT2 significantly
inhibited the clone formation in A375 and SK-28 cells
(Figure 7F). These results implied that GOT2 could promote
the growth and proliferation of CM cells.

3.10 Pan-cancer analysis of
GOT2 expression and prognostic
significance

Based on TCGA data, we conducted the pan-cancer analysis
to assess the expression and prognostic significance of GOT2 in
various cancers. Differential expression analysis showed that
GOT2 expression was significantly increased in 22 cancer
types, such as ACC, BRCA, and CESC, compared with normal
tissues (Figure 8A). In contrast, GOT2 expression was
significantly decreased in 3 cancers, including CHOL, KIRC,
and LIHC. Survival analyses showed that beyond CM,
GOT2 expression also had prognostic significance in other
8 cancer types (all p < 0.05, Figure). GOT2 may be protective
in ACC, LIHC, KIRP, and UCEC, while it is a risk factor for
disease progression in LGG, HNSC, MESO, and LAML. All these
data indicated that the dysregulation of this glutamic-oxaloacetic
transaminase was common across several tumors, but the role of
GOT2 in different tumors cannot be generalized, and further
exploration was still needed.

FIGURE 6
Mapping GOT2 in single-cell data. (A) A tSNE cluster view of 11701 cells was obtained from three GEO datasets. The identified clusters are annotated
according to their origin. (B) The expression of marker genes for each cell type. (C) The density and distribution of GOT2 expression in different clusters.
(D)Copy number analysis of the epithelial cells with the R package inferCNV. (E,F) The distribution ofmalignant cells and normal epithelial cells is based on
the CNA values. (G) The multilineage interactome network among different cell clusters.
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4 Discussion

CM shares the oncogenic transformation features of glutamine
addiction, like many other solid malignancies (Filipp et al., 2012). In
other words, CM cells depend on glutamine for growth, irrespective
of their oncogenic background. In a study quantitatively assessing
glutamine metabolism in melanoma cell lines, it was shown that
energy-producing anaplerosis and asparagine biosynthesis are
responsible for CM cell growth (Ratnikov et al., 2015). The
glutamine metabolism in CM cells is characterized by
overexpression of genes involved in the production of proline
from glutamate, thus increasing proline production by tumor
cells in comparison with melanocytes (De Ingeniis et al., 2012). It
is these metabolic changes that underlie the development of CM and
that affect its response to treatment. Most tumors, in the meantime,
trigger their own growth and development by remodeling the TME
and recruiting corresponding cells, like TAMs and Tregs, which
usually lead to poor outcomes (Watson et al., 2021; Shi et al.,
2022). In CM, the TME consists of adjacent cells such as
keratinocytes, adipocytes, immune cells, CAFs, and
extracellular matrix elements (Mazurkiewicz et al., 2021).
There is a strong correlation between immune cell infiltration
in the TME and glutamine metabolism, according to several
recent studies (Oh et al., 2020; Yang et al., 2021).

In our study, genes involved in glutamine metabolism in CM
were based to generate a prognostic signature and evaluate its

predictive value. The model possessed independent predictive
power and was strongly correlated with other commonly used
clinicopathological factors. In terms of immune function and
infiltration, we found that patients in the high-GMRS group
were developing an immune-silent microenvironment, which
partly explained their poorer prognosis. By clustering CM cases
according to the genes used for modeling, we defined two
glutamine metabolism-related clusters. Among them, the CM
patients in cluster A owned a high degree of overlap with the
patients in the high-GMRS group, and both possessed poor
prognoses. Mostly tumor-related signaling pathways were
enriched in DEGs between the two clusters. Our findings
further provided new insights into glutamine metabolism in
melanoma.

Among these model genes, GOT2 stood out as an important
enzyme for cellular redox homeostasis and aspartate production. As
a crucial component of protein, purine, and pyrimidine nucleotide
synthesis, aspartate also plays a crucial role in cell growth (Garcia-
Bermudez et al., 2018). In our study, CM patients who expressed
high levels of GOT2 had poor prognoses and low immune
infiltration.

According to previous studies, GOT2 promoted the growth
and proliferation of malignant tumors mainly through three
pathways (Yang et al., 2015; Yang et al., 2018; Hong et al.,
2019; Guan et al., 2021; Abrego et al., 2022). The first one is
the supply of cellular building materials. Hong et al. reported that

FIGURE 7
Verification of GOT2 expression in CM. (A) An accurately predicted complex structure of GOT2 protein by AlphaFold. (B) IHC staining of GOT2 in
clinical CM tissues and normal skin tissues. (C) Verification of the knockdown efficiency of si-GOT2s by evaluating GOT2 mRNA expression using RT-
qPCR. (D–E) Cell proliferation curve following transfection of si-GOT2 in (D) A375 and (E) SK-28 cells. (F) Comparison of the clone formation ability
between negative control groups and GOT2 knockdown groups in A375 and SK-28 cells. NC, negative control; KD, knockdown; OD, optical density.
* represents statistical p-value < 0.05, ** represents statistical p-value < 0.01, *** represents statistical p-value < 0.001.
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the protein BRCA1 and ZBRK1 can together form a complex that
inhibits GOT2 transcription and translation. Due to the impairment of
this complex, the production of GOT2 increased, which resulted in the
rapid proliferation of breast cancer cells (Hong et al., 2019). The second
one is the protection from oxidative damage. It is indispensable for cells
to create NADPH and maintain the cellular redox state by glutamine
carbon flow through GOT2. The knockdown of GOT2 in pancreatic
ductal adenocarcinoma resulted in an increased production of ROS,
which led to the cyclin-dependent kinase inhibitor p27-dependent
senescence (Yang et al., 2018). The third one is the suppression of
immune function. PPARδ is a lipid metabolism-related transcription
factor. According to Abrego et al., GOT2 can shuttle to the nucleus and
enhance PPARδ activity (Abrego et al., 2022). The translation products
of many genes activated by PPARδ possess immunosuppressive
properties, resulting in low immune infiltration as well as high tumor
burden. We speculated that GOT2 could also play a cancer-promoting
role through the above three pathways in CM.

However, GOT2 could exhibit a cancer-suppressive profile in
some cancers. For instance, HCC cells exhibit downregulation of
GOT2, and low GOT2 expression is associated with advanced disease
progression (Li et al., 2022). Mechanistically, the reduction of
GOT2 in HCC mediated the reprogramming of glutamine

metabolism towards the synthesis of reduced GSH, which
maintained redox homeostasis in tumor cells by resisting the ROS
damage in HCC progression and stimulating the PI3K/AKT/mTOR
signaling pathway thereby contributing to the malignant progression
of HCC. Themechanisms behindGOT2 are still being explored, but it
appears it is involved in reprogramming glutamine metabolism in
order to promote cancer progression. This can be used as a therapeutic
and diagnostic target for CM.

Admittedly, our research has some limitations. Our risk model
included 5 genes, which may increase the cost of testing. We may be
able to involve multiple clinicopathological parameters in the
construction of the model to increase the practicality. The effect
of GOT2 on immune function and immune cell infiltration may
need more experiments to verify.

5 Conclusion

To summarize, we built up a brand-new prognostic model and
stratified CM patients according to the model scores (GMRSs).
Significant differences were found in prognosis, immune
characteristics, and genomic mutation between these subgroups.

FIGURE 8
Pan-cancer analysis of GOT2 expression and prognostic significance. (A) Differential expression analysis of GOT2 between tumor tissues and
corresponding adjacent normal tissues in 33 cancer types. (B) K-M survival curves of patients of 8 cancer types stratified by expression of GOT2.
* represents statistical p-value < 0.05, ** represents statistical p-value < 0.01, *** represents statistical p-value < 0.001.
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Then, we identified the glutamine-metabolism-related molecular
subtypes with different biological features. Furthermore, GMRGs
like GOT2 could contribute to an in-depth understanding of the
underlying mechanisms of CM and may become a new independent
biomarker and target for the diagnosis and treatment of CM.
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