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Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory disease
characterized by a slow progression and caused by the inhalation of harmful
particulate matter. Cigarette smoke and air pollutants are the primary contributing
factors. Currently, the pathogenesis of COPD remains incompletely understood.
The PI3K/Akt signaling pathway has recently emerged as a critical regulator of
inflammation and oxidative stress response in COPD, playing a pivotal role in the
disease’s progression and treatment. This paper reviews the association between
the PI3K/Akt pathway and COPD, examines effective PI3K/Akt inhibitors and novel
anti-COPD agents, aiming to identify new therapeutic targets for clinical
intervention in this disease.
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1 Introduction

COPD is a heterogeneous lung disease characterized by a variety of chronic respiratory
symptoms, such as difficulty breathing, coughing, sputum production, and acute
exacerbation. These symptoms arise from abnormal airways (bronchitis) and/or alveolar
abnormalities (emphysema), resulting in persistent and frequently progressive airflow
obstruction (Venkatesan, 2023). COPD ranks as the third leading cause of death
globally, following ischemic heart disease and stroke (Obeidat et al., 2018). COPD arises
from the complex interplay of multiple factors. Smoking stands as a significant risk factor for
COPD, while environmental exposure and genetic variation can contribute to the
development or exacerbation of the disease (Lareau et al., 2019). Presently, COPD is
treated with a combination of medication and non-medication strategies, smoking
cessation is the primary treatment, bronchodilators and glucocorticoids are the most
commonly used drugs (Sandelowsky et al., 2021). Nevertheless, COPD commonly
exhibits a progressive nature, and the conventional medications used to manage it entail
notable side effects. These challenges emphasize the urgent need for exploring alternative
treatment modalities for COPD.

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) signaling
pathway is a critical cellular pathway that regulates multiple functions such as cell
survival, growth, proliferation, metastasis, and metabolism (Engelman et al., 2006;
Abeyrathna and Su, 2015). The abnormal activation of the PI3K/AKT pathway is
associated with various human cancers (Noorolyai et al., 2019; Glaviano et al., 2023).
Additionally, it is also involved in many chronic diseases such as diabetes (Savova et al.,
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2023), cardiovascular diseases (Qin et al., 2021), neurological
disorders (Wang Q. et al., 2022), autoimmune diseases (Cheng
et al., 2022), inflammatory diseases (Xu et al., 2022), and liver
diseases (Ye et al., 2023) et al. The PI3K/AKT pathway plays a
crucial role in the onset and progression of numerous diseases.
Recently, studies have demonstrated that inhibiting the PI3K/Akt
signaling pathway reduces inflammation, apoptosis, and oxidative
stress in cells, thereby playing a crucial role in COPD treatment (Sun
et al., 2019).

This review comprehensively examines the structure and
transduction of the PI3K/Akt signaling pathway. Additionally,
it highlights the crucial role of PI3K/Akt signaling in COPD and
presents a summary of potential drugs that target this pathway.
The aim is to expand the therapeutic possibilities for COPD and
offer innovative and effective targets for clinical intervention.

2 The PI3K/Akt signaling pathway

The PI3K/Akt signaling pathway plays a crucial role in various
cellular regulatory processes such as cell growth, proliferation,
migration, metabolism, and secretion. Furthermore, dysregulation
of the PI3K/Akt signaling pathway is implicated in a diverse
spectrum of human diseases, including cancer (Noorolyai et al.,
2019), neurodegenerative disease (Rai et al., 2019), diabetes (Huang
et al., 2018), and osteoarthritis (Sun et al., 2020).

2.1 The composition of PI3K

PI3Ks are a class of evolutionarily conserved intracellular
lipid kinases called intracellular lipid kinases, classified into
classes I, II, and III based on substrate specificity and
sequence homology (Cantley, 2002). Type I PI3K can be
divided into two subfamilies based on its coupling receptors.
Type IA PI3K is a heterogeneous dimer composed of a p85-
regulated subgroup and a p110 catalytic subgroup. It is activated
by the growth factor receptor tyrosine kinase (RTK) (Katso et al.,
2001). Type IB PI3K is a heterogeneous dimer composed of
p101 regulatory subunits and p110-γ catalytic subunits. It is
activated by G-protein-coupled receptors (GPCRs) (Voigt
et al., 2006). Classes II and III PI3K are monomer types. Class
II PI3K consists of a catalytic subunit similar to p110, while class
III PI3K consists of a single member, Vps34 (Jean and Kiger,
2014). It is generally accepted that class I PI3K is the most widely
studied, and class II and III PI3Ks have less knowledge about
their specific functions. Here, we will focus on the role of Type I
PI3K in COPD.

2.2 The composition of Akt

Akt, a serine/threonine kinase also known as PKB, belongs to the
AGC protein kinase family. Three subtypes of Akt exist: Akt1
(PKBa), Akt2 (PKBb), and Akt3 (PKBc) (Risso et al., 2015). The
three subtypes of Akt, closely related in mammals, possess three
conserved domains: an amino terminal pleckstrin homology (PH)
domain, a central kinase domain (excitation domain) highly similar

to other AGC protein kinases like PKA and PKC (Peterson and
Schreiber, 1999), and a carboxyl terminal regulatory domain that
includes HM phosphorylation sites. The three Akt isomers exhibit
high sequence similarity and structural resemblance, with Akt1 and
Akt2 showing broader expression in mammals (He et al., 2021).

2.3 Mechanisms of PI3K/Akt pathway
activation

Common mechanisms of PI3K activation involve the activation
of receptor tyrosine kinase under physiological conditions. This
leads to the phosphorylation of tyrosine residues and their
subsequent binding to one or both SH2 domains of the PI3K
splice subunit, resulting in allosteric activation of the PI3K
catalytic subunit (Fruman et al., 2017). Additionally, activation of
GPCR leads to allosteric activation of PI3K (Rathinaswamy et al.,
2021). PI3K activation causes the transformation of PIP2 into
PIP3 inside the plasma membrane, which binds specifically to the
pleckstrin homlogy (PH) domain of two proteins, PDK-1 and Akt/
PKB, to mediate PI3K signaling (Carnero et al., 2008).

The PI3K-dependent activation mechanism of Akt involves
the interaction of Akt with PIP3, leading to its translocation to
the medial membrane where its Thr308 and Ser473 sites become
exposed. PDK1 phosphorylates Akt’s Thr308 site, serving as the
initial step in Akt activation. Subsequently, PDK2 phosphorylates
the Ser473 sites, located at the hydrophobic carboxyl group’s end,
to achieve maximal Akt activation (Cole et al., 2019). Once fully
activated, Akt phosphorylates downstream target proteins,
thereby regulating various cellular functions such as
angiogenesis, metabolism, growth, proliferation, protein
synthesis, transcription, and apoptosis (Hemmings and
Restuccia, 2015).

2.4 Regulation of the PI3K/Akt pathway

The PI3K/Akt signaling pathway is regulated by various factors,
particularly a group of phosphatases that exert negative regulatory
effects. These phosphatases include phosphatase and tensin
homologues (PTEN), protein phosphatase 2 (PP2A), and protein
phosphatase in the PH domain rich in repeated sequences of leucine
(PHLPP1/2). PTEN plays a crucial role as an upstream component
of the PI3K/Akt signaling pathway. It catalyzes the specific
dephosphorylation of PIP3 to produce PIP2, thereby exerting a
negative regulatory effect on Akt activation (Viennet et al., 2023).
Additionally, Inositol polyphosphate 4-phosphatase type II
(INPP4B) inhibits Akt signaling by dephosphorylating PIP2 into
PIP (Gewinner et al., 2009). PP2A, a trimeric protein, combats Akt
signaling by selectively inhibiting phosphorylation of Akt’s
Thr308 site (Zhang Y. et al., 2022) and dephosphorization of
Akt’s Ser473 site (Hwang et al., 2013). PHLPP1/2 primarily
dephosphorylates Akt at Ser473 sites. Activation of the PI3K
pathway leads to stable levels of PHLPP1 and a surge of
PHLPP2, both of which attenuate Akt signaling (Chen et al.,
2011). Therefore, in the absence of PTEN, PHLPP2 replaces its
role in attenuating the output of the PI3K/Akt pathway (Figure 1)
(Chen et al., 2014).
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3 The PI3K/Akt signaling pathway and
its role in the pathogenesis of COPD

3.1 The interplay between inflammation and
oxidative stress in the pathogenesis of COPD

Increasing evidence suggests that inflammation and oxidative
stress are interconnected pathophysiological processes (Biswas,
2016). In COPD, activated inflammatory cells in the lungs release
numerous inflammatory factors that trigger the production of
oxygen free radicals, leading to oxidative stress (Guo et al., 2022).
Moreover, oxidative stress can amplify lung inflammation by
activating multiple signaling pathways within the cells (Barnes,
2022). This closely intertwined process frequently coexists across
various chronic diseases, in addition to COPD (Neves et al., 2021),
there are inflammatory bowel disease (Tian et al., 2017), alcoholic
liver disease (Yang et al., 2022), diabetes (Grabež et al., 2022),
neuroinflammatory disease (Xue et al., 2019) and other chronic
inflammatory diseases.

3.2 The PI3K/Akt pathway and inflammation
in COPD

COPD is a progressive inflammatory lung condition caused by
the inhalation of cigarette smoke and other toxic external particulate
matter, such as air pollution and biomass fuels. Chronic
inflammation of the small airways, known as bronchiolitis, serves
as the primary catalyst for COPD development (Brightling and
Greening, 2019). Various cytokines secreted by alveolar
macrophages, neutrophils, T lymphocytes, B lymphocytes, and
structural cells like epithelial, endothelial, and fibroblasts
contribute to this inflammatory response (Barnes, 2016). Recent

research indicates that smoking acts as an initial trigger for
activating innate immune system cells, with tobacco smoke
stimulating the PI3K/Akt pathway and exacerbating the
inflammatory response in monocytes. Furthermore, elevated PI3K
signaling has been linked to sustained inflammation in individuals
with COPD, just as shown in Figure 2 (Lee et al., 2018).
Furthermore, inflammation underlies significant complications in
COPD, including heart and lung diseases, respiratory failure, and
cancer (Byrne et al., 2015).

Zhang et al. (2017) discovered that PI3K signaling was activated
in alveolar macrophages of COPD mice, leading to a significant
increase in pro-inflammatory cytokines such as TNF-α, IL-1β, and
IL-6, thereby enhancing inflammatory responses. Subsequent
studies demonstrated that activation of the PI3K/Akt signaling
pathway promoted polarization of macrophages in COPD from
M1 to M2 phenotypes. The ratio of M1 to M2 macrophages
following monocyte polarization has been linked to various
inflammatory diseases (Zhang et al., 2023), and an elevated ratio
of M2 macrophages has been implicated in lung inflammation (Lu
et al., 2017). Neutrophil infiltration in the submucous membrane of
the airway is the main driver of airway inflammation in COPD and is
regulated by helper T cells 17 (Th17) and macrophages.
Macrophages secrete inflammatory mediators that act as chemical
inducers, increasing neutrophil infiltration in the airways and
promoting lung injury and inflammatory responses in COPD
patients (Holl et al., 2013). It is now evident that inflamed
airways are exposed to hypoxia, triggering neutrophil
degranulation and enhancing their potential for tissue damage.
Hoenderdos et al. (2016) discovered that inhibiting the PI3K
signaling pathway contributes to the suppression of neutrophil
degranulation, suggesting that PI3K plays a crucial role in this
process. Additionally, inhibiting Akt phosphorylation had no
impact on degranulation regulation, implying that heightened

FIGURE 1
Transduction and regulatory pathways of PI3K/Akt pathway. Activation of growth factor receptor tyrosine kinase (RTK) and G-protein-coupled
receptors (GPCRs) led to the activation of the PI3K catalytic subunit. Activated PI3K promotes the conversion of PIP2 to PIP3 in the medial membrane, a
function that can be reversed by phosphatase and tensin homologues (PTEN). PIP3 activates Akt signaling by specifically binding to the pleckstrin
homlogy (PH) domain of both PDK-1 and Akt proteins. Protein phosphatase 2 (PP2A) and the PH domain are rich in leucine repeats of the protein
phosphatase (PHLPP1/2), negatively regulating the PI3K/Akt pathway.
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neutrophil reactivity is a result of early PI3K/Akt signaling.
Yanagisawa et al. (2017) demonstrated that PI3K signaling is
more active in bronchial epithelial cells of COPD patients. In
contrast, the negative regulator of PI3K, PTEN, is frequently
mutated or absent in the airway epithelial cells of smokers.
Knockdown of PTEN leads to significant Akt phosphorylation
and increased secretion of pro-inflammatory cytokines (e.g., IL-6,
IL-B-induced CXCL8, etc.). Hence, activating PTEN could be an
effective approach to impede the progression of COPD.

3.3 The role of the PI3K/Akt pathway in
COPD oxidative stress

Oxidative stress arises from an imbalance between free radicals
and antioxidants, playing a significant role in inflammatory diseases
(Dandekar et al., 2015). Free radicals can originate from activated
inflammatory cells, structural cells, cigarette smoke, indoor and
outdoor air pollution, among other sources (Valavanidis et al.,
2013). COPD is a progressive respiratory disease where
inflammatory and structural cells in the lungs release reactive
oxygen species (ROS) and reactive nitrogen species (RNS),
inducing endogenous oxidative stress during the early stages of
the disease. The imbalance between free radicals and antioxidants

further exacerbates ROS release (Boukhenouna et al., 2018). Thus,
the elevation of oxidative stress persists even after COPD patients
stop smoking. This oxidative damage results in endogenous tissue
and cellular damage, ultimately leading to chronic inflammation and
aging (Barnes et al., 2019). A growing body of research has
demonstrated the involvement of the PI3K/Akt/mTOR signaling
pathway in promoting lung cell senescence and oxidative stress
(Xiaofe et al., 2022), This suggests that blocking the PI3K/Akt
pathway as a means to inhibit oxidative stress could hold
promise as a therapeutic strategy for COPD patients.

Recent studies have reported a significant reduction of
SIRT1 and SIRT6, which are anti-aging molecules, in the lungs
of COPD patients (Zhang XY. et al., 2022). Oxidative stress serves as
the primary regulator of these proteins’ expression (Lakhdar et al.,
2018). Inhibition of the PI3K signaling pathway, as demonstrated by
Baker et al. (2016), significantly enhances the expression of
SIRT1 and SIRT6 while reversing oxidative stress. Additionally,
the knockout of PTEN, which inhibits PI3K signaling, resulted in
reduced levels of SIRT1 and SIRT6. Studies by Xie S et al. (Xie and
Wang, 2022) have shown that cigarette smoke extract downregulates
the expression of CRYAB, a recognized anti-apoptotic protein, in
the alveoli of COPD mice. Furthermore, overexpression of CRYAB
inhibits oxidative stress, delays the activation of the PI3K/Akt
signaling pathway, and reduces apoptosis. Oxidative stress also

FIGURE 2
Role of PI3K /Akt in COPD regulation. The activation of PI3K/Akt is involved in COPD formation and can exacerbate COPD progression through
inflammatory and oxidative stress. Specifically, activated PI3K/Akt promotes the release of ROS, as well as promotes the secretion of multiple pro-
inflammatory cytokines by alveolar macrophages, neutrophils, T-lymphocytes, and epithelial cells to participate in COPD pathogenesis. Moreover, small
molecule inhibitors targeting the PI3K/Akt signaling pathway can treat COPD through inhibiting oxidative stress and inflammation.
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affects histone deacetylase (HDAC) activity. HDAC, a
glucocorticoid functional protein, is frequently associated with
glucocorticoid resistance in COPD patients (Rossios et al., 2012),
Marwick et al. (2009) found reduced HDAC activity in COPD mice,
and knockout of PI3K restored the activity of this enzyme.
Consequently, inhibiting the PI3K pathway reinstates histone
activity in the presence of oxidative stress-induced glucocorticoid
resistance. This restoration, in turn, revives the anti-inflammatory
properties of glucocorticoids, leading to a positive inhibition of
COPD progression.

4 Potential drug targeting PI3K/Akt for
COPD

The pathogenesis of COPD is unclear and is commonly
linked to inflammation, oxidative stress and reduced immune
function. Current treatments include medication, oxygen therapy
and rehabilitation therapy to improve symptoms of airflow
restriction caused by reduced lung function (Wang et al.,
2020). However, these methods have done little to prevent the
progression of COPD disease. Common COPD drugs include
beta 2 receptor agonists, anticholinergic drugs, and
glucocorticoids. However, chronic inhalation of beta
2 receptor agonists may have adverse cardiovascular and
metabolic effects (Vanfleteren et al., 2018). There are a
number of side effects associated with anticholinergic drugs,
including the dry mouth, blurred vision, and postural
hypotension. Glucocorticoids negatively affect the
hypothalamic-pituitary-adrenal axis and most COPD patients
are insensitive to glucocorticoids. Therefore, there is an urgent
need to find novel molecular targeted therapeutics for COPD.

4.1 Application of PI3K inhibitors in COPD
treatment

PI3K is a signaling cascade component downstream of multiple
cell receptors. Among the three subtypes of PI3K (α, γ and δ), PI3Kα
is critical for airway inflammation and angiogenesis (Chen et al.,
2021), while Pl3Kγ is pro-inflammatory and involved in
inflammatory cell recruitment (Heit et al., 2008) and PI3Kδ
contributes to corticosteroid resistance (To et al., 2010).

Wortmannin, a PI3K inhibitor with low substrate specificity.
Significantly reduced the activity of neutrophils elastase (NE) and
matrix metalloproteinase-9 (MMP-9) released by airway
neutrophils in COPD mice and decreased neutrophils
inflammation (Vlahos et al., 2012). In addition, Wortmannin
induced differentiation of alveolar epithelial stem cells in COPD
mice to repair the alveoli and restore respiratory function
(Horiguchi et al., 2015). LY 294002 (a non-selective PI3K
inhibitor) significantly restored sensitivity to corticosteroids in
PBMC cells from COPD patients, but had no effect on the
production of the inflammatory factor IL-8. In addition, LY-
294002 inhibits the expression of intercellular adhesion
molecule −1(ICAM-1) in COPD patients, mediating monocyte/
macrophage adhesion and infiltrating inflammatory sites (Liu
et al., 2018).

Bewley et al. (2016) found that NVS-PI3K-2 (PI3Kα specific
inhibitor), NVS-PI3K-3 (PI3Kδ specific inhibitor) and NVS-PI3K-5
(PI3Kγ specific inhibitor) suppressed lung inflammation and
bacterial colonization in COPD patients. Alveolar macrophages
play a significant role in clearing bacteria and small apoptotic
bodies. However, these inhibitors do not alter the phagocytosis of
alveolar macrophages, i.e., do not negatively affect innate immunity
of COPD macrophages. Similarly, lower concentrations of
theophylline (PI3Kδ specific inhibitors) can target PI3K to
reverse oxidative stress-induced corticosteroid resistance and
suppress lung inflammation in COPD mice exposed to cigarette
smoke (To et al., 2010). In addition, IC-87114, a PI3Kδ specific
inhibitor, inhibits neutrophils recruitment and restores
corticosteroid sensitivity impaired under oxidative stress by
inhibiting PI3K signaling (Rossios et al., 2012). Wang et al.
(2019) and others demonstrated that IL-1α and IL-1β expression
in human bronchial epithelial cells (HBEC) were significantly
upregulated in mucin protein Muc-5ac associated with high
mucin secretion, and PIK-75 (PI3Kα specific inhibitor)
significantly inhibited PM-induced inflammation and mucin
hypersecretion in HBEC, while AS-252244 (PI3Kγ specific
inhibitor) and IC-87114 did not. Small molecule inhibitors
targeting the PI3K/Akt signaling pathway treat COPD through
inhibiting oxidative stress and inflammation, as shown in Figure 2.

4.2 Application of Akt inhibitors in COPD
treatment

It is thought that Akt is a central regulator of the molecular
pathways involved in smoking-related diseases, particularly COPD.
MK-2206 (Akt variant non-ATP competitive inhibitor), an
anticancer agent that inhibits all Akt subtypes, is commonly used
to synergistically enhance the anti-tumor efficacy of certain
molecular targeted drugs (Yap et al., 2011). Jiang et al. (2018)
found that MK-2206 reversed changes in markers involved with
epithelial mesenchymal transition (EMT) in the lung epithelium of
smoking mice. EMT is positively associated with an invasive or
metastatic phenotype of COPD (Zhang et al., 2016), so MK-2206
inhibits COPD. In addition, MK-2206 pretreatment inhibited IL-1α
and IL-1β and Muc-5ac expression (Wang J. et al., 2019), and also
protected the diaphragm in COPD mice induced by hypoxia
pretreatment (Chuang et al., 2018). In addition, GSK690693
(ATP-competitive pan-Akt inhibitor) significantly inhibited IL-8
induced apoptosis in inflammatory diaphragm cells (Wang L. et al.,
2019). Akt inhibitors are currently understudied and underused in
COPD diseases, and more recently, Akt-negative dominant mutant
(Akt-DN) transfected cells from Lin CH et al. (Lin et al., 2020) have
been shown to inhibit the Akt pathway and IL-8 secretion in human
lung epithelial cells.

4.3 Others

In addition to some of these molecular targeted drugs, natural
compounds, traditional Chinese medicine formulations, and some
anti-inflammatory agents also inhibit the progression of COPD by
inhibiting the PI3K/Akt pathway. It has been shown recently that
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puerarin can relieve over-oxidation in cells (Zhang P. et al., 2022).
Wang L. et al. (2022) found that puerarin reverses apoptosis in
HBEC stimulated by cigarette smoke extract (CSE) via the PI3K/Akt
signaling pathway. Icariin is one of the active components of Bufei
Yishen formula, which can inhibit the mucus hypersecretion in
COPD rats (Li J. et al., 2020). Icariin in combination with Nobilitin
has a positive therapeutic effect on COPD by improving lung
inflammation and emphysema and reducing lung pathological
damage in COPD rats via the PI3K/Akt pathway (Lu et al.,
2022). At the same time, Scutellaria has a reverse effect on lung
pathologic injury induced by smoking in COPD rats (Xu et al.,
2018). Crocin, the active ingredient in crocus, significantly inhibits
the number of neutrophils and macrophages and the concentration
of pro-inflammatory cytokines in COPD mice by modulating the
PI3K/Akt-mediated inflammatory pathway (Xie et al., 2019).

As a vital component of complementary alternative medicine,
TCM is considered to play its pharmacological role via its multi-
component, multi-target, and multi-pathway properties (Ren et al.,
2019). Notably, Bu-Shen-Fang-Fang-Chuan formula (BSFCF), a
commonly used formula for treating COPD in China, attenuates
the inflammatory response to COPD by inhibiting PI3K/Akt-
Nrf2 and PI3K/Akt-NF-κB (Li Q. et al., 2020). Xuefu Zhuyu
Decoction (XFZYD) is also widely used in the treatment of
COPD, and (Hu et al., 2022) and others have found that XFZYD
is effective in the treatment of COPD by interfering with the PI3K/
Akt signaling pathway, improving oxidative stress and inflammatory
responses, and relieving airway remodeling and ventilation
disorders through web-based pharmacology and molecular
docking experiments. In addition, Tiaobu Feishen (TBFS) was
observed to reverse lung inflammation and airway remodeling (Li
et al., 2012), Zhou et al. (2023) observed that TBFS has more
effective in glucocorticoid-resistant COPD patients by modulating
PI3K/Akt signaling to improve glucocorticoid resistance.

Anti-inflammatory agents that interfere with the PI3K/Akt
pathway also have significant potential to improve COPD steroid
resistance. Macrolides may reduce lung inflammation in COPD by
modulating the PI3K/Akt pathway, such as erythromycin, which
enhances corticosteroid sensitivity by inhibiting the activity of the
PI3K/Akt pathway (Miao et al., 2015; Sun et al., 2015).
Solithromycin (SOL, CEM-101), a macrolide/fluoronolactone that
inhibits airway neutrophils in steroid-insensitive mice, is an effective
anti-inflammatory agent for COPD treatment (Kobayashi et al.,
2013). The statin simvastatin improves lung remodeling by reversing
epithelial mesenchymal transition in alveolar epithelial cells. This
effect is mediated by inhibition of the PI3K/Akt pathway (Milara
et al., 2015). In addition, the tricyclic antidepressant nortriptyline
can also increase corticosteroid sensitivity. Mercado et al. (2011)
found that nortriptyline pretreatment inhibited Akt
phosphorylation and PI3K activity, restoring oxidative stress-

induced corticosteroid sensitivity as a potential treatment for
respiratory diseases such as COPD that are corticosteroid
insensitive.

5 Conclusion

The morbidity and mortality rates associated with COPD
remain substantial, posing numerous challenges for healthcare
professionals involved in COPD interventions. There is a
growing body of evidence indicating the therapeutic potential of
the PI3K/Akt signaling pathway, particularly different PI3K
isoforms, in the treatment of COPD. Several non-specific PI3K
inhibitors have demonstrated anti-inflammatory and antioxidant
effects in COPD models. However, most broad-spectrum PI3K
inhibitors exhibit greater genotoxicity, whereas PI3K subtype-
specific inhibitors offer the desired therapeutic properties with
reduced side effects. This may provide guidance for subsequent
drug development targeting PI3K/Akt. In conclusion, there is an
urgent need for further insights into the key regulatory mechanisms
of the PI3K/Akt pathway in COPD development, as well as the
exploration of safer and more effective therapeutic strategies derived
from this approach.
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