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Backgrounds: Brain metastases occur in approximately 30% of patients with non-
small-cell lung cancer (NSCLC). Therefore, the free drug concentration in
cerebrospinal fluid (CSF) is strongly associated with the clinical efficacy.

Purpose: The present study aimed to develop physiologically based
pharmacokinetic (PBPK) models that can predict the steady-state trough
concentration (Ctrough) in plasma and CSF, as well as anaplastic lymphoma
kinase (ALK) occupancy (AO), for three inhibitors: crizotinib (CRI), alectinib
(ALE), and lorlatinib (LOR).

Methods: To achieve this, population PBPK models were successfully developed
and validated using multiple clinical pharmacokinetics (PK) and drug–drug
interaction (DDI) studies, both in healthy subjects and patients.

Results: The prediction-to-observation ratios for plasma AUC, Cmax, and Ctrough in
heathy subjects and patients ranged between 0.5 and 2.0. In addition, PK profiles
of CRI, ALE, and LOR in CSF aligned well with observed data. Moreover, the AUC
and Cmax ratios of the three inhibitors when co-administered with
CYP3A4 inhibitors/inducers also matched with clinically observed values.
Utilizing PK thresholds for effective plasma Ctrough and AO values on wild-type
and four ALK mutations in plasma and CSF, PBPK models were then combined
with the mean and 95% confidence interval to predict optimal dosing regimens.

Conclusions: Overall, these PBPK models provide valuable insights into
determining appropriate dosing regimens for the three ALK inhibitors,
understanding their effectiveness in brain metastasis therapy, and analyzing the
underlying mechanisms of on-target resistance.
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1 Introduction

Lung cancer is the leading cause of global cancer-related deaths,
accounting for approximately 18.4% of all cancermortality worldwide
in 2018 (Thandra et al., 2021). Non-small-cell lung cancer (NSCLC)
constitutes more than 80% of all lung cancer cases (Fujimoto et al.,
2019). The anaplastic lymphoma kinase (ALK) gene was first
identified as a lung oncogene in 2007 (Lei et al., 2022). The
reported incidence of ALK-positive NSCLC ranges from 3% to 7%
(Gower et al., 2020). A clinical study has demonstrated that cancer
cells carrying an ALK rearrangement (ALK-positive) are sensitive to
ALK inhibition (Shaw et al., 2011). In addition, brain metastases have
been reported to occur in approximately 30%–40% of ALK-positive
NSCLC patients (Zou et al., 2022).

Crizotinib (CRI) is a first-generation ALK inhibitor that received
the FDA approval in 2011 for the treatment of ALK-positive NSCLC
(OBryant et al., 2013). The recommended dosage for patients is 250 mg
orally twice daily (BID) (Food and Drug Administration FDA, 2011a).
CRI is predominantly metabolized by cytochrome P450 (CYP3A4),
accounting for 99.4% based on findings from a recombinant expressed
CYP isoform experiment (Food andDrugAdministration FDA, 2011a).
PF-06260182 is the only identifiedmetabolite accounting for more than
10% in vivo (Food and Drug Administration FDA, 2011a). However, in
contrast to CRI, PF-06260182 exhibits approximately 3- to 8-fold less
potency against ALK (Food and Drug Administration FDA, 2011a).
Furthermore, CRI binds to human plasma albumin to a degree of 91%
(Food and Drug Administration FDA, 2011a). Studies have shown a
low penetration rate of CRI into the cerebrospinal fluid (CSF) in
humans (Metro et al., 2016). Alectinib (ALE) is a second-generation
ALK inhibitor and the first one approved in 2017 for the therapy of
ALK-positive NSCLC with brain metastases (Herden and Waller,
2018). The recommended dosage is 600 mg orally twice daily (BID)
(Herden and Waller, 2018). ALE is primarily metabolized by
CYP3A4 to its active metabolite M4, which accounts for
approximately 40% of ALE metabolism (Food and Drug
Administration FDA, 2011b). M4 exhibits potent activity against
human recombinant ALK, with an IC50 value comparable to ALE
(Food and Drug Administration FDA, 2011b). Both ALE and M4 are
bound to human plasma albumin bymore than 99%, regardless of their
concentrations (Food and Drug Administration FDA, 2011b).
Although ALE has a good ability to cross the blood–brain barriers,
as evidenced by an unbound CSF to unbound plasma ratio of 20%–50%
(Food and Drug Administration FDA, 2011b), studies have shown that
it has low penetration into the CSF. The unbound CSF concentrations
of ALE range from 0.2% to 0.5% of the total ALE concentration in the
plasma. Lorlatinib (LOR) is the third-generation ALK inhibitor and was
approved in 2018 for the treatment of patients with ALK-positive
metastatic NSCLS (Syed, 2019). The in vitro experiment showed that
LOR is mainly metabolized by CYP3A4 and UGT1A4, with minor
contributions from CYP3A5, CYP2C8, CYP2C19, and UGT1A3 (Food
and Drug Administration FDA, 2011c). Metabolite M8 accounts for
21% of human plasma radioactivity (Food and Drug Administration
FDA, 2011c). However, M8 is pharmacologically inactive (Food and
Drug Administration FDA, 2011c). LOR exhibits moderate binding to
serum albumin and α1–acid glycoprotein, with a plasma protein
binding of 66% (Food and Drug Administration FDA, 2011c). LOR
demonstrated high penetration into CSF, with concentrations as high as
approximately 75% of those in plasma (Singh and Chen, 2020).

To date, multiple types of ALKmutations have been identified. Of
these ALK mutations, ALKL1196M, ALKG1269A, and ALKG1202R are the
most common mutations in patients, and ALKG1202R confers high-
level resistance to almost all of the ALK inhibitors (Shaw et al., 2017).
The brain was the most common single site of disease progression
after CRI treatment (Shaw et al., 2017). For an ALK inhibitor to be
effective, it must cross the blood–brain barrier to reach target cell with
sufficient free concentration. Therefore, the efficacy of ALK inhibitors
in addressing brain metastasis development in NSCLC patients is
influenced by two potential significant factors: activity against ALK
mutations and a high penetration rate into CSF.

For continuous dosing of medications to be effective, maintaining a
sufficient plasma trough concentration (Ctrough) at the steady state is
crucial for optimal clinical efficacy. Clinical studies have established
Ctrough thresholds for certain drugs: ≥1,000 ng/mL for imatinib (Picard
et al., 2007) and ≥32 μg/mL for pazopanib (Wu et al., 2022). These
thresholds are associated with favorable clinical outcomes. In addition,
the level of kinase occupancy has been shown to strongly correlate with
the overall response rate (ORR). For example, a clinical study
demonstrated that achieving >90% Bruton’s tyrosine kinase (BTK)
occupancy by acalabrutinib resulted in an ORR exceeding 80% (Food
and Drug Administration FDA, 2011d). Similarly, another study found
that achieving at least >75% ALK occupancy by CRI is necessary for
clinically effective treatment. Therefore, the plasma Ctrough level and
ALK occupancy play important roles in determining the clinical
efficacy. Furthermore, high Ctrough levels in CSF and significant
intracranial ALK occupancy can suggest greater effectiveness in the
clinical therapy of brain metastases in NSCLC patients.

Physiologically based pharmacokinetic (PBPK) modeling is a
promising tool to predict the Ctrough at the steady state in human
plasma and CSF. This approach has been extensively used to predict
human plasma and tissue concentrations (Yamamoto et al., 2017;
Adiwidjaja et al., 2022) as well as the target occupancy (Xu et al.,
2022). However, the current PBPKmodels lack the ability to directly
simulate the concentration in CSF. As an alternative, the free
concentration in the interstitial fluid of brain tissue is simulated
to approximate the concentration in CSF. The main objectives of the
present work are as follows:

(i) To develop PBPK models for CRI, ALE, and LOR in both
healthy individuals and cancer patients.

(ii) To develop ALK occupancy models in plasma and CSF for CRI,
ALE, and LOR.

(iii) To simulate Ctrough and ALK occupancy at the steady state in
plasma and CSF and predict drug–disease interaction outcomes
for brain metastasis patients.

2 Materials and methods

2.1 Physiologically based pharmacokinetic
model development

2.1.1 Healthy physiologically based
pharmacokinetic model

Whole-body PBPK models were developed using PK-Sim®
(version 11.1, Bayer Technology Services, Leverkusen, Germany)
for three ALK inhibitors (CRI, ALE, and LOR) in healthy subjects.
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TABLE 1 Physiologically based pharmacokinetic input parameters of crizotinib, alectinib, and lorlatinib used in the simulations using PK-Sim.

Property
(Unit)

CRI ALE M4 LOR

MW (g·mol-1) 450.3 482.6 456.6 406.4

Basic pKa 5.6, 9.4 (Food and Drug
Administration FDA, 2011a)

7.2 (Alsmadi et al., 2021) 7.35 (Food and Drug
Administration FDA,

2011b)

4.9 (Food and Drug Administration FDA,
2011c)

Log P 4.28 (Food and Drug
Administration FDA, 2011a)

4.69 (Alsmadi et al., 2021) 4.69 (assigned) 2.47 (Food and Drug Administration FDA,
2011c)

Solubility
(mg·mL-1)

0.74 (pH6.5) (Christina Fink et al.,
2020)

0.023 (FaSSIF, pH6.5) (Alsmadi et al., 2021) - 0.11 (Damoiseaux et al., 2022)

Intestinal
permeability
(cm·s-1)

Papp:16✕10−6 (Di et al., 2020) Papp 1.88✕10−6 (Alsmadi et al., 2021) - Papp: 28✕10−6 (Food and Drug
Administration FDA, 2011c)

fup/fup′a 0.093/0.13 (Food and Drug
Administration FDA, 2011a)

0.003/0.004 (Food and Drug
Administration FDA, 2011b)

0.006/0.009 (Food and
Drug Administration

FDA, 2011b)

0.34/0.43 (Food and Drug Administration
FDA, 2011c)

Rbp/Rbp’
a 1.1/1.2 (Food and Drug

Administration FDA, 2011a)
2.6/3.0 (Food and Drug Administration

FDA, 2011b)
2.5/2.8 (Food and

Drug Administration
FDA, 2011b)

0.99/1.1 (Food and Drug Administration
FDA, 2011c)

CLR (L/h) GFR*fup

GFR fraction 1.0 (default)

KIA scale 5.0 (optimized) 2.0 (optimized) 0.5 (optimized) 3.0 (optimized)

KIR scale 1.0 2.0 (optimized) 0.5 (optimized) 1.0

Weibull time (min) 45 (optimized) 60 (optimized) - 30 (optimized)

Weibull shape 0.92 (default)

Metabolic parameters

CLint3A4 (μL/
min/mg
protein)

103
(Yamazaki
et al., 2015)

CLint3A4 (μL/
min/pmol)

9.98 (Food and Drug
Administration FDA,

2011b)

1.71 (Food and Drug
Administration FDA,

2011b)

Converting to M6 (calculated)

CLint P-gp (μL/
min/million

cells-1)

1.49
(calculated)

[24]

Unspecified HLM
CLint (μL/min/mg

protein)

1710 (Food and Drug
Administration FDA,

2011b)

1330 (Food and Drug
Administration FDA,

2011b)

CYP3A4 Vmax

(pmol/min/mg)
3.10 (Food and Drug
Administration FDA,

2011c)

P-gp Km (μM) 8.5
(optimized)

CLa (L/h/kg) 0.28 (calculated) 0.42 (optimized) CYP3A4 Km

(μM)
2.12 (Food and Drug
Administration FDA,

2011c)

Converting to M2a, CLint (μL/min/mg)

CYP3A4 0.042

CYP3A5 0.11

CYP2C8 0.20

CYP2C19 0.05

Converting to M1a, CLint (μL/min/mg)

UGT1A3 0.012

UGT1A4 0.10

Concentration
(μM/L liver tissue)

Metabolism
enzymes

Default: CYP3A4/CYP3A4′a:4.32/3.02; CYP3A5:0.04; CYP2C8:2.56; CYP2C19/CYP2C19′a:0.76/0.51 (calculated); UGT1A3/A4:0.53/
0.25 (calculated)

Transporters Calculated: P-gp: 0.68

(Continued on following page)
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The developed PBPKmodels were utilized to retrospectively analyze
the PK data of CRI, ALE, and LOR in healthy individuals.

The PBPK model is constructed by connecting tissue
compartments using the blood flow rate. It includes essential
components such as the gastrointestine, arterial supply, and venous
return of blood. Tissues with elimination functions, like the liver and
kidney, are included, whereas non-eliminating tissues like the lung are
also considered. To account for the transfer of drugs between
compartments, the model incorporates permeability-limited
perfusion, which assumes that the distribution of a drug within
each tissue is primarily governed by its permeability across the
tissue barriers. The Weibull times of ALE and LOR were
optimized using in vitro dissolution profiles from the study (Food
and Drug Administration FDA, 2011c; Kato et al., 2020). TheWeibull
time of CRI was optimized using the PK-Sim method based on its
plasma concentration–time profiles. Human tissue distribution was
described using Rodgers and Rowland’s methods, whereas cellular
permeability was determined using the standard PK-Simmethod. The
KIA scale (intracellular space-to-plasma partition) was optimized to
values of 5.0, 2.0, and 3.0 for the three inhibitors to better describe
their distribution based on their respective PK profiles and
distribution volumes. The PK-Sim model divided the brain tissue
compartment into four sub-compartments: plasma, blood cells,
interstitial, and intracellular space. The distribution across the
capillary membrane is assumed to incorporate permeability-limited
perfusion. In a previous PBPK study (Diestelhorst et al., 2013), the
concentration in the interstitial sub-compartment was assumed to
represent that in the CSF. In this study, to predict the free
concentration of three inhibitors in the CSF, the unbound
concentration in interstitial fluid is also assumed to be equal to the
free concentration in the CSF. In addition, the KIR scale (interstitial
space-to-plasma partition) was optimized to be a value of 2.0 for ALE,
whereas CRI and LOR were assigned a value of 1.0 for this parameter.

The clearance of ALK inhibitors primarily occurs through
hepatic metabolism, and most intrinsic clearance (CLint)

parameters were obtained from references (see Table 1). In the
case of CRI, its efflux transport is described by its intrinsic transport
velocity (CLint). The CLint P-gp (P-glycoprotein) value for CRI was
estimated to be 1.9 μL/min/million cells-1 based on the Peff (effective
permeability) data from transfected MDCKII with huABCB1 (Tang
et al., 2014). The total hepatic clearance (CL) of ALE was estimated
to be 34.5 L/h (Morcos et al., 2017a). In addition, the additional
plasma clearance (CLa) was calculated to be 0.28 L/h/kg using the
formula derived by Simulations-Plus (2019). For LOR, CLint is scaled
using Eq. 1:

CLint � MV × ISEF, (1)
where MV is the original metabolic velocity (pmol/min/pmol

enzyme), ISEF represents intersystem extrapolation factor, and ISEF
values were used at 0.21 for CYP3A4, 0.12 for CYP3A5, 1.41 for
CYP2C8, 0.25 for CYP2C19, and 0.077 for UGT1A3 and
UGT1A4 according to the literature works (Food and Drug
Administration FDA, 2011c; Conner et al., 2019).

In three PBPK models, six metabolizing enzymes (see Table 1)
and one transporter (P-gp) were included. The reference
concentrations of UGT1A3/1A4 and P-gp have not been
integrated into the PK-Sim expression database. In PK-Sim, the
reference concentration of CYP enzymes or transporters is
represented as the concentration per unit volume in the liver
(μM/L). Therefore, the reference concentration of UGT1A3/
1A4 in the liver was calculated by Eq. 2:

UGT1A3/4 concentration � UGT1A3/4 abundance✕mgCYP protein
/g liver)/liver volume), (2)

where UGT1A3/4 abundance (pmol/mg protein) values were
assigned to be 15.3 and 44.3 from the study by Reddy et al. (2021)
and protein abundance (mg protein/g liver) was set at 45.0 according
to the study by Qian et al. (2019). The default values of liver weight
and volume in PK-Sim were used.

TABLE 1 (Continued) Physiologically based pharmacokinetic input parameters of crizotinib, alectinib, and lorlatinib used in the simulations using PK-Sim.

Property
(Unit)

CRI ALE M4 LOR

Interactions

Ki CYP3A4 (μM) 1.9 (mean value) (Food and Drug
Administration FDA, 2011a;

Yamazaki et al., 2015)

8.3 (Food and Drug Administration FDA,
2011b)

7.0 (Food and Drug
Administration FDA,

2011b)

328.2 (Food and Drug Administration
FDA, 2011c)

kinact CYP3A4 (h
-1) 6.6 (Food and Drug

Administration FDA, 2011a)
3.7 (Food and Drug Administration FDA,

2011b)
3.7 (Food and Drug
Administration FDA,

2011b)

-

Ki P-gp (μM) 7.8 (Eliesen et al., 2017) - - -

EC50

CYP3A4 (μM)
0.24 (optimized) (Yamazaki et al.,

2015)
1.0 (optimized) (Food and Drug Administration FDA, 2011b) 0.29 (Food and Drug Administration FDA,

2011c)

Emax CYP3A4 10.4 (optimized) 3.5 (optimized) (Food and Drug Administration FDA, 2011b) 5.99 (Food and Drug Administration FDA,
2011c)

aValues in healthy subjects and NSCLC patients, respectively.

-, no data; MW, molecular weight; basic pKa, base dissociation constant; log P, lipophilicity; fup, free fraction in plasma; Rbp, blood-to-plasma concentration ratio; CLR, renal clearance; GFR

fraction, fraction of filtered drug in the urine; GFR, glomerular filtration rate; KIA, intracellular space-to-plasma partition; KIR, interstitial space-to-plasma partition; CLa, additional plasma

clearance; Weibull time, dissolution time of 50% drug; Weibull shape, shape parameter of Weibull function; CLint 3A4, intrinsic clearance for CYP3A4; HLM CLint,u, intrinsic clearance for

human liver microsome; CLint P-gp, transport rate by P-gp; Vmax, maximum metabolism velocity; Km, Michaelis–Menten; Ki, 50% maximal inactivation rate; kinact, maximum rate of

inactivation; EC50, inducer concentration required to achieve 50% inductive effect; Emax, maximum inductive effect for CYP3A4.
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The expression level of P-gp in brain tissue was determined
based on the relative expression percentage. Reference
concentration of P-gp in the liver is calculated by Eq. 3:

P-gpconcentration � P-gpabundance✕organweight✕Ratio/liver volume.

(3)

In the current paper (Couto et al., 2020), the abundance of P-gp
was experimentally determined only in the human intestine, where it
was found to be 1.60 pmol/mg tissue. Consequently, the weight of
the intestinal tract was used as an approximation for the reference
concentration of P-gp in the liver. The ratio is 0.56 (relative
expression ratio of liver-to-intestine). By considering the
reference concentration and relative expression in the brain, the
expression of P-gp in brain tissue is then converted accordingly.
Moreover, based on the literature works, CYP abundances in PK-
Sim were set at 137, 103, 24, 14, 15, and 44 pmol/mg protein for
CYP3A4, 3A5, 2C8, 2C19 (Food and Drug Administration FDA,
2011c), UGT1A3, and UGT1A4 (Reddy et al., 2021), respectively.

2.1.2 Diseased physiologically based
pharmacokinetic model

In the diseased PBPK model, the overall structure remains the
same as the healthy PBPK model described earlier. However, certain
modeling parameters were adjusted based on relevant published
articles for populations with cancer. The specific changes are as
follows: ➀downregulation of hepatic CYP3A4 and
CYP2C19 expression levels: in cancer patients, the expression level
of hepatic CYP3A4 is reduced by 45% compared to the healthy
population. Similarly, the expression level of hepatic CYP2C19 is
reduced by 30%. The corresponding values for these downregulated
expression levels are reported as 3.02 μM/L liver tissue for
CYP3A4 and 0.51 μM/L liver tissue for CYP2C19 (Schwenger
et al., 2018) (see Table 1). ➁Reduced patients’ plasma albumin
level (g/dl): hematocrit: cancer patients exhibit decreased levels of
plasma albumin (from 4.5 g/dl in healthy individuals to 3.1 g/dl) and
hematocrit (from 0.43 to 0.33) (Dixon et al., 2003). ➂Overexpression
of P-gp: in patients with resistance to CRI, an overexpression of P-gp
has been observed in patient-derived cells (Li et al., 2018). To simulate
this effect, the concentration of P-gp at the blood–brain barrier in the
brain in CRI simulations was set two-fold higher than that in the
healthy PBPK model. However, in the PBPK model, it is not possible
to directly set the concentration of P-gp at the blood–brain barrier.
Instead, as an alternative approach, data from the brain were utilized
to assign the concentration of P-gp for CRI simulations. Furthermore,
the scaling of fup and Rbp in cancer patients was performed using the
following Eqs 4–6 (Trevor et al., 2010; Simulations-Plus, 2019):

f up
′ � 1/ 1 + 1-fup( )✕ P[ ]′( )/ P[ ]✕f up( )( ), (4)

where fup’ and fup are free plasma fractions in patients and healthy
subjects, respectively, and [P]′ and [P] are the plasma albumin
protein concentrations in patients and healthy subjects, respectively.

Rbp
′ � 1 +Hct✕ f up*KpuBC-1( ), (5)

where Rbp’ is the blood-to-plasma concentration ratio in
patients, Hct is the hematocrit value, and KpuBC is the affinity of
blood cells to the drug. KpuBC was calculated as follows:

KpuBC � Hct-1 + Rbp( )/ Hct✕f up( ). (6)

The remaining modeling parameters for the three inhibitors
were assumed to be identical to healthy conditions. The complete set
of parameters for the model is summarized in Table 1 (Food and
Drug Administration FDA, 2011a; Food and Drug Administration
FDA, 2011b; Food and Drug Administration FDA, 2011c; Tang
et al., 2014; Yamazaki et al., 2015; Eliesen et al., 2017; Christina Fink
et al., 2020; Di et al., 2020; Alsmadi et al., 2021; Damoiseaux et al.,
2022). The schematic representation of the PBPK models can be
observed in Figure 1.

2.2 Physiologically based pharmacokinetic
model verification and prediction evaluation

2.2.1 Verification using PK profiles and data
To validate the predictive performance of the PBPK model,

multiple clinical PK profiles for the three inhibitors were used.
These profiles included data from both healthy subjects and
patients. The validation process involved comparing the
coincidence of predicted PK profiles with the observed ones. In
addition, the models were verified by comparing the ratios between
the predicted and observed AUC, Cmax, and Ctrough (Seto et al.,
2013; Gadgeel et al., 2014; Xu et al., 2015a; Kurata et al., 2015;
Morcos et al., 2017a; Morcos et al., 2017b; Morcos et al., 2017c;
Shaw et al., 2017; Clark et al., 2019; Stypinski et al., 2020; Chen
et al., 2021; Hibma et al., 2022; Huiping et al., 2022; Lin et al., 2022)
following single dose and repeated doses. Furthermore, the models
were further validated by comparing predicted and calculated PK
profiles in the CSF. Drug concentration (CCSF(t)) was calculated by
the following equation:

CCSF t( ) � Cp t( )✕f up
′✕KCSF,P, (7)

where Cp(t)is the plasma concentration in the vein at different
time points and KCSF,P is the CSF-to-plasma ratio. For the three ALK
inhibitors, KCSF,p values were obtained from the studies by Costa
et al. (2011), Gainor et al. (2016), and Sun et al. (2022). The assigned
values for the three ALK inhibitors were calculated to be 0.0026, 0.79
(mean value), and 0.77, respectively.

2.2.2 Verification using drug–drug interaction
simulations

In order to ensure the contribution of CYP3A4 to total clearance
and the accuracy of inhibition and induction parameters of CYP3A4,
multiple drug–drug interaction (DDI) simulations were conducted.
First, the PK effects of CRI and LOR onmidazolam (CYP3A4 substrate)
were simulated. Next, PK of the three inhibitors was simulatedwhen co-
administered with strong CYP3A4 inhibitors, namely, ketoconazole,
posaconazole, and itraconazole, as well as strong CYP3A4 inducer
rifampicin. The final modeling parameters for midazolam and the four
CYP3A4 modulators are provided in Supplementary Table S1, and the
inhibition and induction parameters of the fourmodulators are listed in
Supplementary Table S2. For the DDI simulations, the dosage regimens
of the three ALK inhibitors, CYP3A4 inhibitors, and CYP3A4 inducer
were designed based on the literature′s data (Xu et al., 2015b; Chen
et al., 2020; Patel et al., 2020; Zhao et al., 2020) (see Table 4).
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2.2.3 Physiologically based pharmacokineticmodel
prediction evaluation

To assess the accuracy of predictions, the fold errors for AUC, Cmax,
and Ctrough were calculated by comparing the predicted values from the
PBPK model with the corresponding observed values. Generally, a fold
error ranging from 0.5 to 2.0 is considered indicative of accurate model
predictions. If the fold error falls within this range, it suggests that the
PBPK model provides reasonably accurate estimates.

2.3 Sensitivity analysis

The sensitivity analysis was performed to assess how selected
model parameters influence the AUC, Cmax, and Ctrough. Patient

received standard dose regimens of 250 mg BID for CRI, 600 mg
BID for ALE, and 100 mg OD for LOR. The modeling parameters
for the sensitivity analysis were chosen based on the following
criteria: 1) optimized and 2) could have significant influence on
the AUC, Cmax, and Ctrough. The selected parameters were 1)
LogP, 2) fup’, 3)Rbp’, 4) CLint CYP3A4, 3A5, 2C8, 2C19, UGT1A3/
1A4, 5) CYP3A4 Vmax and CYP3A4 Km, 6) CLint P-gp, 7) Ki

CYP3A4, 8) EC50 and Emax for CYP3A4, and (9) expression
(CYP3A4, CYP3A5, CYP2C8, CYP2C19, UGT1A3, UGT1A4,
and P-gp).

The impacts of the selected parameters on the AUC, Cmax, and
Ctrough were evaluated by altering the value of each parameter by ±
20% (Saeheng et al., 2020). The sensitivity coefficient (SC) is
computed as follows (Saeheng et al., 2020):

FIGURE 1
The schematic representation of the PBPK models for crizotinib, alectinib, and lorlatinib. The population PBPK models of the three ALK inhibitors
were built based on the physicochemical parameters, absorption, distribution, metabolism, excretion, and interaction processes involved in CYP3A4/5,
2C8, 2C19, UGT1A3/4 metabolizing enzymes and P-gp transporter. The models were validated using multiple PK data in healthy subjects and NSCLC
patients (Seto et al., 2013; Gadgeel et al., 2014; Xu et al., 2015a; Kurata et al., 2015; Morcos et al., 2017a; Morcos et al., 2017b; Morcos et al., 2017c;
Shaw et al., 2017; Clark et al., 2019; Stypinski et al., 2020; Chen et al., 2021; Hibma et al., 2022; Huiping et al., 2022; Lin et al., 2022). CRI: crizotinib; ALE:
alectinib; LOR: lorlatinib; KET: ketoconazole; RIF: rifampin POS: posaconazole; ITR: itraconazole; CSF: cerebrospinal fluid; KCSF,P: CFS-to-plasma ratio;
Ctrough: trough concentration; AO: ALK occupancy; NSCLC: non-small cell lung cancer.
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TABLE 2 Dosing regimens and demographic characteristics in the simulations of PBPK model development and validation.

Drug Dosage
schedules

Purpose Virtual
population

Number of
virtual

subjectsa

Age
range

set (year)

Proportion of
female (%)

Source of data or
comments

CRI 50 mg intravenous
dosing, SD

Validate plasma PK data when
dosed alone

Healthy 14 18–55 0 Xu et al. (2015a)

250 mg OD, SD

250 mg OD, RD for
consecutive 14 days

Patients 10 40–75 78 Kurata et al. (2015)

Multiple doses for
50–300 mg, RD for
consecutive 28 days

Patients 10 25–73 42 Age range was set
based on mean age of
49 (Clark et al., 2019)

250 mg OD, SD Healthy 10 26–53 0 Huiping et al. (2022)

100 mg OD, RD for
consecutive 14 days

Validate intracranial
concentration

Patients 10 30–70 50 Demographic data
were set in this study

➀CRI: 150 mg, SD, on
day 4

Validate plasma PK variation
when dosed with

CYP3A4 perpetrators

Healthy 16 26–53 0 Xu et al. (2015a)

➁Ketoconazole: 200 mg
BID, RD from days
1 to 16

Healthy 15 29–44 0 Xu et al. (2015b)

➀CRI: 250 mg, SD, on
day 9

Healthy 15 38–47 7

➁Rifampin: 600 mg
OD, RD from days

1 to 14

ALE 600 mg OD, SD Validate plasma PK when
dosed alone

Healthy 16 26–53 0 Morcos et al. (2017c)

160, 240, and 300 mg
BID, RD for consecutive

21 days

Patients 10 28–67 54 Seto et al. (2013)

460, 600, and 900 mg
BID, RD for consecutive

21 days

Patients 10 40–83 20 Gadgeel et al. (2014)

600 mg OD, RD for
days 1–14

Validate intracranial
concentration

Patients 10 36–76 50 Age range was set
based on mean age of
56 (Gainor et al., 2016)

➀ALE: 300 mg, SD, on
day 6

Validate plasma PK variation
when dosed with

CYP3A4 perpetrators

Healthy 10 30–70 50 Demographic data
were set in this study

➁Posaconazole: 400 mg
BID, RD from days

1 to 14

➀ALE: 150 mg, SD, on
day 6

➁Rifampin: 600 mg
OD, RD from days

1 to 14

LOR 50 mg intravenous
dosing, SD

Validate plasma PK when
dosed alone

Healthy 11 18–55 0 Hibma et al. (2022)

100 mg OD, SD

100 mg OD, RD for
consecutive 15 days

Patients 19 39–65 32 Chen et al. (2021)

100 mg OD, SD 10 53–61 38 Lin et al. (2022)

(Continued on following page)
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SC � ΔY/Y ÷ΔP/P, (8)
where ΔY is the alteration of predicted AUC, Cmax, or Ctrough; Y

is the initial value of predicted AUC, Cmax, or Ctrough; ΔP is the
alteration of model parameters; and P is the initial value of assessed
parameters. If a certain SC absolute value is above 1.0 (i.e., it means
that a 20% change of the assessed parameters results in a 20%
alteration in AUC, Cmax, or Ctrough), it means this model parameter
has a significant influence on predicted AUC, Cmax, or Ctrough.

2.4 Plasma and intracranial ALK occupancy
prediction

The ALK occupancy (AO) time profiles were calculated using
the following Eq. 9 (Georgi et al., 2018):

AO � Ifree

Ki + Ifree( )
× 100, (9)

where Ifree (μM) represents the free drug concertation in the
plasma or CSF. Ki(μM) is the equilibrium dissociation constant.
AO represents the percent level of ALK occupancy. In this work,
AO in plasma and CSF by the three inhibitors on the wild-type
and three most commonmutations ALK were simulated. Ki values
for the three inhibitors against ALK were approximated with
reported IC50 values (Cui et al., 2011; Friboulet et al., 2014;
Kodama et al., 2014; Song et al., 2015; Sabari et al., 2017;
Chuang et al., 2019) at the Km-level of substrate ATP using the
Cheng–Prusoff correction.

2.5 Virtual population demographic
characteristics and dosing regimens

The demographic characteristics used in every simulation were
that of the corresponding clinical study. The information of virtual
population in PK-Sim includes age range, body weight, height, and
proportion of female individuals. If the demographic

characteristics, such as age range and gender proportions, are
available from clinical studies, the actual data obtained from those
studies would be used in the simulations. This approach ensures
that the simulation aligns closely with the real-world
characteristics of the subjects involved in clinical studies. If
certain data were unavailable, PK-Sim uses common default
values as surrogates. For example, age is set to a range of
30–70 years and the proportion of females is assumed to be
50%. In cases where the number of subjects in clinical studies is
less than 10, 10 virtual subjects are created for the simulations to
ensure a sufficient sample size. Table 2 provides information on the
demographic characteristics of the virtual population, including
age range and gender proportions. In addition, it lists the dosing
regimens used in the simulations.

3 Results

3.1 Validation of the physiologically based
pharmacokinetic models

3.1.1 Validation using PK profiles and data
Figure 2 shows the predicted and observed plasma

concentration–time profiles for CRI following intravenous and oral
administration in healthy subjects (Figures 2A,B), ALE following oral
administration in healthy subjects and NSCLC patients (Figures
2C,D), and LOR following intravenous and oral administration in
healthy subjects andNSCLC patients (Figures 2E–G). The simulations
demonstrated that the PBPK models for both healthy and diseased
states were able to replicate the observed PK profiles (Gadgeel et al.,
2014; Xu et al., 2015a; Morcos et al., 2017a; Morcos et al., 2017b;
Morcos et al., 2017c; Clark et al., 2019; Stypinski et al., 2020; Chen
et al., 2021; Hibma et al., 2022; Huiping et al., 2022; Lin et al., 2022). In
Table 3, it can be observed that all ratios of AUC, Cmax, and Ctrough fell
within the range of 0.5–2.0.

The predicted and calculated free concentration–time profiles in
CSF are shown in Figures 2H–J. The simulations indicated a slight
overestimation of CSF concentrations for CRI and LOR (Figures
2H,J), whereas the 90% prediction interval (CI) of the population

TABLE 2 (Continued) Dosing regimens and demographic characteristics in the simulations of PBPK model development and validation.

Drug Dosage
schedules

Purpose Virtual
population

Number of
virtual

subjectsa

Age
range

set (year)

Proportion of
female (%)

Source of data or
comments

100 mg OD, RD for
consecutive 21 days

Validate intracranial
concentration

Patients 10 30–70 50 Sun et al. (2022)

➀LOR: 150 mg, SD, on
day 5

Validate plasma PK variation
when dosed with

CYP3A4 perpetrators

Healthy 16 20–54 0 Patel et al. (2020)

➁Itraconazole: 200 mg
BID, RD from days

1 to 11

➀LOR:150 mg, SD, on
day 13

Healthy 12 21–55 8.3 Chen et al. (2020)

➁Rifampin: 600 mg
OD, RD from days

6 to 17

BID, twice daily; SD, single dose; RD, repeated doses.
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PBPK model could cover variations observed for ALE (Figure 2I).
Notably, the plasma exposure and Cmax of LOR were considerably
higher than those of CRI and ALE, as shown in Figures 2H–J.
Furthermore, the CSF concentration of ALE closely resembled that
of CRI. Analyzing the data presented in Table 3, it is evident that the
Ctrough ratio in CSF for CRI exceeds 2.0, whereas the Ctrough ratios of
ALE and LOR in CSF fall within the range of 0.5–2.0. Overall, these
simulation results align with the clinical observations, specifically for
CRI (predicted 2.0 vs. observed 0.62 ng/mL (Costa et al., 2011)),
ALE (predicted 2.2 vs. observed 1.4 ng/mL (Metro et al., 2016)), and
LOR (predicted 63.0 vs. mean observed 86.5 ng/mL (Sun et al.,
2022))。

3.1.2 Verification using drug–drug interaction
simulations

Supplementary Figure S1 and Supplementary Table S3,
respectively, present the predicted and clinically observed PK profiles
and data for midazolam and four CYP3A4 modulators. The DDI
simulations of CRI and LOR are shown in Figures 2K–N. With the
exception of the PK of LOR co-administered with itraconazole, which
exhibited greater variability, other simulations demonstrated that the
observed data fell within the 90% CI of the population PBPK model-
predicted levels. The ratios predicted by the PBPK models are
summarized in Table 4. Except for the Cmax ratio (0.54 vs. 0.24) of
LOR co-administered with rifampin, the other predicted AUC0-inf and

FIGURE 2
Simulations of the pharmacokinetics of the three ALK inhibitors after administration of single dose or repeated doses. The blue and red squares
(parent drug) and solid up-triangles (metabolite M4) are the clinically observed data. The observed data in the CSF were derived bymultiplying the plasma
PK data with the observed KCSF,P values. Panel (A, B) for CRI; Panel (C, D) for ALE; Panel (E–G) for LOR; Panel (H–J) for concentration in CSF of the three
ALK inhibitors, respectively; Panel (K, L) for DDIs of CRI with ketoconazole and rifampicin; Panel (M, N) for DDIs of LOR with Itraconazole and
rifampicin.
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TABLE 3 Comparisons of the geometric mean plasma and intracranial PK parameters between predicted and observed data in healthy and ALK-positive NSCLC patients.

PK Clinical study Drug Dosing regimens N Subjects AUC (ng·h/mL,
CV%/±SDa)

Cmax (ng/mL, CV %/±SD) Ctrough (ng/mL, CV %/±SD) Prediction/
observation ratio

Prediction Observation Prediction Observation Prediction Observation AUC Cmax Ctrough

Plasma Xu et al. (2014) CRIb 250 mg OD 14 Healthy 1968 (46) 2321 (34) 115 (43) 99.6 (28) - - 0.85 1.15 -

Kurata et al. (2015) 500 mg OD 9 Patients 8738 (58) - 849 (49) - 630 (427–789) 508.5 (243.5–847.8) - - 1.24

Clark et al. (2019) 50 mg OD 3 Patients 287 (48) 206 (64) 31 (42) 24 (52) 9 (5–14) 8 (5–11) 1.39 1.29 1.13

100 mg OD 4 987 (43) 1087 (37) 71 (47) 86 (69) 26 (14–36) 31 (24–52) 0.91 0.83 0.84

200 mg OD 8 2473 (51) 2047 (48) 165 (48) 149 (27) 69 (42–93) 44 (31–160) 1.21 1.11 1.57

200 mg BID 4 2915 (51) 1780 (61) 290 (46) 189 (48) 205 (134–263) 158 (132–183) 1.64 1.53 1.30

250 mg BID 4 3820 (45) 3084 (32) 378 (46) 327 (25) 271 (178–344) 259 (159–356) 1.24 1.16 1.05

300 mg BID 5 4421 (50) 4067 (55) 440 (46) 420 (48) 311 (215–396) 279 (183–403) 1.09 1.05 1.11

Xu et al. (2022) 250 mg OD 8 Healthy 2239 (38) 2438 (42) 126 (36) 118.5 (31) - - 0.92 1.06 -

Seto et al. (2013) ALEc 160 mg BID 3 Patients 2029 ± 736 2310 ±598 187 ± 69 300 ± 104 145 ± 52 214 ± 34 0.88 0.62 0.68

240 mg BID 3 3179 ± 1159 2970 ± 937 291 ± 107 385 ± 100 230 ± 82 262 ± 115 1.07 0.76 0.88

300 mg BID 6 4081 ± 1491 4970 ± 3260 374 ± 137 575 ± 322 296 ± 106 463 ± 369 0.82 0.65 0.64

Gadgeel et al. (2014) 460 mg BID 7 6629 ± 2427 4980 ± 1340 604 ± 223 618 ± 165 486 ± 174 460 ± 130 1.33 0.98 1.06

600 mg BID 5 9013 ± 3300 5400 ± 1400 819 ± 302 676 ± 186 665 ± 238 502 ± 142 1.67 1.21 1.32

900 mg BID 7 11901 ± 4355 9840 ± 4620 1078 ± 397 1140 ± 448 883 ± 315 822 ± 444 1.21 0.95 1.07

Morcos et al. (2016) 600 mg OD 6 Healthy 5916 (31) 6090 (13) 223 (25) 175 (11) - - 0.97 1.27 -

Morcos et al. (2017) 48 5757 ± 874 4360 ± 1160 215 ± 55 204 ± 57 - - 1.32 1.05 -

Morcos et al. (2018) 24 5213 ± 698 3180 ± 876 193 ± 46 169 ± 47 - - 1.64 1.14 -

M4 600 mg BID 48 Healthy 2205 ± 796 1890 ± 477 80 ± 23 65 ± 17 - - 1.17 1.23 -

24 2756 ± 994 3480 ± 758 85 ± 31 126 ± 32 - - 0.79 0.67 -

Shaw et al. (2017) LORb 10 mg OD 2 Patients 913 (42) 820d 69 (44) 74d 26 (21) - 1.11 0.93 -

25 mg OD 3 2547 (41) 1708 (29) 156 (31) 138 (35) 53 (39) - 1.49 1.13 -

50 mg OD 3 3479 (36) 3487 (41) 293 (23) 360 (27) 88 (22) - 1.00 0.81 -

75 mg OD 11 4894 (42) 4117 (55) 337 (21) 422 (50) 119 (28) - 1.19 0.80 -

100 mg OD 14 5611 (48) 5065 (32) 559 (28) 569 (32) 150 (55) - 1.11 0.98 -

(Continued on following page)
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TABLE 3 (Continued) Comparisons of the geometric mean plasma and intracranial PK parameters between predicted and observed data in healthy and ALK-positive NSCLC patients.

PK Clinical study Drug Dosing regimens N Subjects AUC (ng�h/mL,
CV%/±SDa)

Cmax (ng/mL, CV %/±SD) Ctrough (ng/mL, CV %/±SD) Prediction/
observation ratio

Prediction Observation Prediction Observation Prediction Observation AUC Cmax Ctrough

150 mg OD 2 6515 (41) 6185d 825 (27) 638d 206 (46) - 1.05 1.29 -

200 mg OD 2 12011 (58) 7856d 1101 (32) 1042d 272 (32) - 1.53 1.06 -

Stypinski et al. (2020) 100 mg OD 6 Healthy 9166 (41) 7600 (26) 526 600 (18) - - 1.21 0.88 -

Hibma et al. (2022) 11 8632 (36) 8289 (34) 442 501 (38) - - 1.04 0.88 1.58

Chen et al. (2021) 19 Patients 7819 (30) 9088 (35) 581 (31) 695 (40) 158 (31) 100 (32) 0.86 0.84 -

Lin et al. (2022) 8 Patients 7055 (35) 8329 (33) 563 (29) 547 (48) 152 (28) - 1.11 0.93 -

CSF Costa et al. (2011) CRI 250 mg BID 1 patients 17.0 ± 2.2 - 6.7 ± 0.90 - 2.0 ± 0.52 0.62 - - 3.23

Metro et al. (2016) ALE 600 mg BID 2 patients 31.2 ± 6.0 - 2.9 ± 0.58 - 2.2 ± 0.28 1.40 - - 1.57

Sun, et al. (2022) LOR 100 mg OD 4 patients 2784 ± 360 - 218 ± 22.3 - 63.0 ± 11.1 86.5 ± 36.8 - - 0.73

aCV %, percentage coefficient of variation; SD, standard deviation.
bGeometric mean values are shown.
cArithmetic mean values are shown.
dNot reported data.
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Cmax ratios are in good agreement with the clinically observed ratios (Xu
et al., 2015b; Chen et al., 2020; Patel et al., 2020; Zhao et al., 2020). These
DDI simulations further confirmed that the CYP3A4 metabolic
parameters of the three inhibitors are appropriately incorporated
into the PBPK model. Moreover, Supplementary Table S4 provides
the predicted AUC and Cmax ratios of midazolam when co-
administered with CRI and LOR, respectively. The good consistency
observed between the predicted and observed ratios indicates that the
inhibition and induction parameters of CRI and LOR on CYP3A4 are
appropriate in the PBPK model.

In summary, the DDI simulations demonstrated that the
population PBPK models are able to accurately predict the AUC,
Cmax, and plasma/intracranial Ctrough in healthy and diseased
population.

3.2 Sensitivity analysis

As shown in Figure 3, log P exhibited the highest sensitivity as a
parameter for predicting Cmax of the ALK inhibitors. For CRI, the most
sensitive parameter affecting AUC was fup. However, no specific
sensitive parameters were identified for AUC of ALE and LOR. In
terms of Ctrough of CRI in NSCLC patients, fup and CYP3A4 expression
were the most sensitive parameter. Log P was found to have the greatest
impact on Ctrough of ALE. As for Ctrough of LOR, the most sensitive
parameters were fup, Vmax CYP3A4, CYP3A4 expression, and Km

CYP3A4. The sensitivity analysis conducted on both the healthy and
diseased PBPK models indicated similar results, with the exception of
CYP3A4 expression which did not exhibit sensitivity to the Ctrough of
CRI in healthy subjects (information not provided in this study).

Next, the simulations conducted to assess the influence of P-gp
expression on the intracranial Ctrough of CRI revealed notable
findings. Figure 3J illustrates the influence of P-gp expression
within the range of 0–3.4 μM on the Ctrough in CSF. The results
clearly demonstrate that the P-gp expression at the blood–brain
barrier significantly affects the intracranial Ctrough of CRI. As the
P-gp expression increases, the intracranial Ctrough gradually
decreases. This effect is evident with a substantial 60-fold
increase when P-gp efflux is absent at the blood–brain barrier.

3.3 Plasma and intracranial ALK occupancy
prediction

According to the study by Yamazaki (2013), >75% ALK
inhibition was required in NSCLC patients for CRI to produce
clinically higher ORR. As a result, >75% AO was defined as an
effective threshold for the three ALK inhibitors in this work. Figure 4
shows the AO time course in both plasma and CSF following
14 consecutive days of dosing with the inhibitors. For CRI, only
plasma AO is greater than 75% in patients with wild-type ALK
(Figures 4A,B). The ALK engagement by CRI in plasma was
markedly higher than ALK engagement by CRI in CSF. In
contrast, the ALK engagements by ALE and LOR were
independent of plasma and CSF, likely due to their high
penetration into CSF. Notably, ALE achieved more than 75%
ALK occupancy in both plasma and CSF for wild-type ALK and
mutation ALKL1196M. This simulation is consistent with the clinical
trial in which ALE demonstrated efficacy in NSCLC patients with
brain metastases (Jessica et al., 2019). The simulation suggests that

TABLE 4 PK changes (geometric mean, CV%) of crizotinib, alectinib, and lorlatinib under DDIs.

Clinical study Parameters CRI only (150 mg OD) CRI + ketoconazole (+200 mg BID) Predicted ratio Observed ratio

Xu et al. (2015b) AUC0-inf (ng·h·mL-1) 1590 (33) 5452 (43) 3.43 3.16

Cmax (ng/mL) 70 (28) 100 (33) 1.43 1.44

Parameters CRI only (250 mg OD) CRI + rifampin (+600 mg OD) Predicted ratio Observed ratio

AUC0-inf (ng·h·mL-1) 2943 (30) 388 (33) 0.13 0.18

Cmax (ng/mL) 121 (19) 60 (33) 0.50 0.31

Zhao et al. (2020) Parameters ALE only (300 mg OD) ALE + posaconazole (+400 mg BID) Predicted ratio Observed ratio

AUC0-inf (ng·h·mL-1) 3280 (32) 7007 (49) 2.14 1.75

Cmax (ng/mL) 136 (44) 182 (34) 1.34 1.18

Parameters ALE only (600 mg OD) ALE + rifampin (+600 mg OD) Predicted ratio Observed ratio

AUC0-inf (ng·h·mL-1) 5146 (45) 999 (47) 0.19 0.27

Cmax (ng/mL) 260 (28) 116 (31) 0.45 0.49

Parameters LOR only (100 mg OD) LOR + itraconazole (+200 mg OD) Predicted ratio Observed ratio

Patel et al. (2020) AUC0-inf (ng·h·mL-1) 5580 (21) 8287 (39) 1.49 1.41

Cmax (ng/mL) 455 (18) 649 (37) 1.43 1.24

Parameters LOR only (100 mg OD) LOR + rifampin (+600 mg OD) Predicted ratio Observed ratio

Chen et al. (2020) AUC0-inf (ng·h·mL-1) 7021 (23) 1726 (58) 0.25 0.15

Cmax (ng/mL) 692 (32) 374 (29) 0.54 0.24
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FIGURE 3
Sensitivity analysis of the diseased PBPK models. Panel (A–C) show effect of modeling parameters of CRI on AUC, Cmax and Ctrough of CRI; Panel
(D–F) show effect of modeling parameters of ALE on AUC, Cmax and Ctrough of ALE; Panel (G–I) show effect of modeling parameters of LOR on AUC, Cmax

andCtrough of LOR. If the absolute value of the SC is greater than 1.0, it indicates that the correspondingmodel parameter has a significant influence on the
AUC, Cmax, or Ctrough. Panel (J) illustrates the effect of P-gp on the intracranial Ctrough (minimumconcentration) of CRI (the drug). It indicates that as
P-gp expression increases, the Ctrough of CRI in cerebrospinal fluid (CSF) decreases.
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ALKG1202R was most likely to confer resistance to ALE, as the
maximal AO was less than 20% (Figures 4C,D). On the other
hand, LOR showed more than 75% occupancy of wild-type ALK
and three mutations (Figures 4E,F). The study indicates that LOR
can overcome resistance to the first- and second-generation ALK
inhibitors, even in cases mediated by ALKG1202R, and may have
significant activity on brain metastasis. The AO simulations of LOR
were also in agreement with the clinical study (Food and Drug
Administration FDA, 2011c).

3.4 Simulations of appropriated dosing
regimens for the three inhibitors

The exposure–response relationships for efficacy in patients have
suggested that the clinical efficacy of three inhibitors is strongly
correlated with their steady-state Ctrough. Minimum Ctrough

of ≥235 ng/mL was obtained for CRI (Groenland et al.,
2021), ≥435 ng/mL for ALE (Groenland et al., 2021), and 7.6 (wild-
type)/62 (ALKL1196M)/150 (ALKG1202R) ng/mL for LOR (Shaw et al.,
2017) as a PK threshold for optimal clinical efficacy. Figure 5 and
Table 5 illustrate Ctrough and AO in both plasma and CSF based on the
clinically proposed dosing regimens for the three inhibitors. For CRI,
the simulations suggested that a dose of 250 mg BID is appropriate for
inhibiting wild-type ALK. However, higher doses of CRI could also not
achieve clinical efficacy against the three ALK mutations. Similarly, the
simulations support the appropriateness of the proposed dose of
250 mg BID for ALE. In the case of ALKG1269A mutation, increasing

the dose may be a more effective option for clinical therapy.
Furthermore, the simulations demonstrated that the proposed
dosing regimens of 100 mg OD are appropriate for NSCLC patients
with wild-type ALK and three ALK mutations, even in the presence of
brainmetastasis. These findings provide additional evidence supporting
the clinical efficacy of the recommended dosing regimens for the three
inhibitors in various patient populations.

4 Discussion

In this study, the effective thresholds of plasma Ctrough (CRI:
235 ng/mL, ALE: 435 ng/mL, and LOR: 7.6, 622, 150 ng/mL in wild-
type, ALKL1196M, and ALK G1202R mutations, respectively) and AO
(>75%) in both plasma and CSF were defined. The developed PBPK
models were able to accurately predict the plasma and intracranial
Ctrough for the three inhibitors in healthy individuals and in NSCLC
patients. The simulations have been demonstrated by multiple clinical
PK study data (see Figure 2; Table 3). To our knowledge, this is the
first study to assess the PK and AO of the three ALK inhibitors in the
plasma and CSF of NSCLC patients. In cancer patients, known
physiological differences in CYP enzyme expression, plasma
protein level, and hematocrit have been reported (Dixon et al.,
2003; Schwenger et al., 2018). In addition, reductions in the
plasma protein level and hematocrit in patients can result in
increased fup and Rbp (see Table 1), which were modified in the
mode for patients. Finally, the five modeling parameters
(CYP3A4 and CYP2C19 expression, plasma protein level,

FIGURE 4
Simulations of wild-type and three mutations ALK occupancy in plasma and CSF by crizotinib, alectinib and lorlatinib. The plasma and intracranial
ALK occupancy of CRI [Panel (A, B), 250 mg BID], ALE [Panel (C, D), 600 mg BID], and LOR [Panel (E, F), 100 mg OD].
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hematocrit, fup, and Rbp) were incorporated into the diseased PBPK
model, whereas the remaining parameters were assumed to be
identical to the healthy condition.

The sensitivity analysis conducted in this study identified fup and
CYP3A4 expression as sensitive parameters for the three ALK
inhibitors in most cases. Therefore, it was necessary to modify
the fup and CYP3A4 expression values in the diseased PBPK
model to accurately represent the effects of these parameters in
patients. In addition, the simulations demonstrated that P-gp
expression at the blood–brain barrier plays a significant role in
determining Ctrough of CRI in the CSF (Figure 3J). This finding
suggests that low penetration of CRI into the brain is primarily
attributed to the presence of P-gp, which limits its distribution
across the blood–brain barrier. Overall, these results indicate the
importance of considering factors such as fup, CYP3A4 expression,
and P-gp expression when modeling the PK and distribution of the
three ALK inhibitors, particularly regarding their penetration into
the CSF.

It is noteworthy that CRI and ALE can inhibit their own
metabolism through time-dependent inhibition of CYP3A4 as
well as increase their own metabolism through induction of in
vivo CYP3A4 expression (interaction parameters in Table 1). On
the other hand, LOR can only enhance its own metabolism
through auto-induction of CYP3A4 expression (interaction

parameters in Table 1), with low auto-inhibition of CYP3A4.
In this work, the PBPK models incorporated CYP3A4 auto-
inhibition (Ki, kinact) and auto-induction parameters (Emax and
EC50) to ensure the predictive performance of the model.
However, this may not be robust in this case. Recent studies
(Yamazaki et al., 2015; Hanke et al., 2018) have also applied this
approach to predict the clinical PK for mixed CYP3A4 inhibitors
and inducers, further supporting the need to incorporate these
mixed inhibition and induction parameters into our developed
PBPK models. The PBPK models predicted that mean oral
clearance (CL) following a single oral 100 mg dose increased
by 1.78-fold due to auto-induction compared with the CL at the
steady state, which is in agreement with the clinical data (1.78-
fold vs. 1.64-fold) (Food and Drug Administration FDA, 2011c).
These results suggest that it is necessary to consider the complex
interplay of auto-inhibition and auto-induction when developing
PBPK models.

Approximately 30% of ALK-positive patients with NSCLC
are likely to develop brain metastases (Zou et al., 2022).
Unbound drug concentration in the CSF is often used as a
surrogate for concentration at the target in clinical setting
(De Lange and Danhof, 2002). The predictive power of
concentration of the three inhibitors in the CSF has been
demonstrated by our developed PBPK models. According to

FIGURE 5
The PBPK simulations of predicted Ctrough [plasma, (A); CSF, (B)] and ALK occupancy [plasma, (C); intracranial, (D)] in NSCLC patients. Data were
shown as geometric mean values and 95% CI.
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the PBPK model, the mean Ctrough (8.5 nM) for ALE and Ctrough

(123 nM) for LOR in the CSF were higher than the concentration
required for three (ALE) and four (LOR) ALK inhibition (see
Table 5). In contrast, the PBPK model showed that the mean
Ctrough for CRI in CSF (1.56 nM) was lower than the
concentration required for wild-type and four mutations of
ALK inhibition (see Table 5).

Multiple molecular mechanisms can lead to resistance to the
first- and second-generation ALK inhibitors (Recondo et al.,
2020). Among these, approximately 50% of resistance cases are
attributed to on-target resistance, specifically ALK resistance
mutations (Yoda et al., 2018). The two key factors conferring on-
target resistance are Ki against the ALK mutation and unbound
concentration on target cells. In this study, we calculated AO
using Ki plus unbound concentration in CSF, which can help
explain the mechanism of on-target resistance. A few studies
have been conducted to define a common value of at least level
target occupancy for minimal efficacy target engagement, such
as at least 90% occupancy for soluble epoxide hydrolase (Lee
et al., 2019), more than 90% occupancy for BTK (Food and Drug
Administration FDA, 2011d), and >70% occupancy for α-
glucosidase (Wang et al., 2019). In our study, we
defined >75% AO for reaching the optimal therapeutic level

for ALK inhibitors. The low AO against three mutations in
plasma and four ALK mutations in CSF explains the resistance
of CRI to ALK mutations and brain metastasis. In addition, the
PBPK model of CRI demonstrated that P-gp efflux at the
blood–brain barrier restricts its accumulation in the brain.
This simulation agrees with the previous work (KCSF,P

increased by 13.9-fold after P-gp was knocked out) (Tang
et al., 2014). Furthermore, the model predicted ALE
resistance to ALKG1202R (see Table 5; Figure 5), which is also
in agreement with the study by Ou et al. (2014).

The appropriate dosing regimens for NSCLC populations were
investigated for the three inhibitors based on the geometric mean and
95% CI of predicted Ctrough and AO (see Figure 5). This strategy for
optimal dosing has been proposed by Adiwidjaja et al., 2022. Based on
this strategy, it was suggested that CRI 250 mg BID, ALE 600 mg BID,
and LOR 100 mg OD in NSCLC patients could represent the optimal
dosing regimens (see Figure 5). In cases where patients have the
ALKG1269A mutation, increasing the dose of ALE may lead to a
better clinical ORR. Furthermore, when administered concurrently
with CYP3A4 inhibitors and inducers, the PBPK models can also
provide the appropriate dosage regimens for the three inhibitors.

There are still some limitations to the present model. First, the
PBPK models used for diseased conditions do not consider the

TABLE 5 Mean trough concentration unbound and ALK occupancy at steady state in plasma and CSF in ALK-positive NSCLC patients.

Drug Dosing
regimen

Therapeutic
target

ALK occupancy
threshold (%)

Cetv
(ng/
mL)

Ki(nM)
against
ALK

Unbound Ctrough (nM,
90% CI)

Minimal ALK
occupancy (%, 90% CI)

Plasma Unbound
CSF

Plasma Intracranial

CRI 250 mg BID ALK (wild-type) 75 235 10 78.2
(61.9, 94.5)

1.56 (1.24, 1.89) 88.7
(86.1, 90.4)

13.5
(11.0, 15.9)

ALK (L1196M) - 446 14.9
(12.2, 17.5)

0.3 (0.28, 0.42)

ALK (G1269A) - 250 23.8
(19.8, 27.4)

0.6 (0.49, 0.75)

ALK (G1202R) - 191 29.0
(24.5, 33.1)

0.8 (0.65, 0.98)

ALE
+ M4

600 mg BID ALK (WT) 435 1.0 11.0
(8.8, 13.1)

8.5 (6.8, 10.1) 91.7
(89.8, 94.2)

89.7
(87.2, 91.0)

ALK (L1196M) - 0.8 93.2
(91.7, 80.9)

91.6
(89.5, 92.7)

ALK (G1269A) - 4.0 73.3
(68.8, 76.6)

68.5
(63.0, 71.6)

ALK (G1202R) - 29 27.5
(23.3, 31.1)

23.0
(19.0, 25.8)

LOR 100 mg OD ALK (WT) 7.6 1.0 160
(140, 179)

123 (108, 138) 99.5
(99.5, 99.7)

99.4
(99.3, 99.5)

ALK (L1196M) 62 17 93.8
(93.0, 94.5)

92.1
(91.1, 92.9)

ALK (G1269A) - 5.0 94.9
(94.3, 95.5)

93.5
(92.7, 94.2)

ALK (G1202R) 150 25 83.1
(81.2, 84.6)

79.1
(76.9, 80.9)

-, not reported data; Cetv, effective PK threshold values.
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role of other physiological parameters, except for the five
modeling parameters mentioned earlier. Second, the effect of
ALK overexpression in patients on AO has not been evaluated
yet. In mice, ALK expression has been shown to play an
important role in ALK inhibition in the brain (Shaw et al.,
2017), but its effect in human patients is uncertain. Third,
there is uncertainty due to incomplete equivalence between
the free concentration in interstitial fluid and that in CSF,
which is important to be recognized when using the PBPK
model for simulations.

5 Conclusion

In summary, we have successfully developed both healthy and
diseased PBPK models for CRI, ALE, and LOR. These models
adequately predicted the concentration and AO of the three ALK
inhibitors in the plasma andCSF of NSCLC patients. In addition, PBPK
models enable us to analyze themechanisms of on-target resistance and
determine appropriate dosing regimens for these inhibitors.
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