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Mild cognitive impairment (MCI) is a major public health challenge with an
increasing prevalence. Although the mechanisms underlying the development
of MCI remain unclear, MCI has been reported to be associated with oxidative
stress, inflammatory responses, and endothelial dysfunction, suggesting that
agents that reduce these factors may be key to preventing MCI. Currently, no
agents have been approved for the treatment of MCI, with the efficacy of
commonly prescribed cholinesterase inhibitors remaining unclear. Relatively
safe natural products that can prevent the development of MCI are of great
interest. Linalyl acetate (LA), the major component of clary sage and lavender
essential oils, has been shown to have a variety of pharmacological effects,
including anti-hypertensive, anti-diabetic, neuroprotective, anti-inflammatory,
and antioxidant properties, which may have the potential for the prevention of
MCI. The present review briefly summarizes the pathogenesis of MCI related to
oxidative stress, inflammatory responses, and endothelial dysfunction as well as
the benefits of LA against these MCI-associated factors. The PubMed and Google
Scholar databases were used to search the relevant literature. Further clinical
research may lead to the development of new strategies for preventing MCI,
particularly in high-risk populations with oxidative stress, inflammatory responses,
and endothelial dysfunction (e.g., patients with hypertension and/or diabetes
mellitus).
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1 Introduction

Mild cognitive impairment (MCI) is a condition in which individual experiences a
moderate cognitive decline greater than that expected during normal aging (Anderson,
2019). The global prevalence of MCI in community-dwelling adults has been estimated to be
about 15.6% (Bai et al., 2022). The number of people living with MCI in 2020 in the
United States was 12.2 million, which has been estimated to increase to 21.6 million by 2060
(Rajan et al., 2021). Individuals with MCI have a poorer quality of life and a greater cost
burden than healthy individuals (Tahami Monfared et al., 2022), with a large proportion of
caregivers of individuals with MCI reporting caregiver burden (Connors et al., 2019).
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Moreover, approximately one-third of people with MCI progress to
dementia (Glynn et al., 2021). Preventing the development of MCI
may therefore prevent possible progression to dementia in aging
populations.

Although the exact mechanisms underlying the development of
MCI remain unclear, oxidative stress is frequently observed in MCI
patients. Modifications of protein structures (e.g., α-enolase,
glucose-regulated protein precursor) induced by oxidative stress
were found to be more frequent inMCI brains than in control brains
(Butterfield, 2023), and oxidative stress and nitrosative stress/
antioxidant ratio were reported to be higher in individuals with
MCI than in healthy controls (Nantachai et al., 2022). MCI patients
showed significantly increased serum malondialdehyde (MDA)
levels compared with age-matched healthy controls (Padurariu
et al., 2010). In addition, nicotinamide adenine dinucleotide
phosphate oxidase (NOX) 2 expression in the brain vascular
fraction was significantly elevated in patients with vascular
cognitive impairment compared to control cases suggesting
vascular contribution to cognitive decline (Alfieri et al., 2022). In
addition, oxidative stress was found to be the mechanistic link
between age-related disorders and MCI. For example,
hypertension-induced reactive oxygen species (ROS) cause
oxidative damage to cerebral endothelial cells, resulting in blood-
brain barrier (BBB) disruption (Ungvari et al., 2021). Moreover, in
patients with the common age-related metabolic disorder diabetes
mellitus (Natarajan et al., 2020), peripheral metabolic alterations
increase oxidative stress and neuro-inflammation, which negatively
affect cognitive function (Dutta et al., 2022).

Although several studies have reported that oxidative stress
plays an important role in MCI, clinical studies of antioxidants
in MCI patients have yielded inconsistent results (Alavi Naeini et al.,
2014; Rita Cardoso et al., 2016). The discrepancies among these
studies may stem from the multifactorial characteristics of MCI. For
example, one study found that brachial flow-mediated dilatation was
significantly related to MCI in an elderly population, suggesting a
pivotal role of endothelial dysfunction in MCI (Vendemiale et al.,
2013). Another study, however, found that serum inflammatory
markers such as interleukin (IL)-6 and high-sensitivity C-reactive
protein levels were associated with the risk of MCI in patients with
type 2 diabetes mellitus (Zheng et al., 2019). And a third study
reported that MCI patients with high plasma matrix
metalloproteinase (MMP)-9 levels show a faster rate of cognitive
decline (Abe et al., 2020). Another consideration when exploring the
factors giving rise to MCI is that oxidative stress, inflammation, and
endothelial dysfunction are closely linked (Higashi, 2022). Given the
multifactorial nature of MCI, in this review we explore the notion
that reducing oxidative stress, inflammation, and endothelial
dysfunction, not just oxidative stress, may be key to preventing MCI.

To date, no drugs have been found that cure MCI (Alvi et al.,
2022). Cholinesterase inhibitors are commonly used to delay
progression of MCI or to improve cognition in MCI patients, but
their efficacy remains inconclusive. For example, although donepezil
showed limited efficacy in improving the cognitive function of
individuals with MCI, it could not delay MCI progression
(Zhang et al., 2022). Moreover, donepezil was associated with
significantly higher rates of adverse effects, such as diarrhea and
vomiting, than placebo (Zhang et al., 2022). Efforts are underway to
develop complementary and integrative therapeutic regimens using

natural products for cognitive disorders as such products are
perceived to constitute a safer and more natural option than
conventional medicine (Nguyen et al., 2022). For instance,
mangiferin, a natural glucoxilxanthone, has been found to show
protective effects against memory impairment in animals and
humans, without any side effects at the selected doses (Lum
et al., 2021). Also, previous studies have suggested that the
naturally occurring compounds genistein and celastrol are
promising molecules for the development of neuroprotective
drugs (Fuloria et al., 2022; Amir Yusri et al., 2023).

Linalyl acetate (3,7-dimethyl-1,6-octadien-3-yl acetate; LA) is a
major volatile component of the essential oils of Salvia sclarea (clary
sage) and Lavandula angustifolia (lavender) (Seol et al., 2013). LA is
used as a fragrance ingredient in shampoos, detergents, and
cosmetic products (Letizia et al., 2003). Humans are exposed to
LA not only through fragrances but also through the consumption of
flavored teas such as Earl Grey tea, a cup of which contains 0.2 mg of
LA (Orth et al., 2014). Repeated-dose and reproductive toxicity
studies showed that exposure to 36 mg/kg/day and 200 mg/kg/day
LA, respectively, did not have any adverse effects (Api et al., 2015).
Computational analyses showed that LA was neither a substrate nor
an inhibitor of cytochromes involved in the metabolism of
neuropsychiatric drugs (Avram et al., 2021). In addition, the
intake of lavender essential oil (0.03 mL/kg), which contains a
significant amount of LA, for 2 weeks did not have any
disruptive effects on lipid profiles or liver enzymes in healthy
athletes (Maral et al., 2022).

LA has been reported to have various therapeutic properties,
including analgesic (Yu and Seol, 2017; Scuteri et al., 2022),
antispasmodic (Rombolà et al., 2022), anti-psoriatic (Rai et al.,
2020) and antibacterial (Mirzaei-Najafgholi et al., 2017; Ramić
et al., 2021) effects. We have previously reported that LA is
effective in preventing hypertension (Hsieh et al., 2018; Hsieh
et al., 2019; Shin et al., 2022) and diabetes mellitus (Shin et al.,
2018; Shin et al., 2020), which are risk factors forMCI. Moreover, LA
has shown antioxidant and anti-inflammatory properties, as well as
the ability to treat endothelial dysfunction (see Sections 3–5),
suggesting that LA may have potential in preventing MCI. The
present review briefly summarizes the roles of oxidative stress,
inflammation, and endothelial dysfunction in MCI, as well as the
benefits of LA in treating theseMCI-associated factors. Additionally,
because anxiety and mood disorders such as depression can affect
cognition (Gulpers et al., 2019; Yuan et al., 2023), this review also
considers the effects of LA on mood and cognition.

2 Oxidative stress, inflammation and
endothelial dysfunction related to MCI

Epidemiological studies have suggested that hypertension and
diabetes mellitus are risk factors for MCI. For example, cognitive
performance was significantly lower in participants with
uncontrolled hypertension than in other subjects (Lespinasse
et al., 2022). In addition, the risk of MCI was significantly lower
in hypertensive patients who did than did not effectively control
their blood pressure (Yan et al., 2022). Mechanisms by which
hypertension and diabetes mellitus can contribute to MCI
include oxidative stress, inflammatory processes, and endothelial
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dysfunction (Ungvari et al., 2021). Hypertension has been found to
increase NOX activity in vascular endothelial cells, thereby
promoting ROS formation (Drummond and Sobey, 2014), and
hyperglycemia due to diabetes mellitus stimulates ROS
production via the advanced glycation end product, polyol,
hexosamine, and protein kinase C pathways (Ighodaro, 2018).
Increased oxidative stress can lead to MMP activity in brain
tissue, which ultimately disrupts BBB integrity (Nath et al.,
2019), and increased BBB permeability induces the activation of
microglia (Ju et al., 2018). Activated microglia, in turn, produce
inflammatory mediators, which further affect neuro-inflammation
and neurodegeneration (Shabab et al., 2017).

Oxidative stress can also interact with inflammatory
responses, creating a vicious cycle that increases vascular
endothelial dysfunction (Higashi, 2022). Oxidative stress due
to an imbalance between ROS production and NO
bioavailability results in endothelial dysfunction, ultimately
leading to cardiovascular complications, including arterial
stiffness (Burgos-Morón et al., 2019). Increased arterial
stiffness contributes to the development of cerebrovascular
dysfunction (Barnes and Corkery, 2018), which ultimately
leads to cognitive impairment. In addition, inflammation
mediated by ROS can increase BBB permeability, which
increases the infiltration of immune cells, glial activation, and
neuronal damage, further promoting neuro-inflammation (Van
Dyken and Lacoste, 2018). Moreover, endothelial dysfunction
can lead to endothelial activation (Liao, 2013). Proinflammatory
cytokines, chemokines, and adhesion molecules are upregulated
in activated endothelial cells, leading to inflammatory processes
in blood vessels (Sun et al., 2020). Inflammation-induced
oxidative stress increases ROS production in endothelial cells
(Scioli et al., 2020). These findings indicate that oxidative stress
and inflammation lead to endothelial dysfunction, which in turn
enhances inflammatory responses and oxidative stress, forming a
vicious cycle that may be associated with MCI (Figure 1).

3 Effects of LA on oxidative stress

Several in vivo and in vitro studies have shown that LA has
antioxidant properties. Specifically, LA has been shown to have high
peroxyl radical scavenger ability in vitro (Cutillas et al., 2018); to
exert antioxidant effects in a rat model of combined hypertension
and chronic obstructive pulmonary disease (COPD) by reducing
MDA and lactate dehydrogenase (LDH) levels in serum (Hsieh et al.,
2019); to inhibit cardiovascular disruption in rats treated with acute
nicotine by restoring abnormally decreased heart rate and by
reducing serum nitrite and LDH levels (Kim et al., 2017); to
reduce systolic blood pressure in a rat model of hypertension-
ischemia injury, a model that included the attenuation of p47phox

overexpression, ROS overproduction, and LDH release in the aorta
(Hsieh et al., 2018); and to improve oxidative damage by reducing
MDA levels in the liver tissue of diabetic rats (Shin et al., 2020).
Moreover, under conditions mimicking Ca2+-related ischemic
injury, LA was found to decrease NOX2 expression, ROS
generation, and LDH release in microglial cells and to reduce
p47phox expression and LDH release in neuron-like cells,
suggesting the protective roles of LA on the neurovascular unit
(Hsieh et al., 2021).

Ca2+ is an intracellular second messenger that plays an
important role in regulating cellular functions (Bootman and
Bultynck, 2020). Agonist-induced Ca2+ entry into vascular
endothelial cells induces nitric oxide (NO) production by
endothelial nitric oxide synthase (eNOS) (Wei et al., 2018), and
intracellular Ca2+ contributes to the contraction of vascular smooth
muscle cells (Chen Y. L. et al., 2022). Neuronal processes, including
the release of neurotransmitters and synaptic plasticity, are
dependent on the fine-tuned regulation of intracellular Ca2+

levels (Brini et al., 2014). However, high concentrations of
intracellular Ca2+ increase the activities of respiratory chain
complexes, leading to excessive ROS formation, which further
increases Ca2+ release from the endoplasmic reticulum (Görlach
et al., 2015). LA has been reported to inhibit Ca2+ influx into human
umbilical vein endothelial cells, indicating that it may have possible
protective effects against endothelial dysfunction (You et al., 2013).
Taken together, these findings demonstrating the antioxidant
properties of LA suggest that LS has the potential to prevent MCI.

4 Effects of LA on inflammation

LA has also been found to have significant anti-inflammatory
effects. LA has been shown to reduce skin levels of IL-1β and tumor
necrosis factor (TNF)-α in mice with psoriasis-like skin lesions (Rai
et al., 2020); to inhibit the activation of caspase-1 and nuclear factor-
κB (NF-κB) in a human mast cell line exposed to inflammatory
stimuli (Moon et al., 2018); to inhibit the expression of cell adhesion
molecules and NF-κB activation in murine brain endothelial cells
stimulated with TNF-α (Aoe et al., 2017); and to exert anti-
inflammatory effects in a rat model of combined COPD and
hypertension by reducing TNF-α, IL-6, and MMP-9 levels in
bronchoalveolar lavage fluid (Hsieh et al., 2019). Moreover, LA
was effective in reducing systolic and diastolic blood pressure in rats
with repeatedly stressed-ulcerative colitis, as well as reducing serum
IL-6 concentrations (Shin et al., 2022). LA also significantly reduced

FIGURE 1
Overview of the relationships among oxidative stress,
inflammation and endothelial dysfunction, factors involved in the
pathology of MCI.
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TABLE 1 Summary of the effects of LA on oxidative stress, inflammation and endothelial dysfunction.

Models Doses Effects Mechanisms References

SD rats, male, Acute nicotine exposure 1, 10 or
100 mg/kg

Inhibiting cardiovascular disruption Serum nitrite, LDH↓ Kim et al.
(2017)

SD rats, male, Repeatedly stressed-ulcerative
colitis

10 or
100 mg/kg

Anti-hypertensive; Anti-inflammatory Systolic BP, diastolic BP↓ Shin et al.
(2022)

Colon nitrite↓

Serum IL-6 (decreasing tendency)

SD rats, male, Hypertensive ischemic injury 25, 50 or
100 mg/kg

Anti-hypertensive; Anti-oxidant Systolic BP↓; Aorta eNOS↑ Hsieh et al.
(2018)

Aorta p47phox, ROS, LDH↓

SD rats, male, COPD-like and hypertension 1, 10 or
100 mg/kg

Anti-hypertensive; Anti-oxidant; Anti-
inflammatory

Systolic BP↓ Hsieh et al.
(2019)

Lung NF-κB↓

BAL fluid TNF-α, IL-6, MMP-9↓

Serum MDA, LDH↓

Serum DPPH (increasing tendency)

EA.hy926 cells 0.01% Intracellular Ca2+ homeostasis Intracellular Ca2+ concentration
(↑transiently)

You et al.
(2013)

Ca2+ influx↓

SD rats, male, Chronic stress and STZ-
induced DM

10 or
100 mg/kg

Anti-diabetic; Enhancing endothelium-
dependent vasorelaxation; Anti-

inflammatory

Blood sugar↓, Liver AMPK↑ Shin et al.
(2018)

Abdominal artery eNOS↑

ACh-induced vasorelaxation↑

Liver NF-κB↓

SD rats, male, Chronic stress, high-fat diet
and STZ-induced DM

1 or 10 mg/kg Anti-diabetic; Anti-stress; Anti-oxidant;
Anti-inflammatory

Fasting blood sugar, HOMA-IR↓ Shin et al.
(2020)

Serum insulin levels↓

Serum corticosterone↓

Liver mitochondrial membrane potential↑

Pancreas NF-κB and liver MDA (decreasing
tendency)

SD rats, male, Collagen-induced arthritis
exposed to chronic nicotine

100 mg/kg Inhibiting muscle wasting; Anti-
inflammatory

Gastrocnemius muscle weight↑ Seo et al. (2021)

Hind paw thickness↓

Muscle fiber cross-sectional area↑

Gastrocnemius muscle mitochondrial
membrane potential↓

Serum IL-6↓, Serum IGF-1↑

bEnd.3, SH-SY5Y, BV2, and U373 cells, Ca2+-
related ischemic injury

500 μM Anti-oxidant Protecting BBB bEnd.3: NO↑, MMP-9, LDH↓ Hsieh et al.
(2021)

SH-SY5Y: p47phox, LDH↓

BV2: NOX2, ROS, LDH↓

U373: ONOO−, p47phox↓

SH-SY5Y and BV2 cells, Inflammatory
stimulus and muscarinic receptor blockade

500 μM Intracellular Ca2+ homeostasis Decreasing SOCE by activating the forward
mode of NCX and the Na+/K+ ATPase

Kim et al.
(2022)

BALB/c mice, female, Imiquimod-induced
psoriasis-like skin lesion

1% or 2% Anti-inflammatory Skin IL-1β, TNF-α↓ Rai et al. (2020)

HMC-1 cells, Phorbol myristate acetate plus
A23187 stimulation

400 μg/mL Anti-inflammatory Caspase-1, NF-κB, TSLP↓ Ca2+ influx↓ Moon et al.
(2018)

(Continued on following page)
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serum glucose levels in rats with streptozotocin-induced diabetes
exposed to chronic immobilization stress, which resulted from
increased liver AMP-activated protein kinase expression,
decreased liver NF-κB expression, and excessive amounts of
serum nitrite (Shin et al., 2018).

A sustained increase in intracellular Ca2+ levels has been
associated with the activation of microglia (Brawek and
Garaschuk, 2013), further emphasizing the importance of
maintaining intracellular Ca2+ homeostasis. In this regard, LA has
been shown to decrease store-operated Ca2+ entry elevation in
microglial cells under the conditions of muscarinic receptor
blockade and inflammatory stimulus (Kim et al., 2022).

Skeletal muscle releases several myokines, including insulin-like
growth factor (IGF)-1, which have pleiotropic effects. IGF-1 is
responsible for maintaining skeletal muscle mass (Bian et al.,
2020), and has been shown to have anti-inflammatory and
antioxidant properties (Sukhanov et al., 2007). IGF-1 deficient
mice exhibited significantly reduced expression of Nrf2 in the
aorta, which makes the vasculature susceptible to oxidative stress
(Bailey-Downs et al., 2012). Also, mice with IGF-1 deficiency
showed increased Tnfa and Il1b mRNAs in the retina indicating
persistent inflammation (Arroba et al., 2016). In addition, activation
of the IGF-1/PI3K/AKT/GSK-3β pathway was shown to attenuate
neuro-inflammation and cognitive impairment after sleep
deprivation (Wan et al., 2022). LA was shown to prevent losses
in body weight and gastrocnemius muscle weight in rats with
rheumatoid arthritis exposed to chronic nicotine treatment.
Mechanistically, LA increased muscle fiber cross-sectional area
and serum IGF-1 levels in these rats and decreased serum IL-6
levels and mitochondrial membrane potential in the gastrocnemius
muscle. Moreover, LA was more potent than lavender essential oil in
enhancing serum IGF-1 concentrations (Seo et al., 2021). These
findings indicate that LA is an effective anti-inflammatory agent,
which may attenuate the cascade of events leading to MCI.

5 Effects of LA on endothelial
dysfunction

LA has also been shown to reduce endothelial dysfunction. For
example, LA reduced ROS-induced eNOS suppression in the aorta
in a rat model of hypertension-ischemia injury (Hsieh et al., 2018);
improved endothelial function by increasing eNOS expression and
acetylcholine (ACh)-induced vasorelaxation in the aortas of diabetic
rats (Shin et al., 2018); and increased NO and decreased MMP-9
expression, a key marker of BBB disruption, under conditions
mimicking Ca2+-related ischemic injury in a mouse brain

endothelial cell line (Hsieh et al., 2021). Taken together, these
findings suggest that LA may prevent MCI associated with
muscle wasting. Overall, the findings presented in Sections 3–5
suggest that LA has the potential to prevent the development of MCI
by reducing oxidative stress, inflammation, and endothelial
dysfunction (Table 1).

6 Effects of LA on mood and cognition

Anxiety and depression are common in individuals with MCI,
thereby increasing the risk of progression to dementia (Ma, 2020).
Moreover, psychological distress and depression have been
identified as longitudinal predictors of cognitive decline in older
adults (Freire et al., 2017).

LA has been shown to have positive effects on mood. Inhalation
of LA by cancer patients prior to chemotherapy decreased the
anxiety-visual analogue scale (VAS) and the stress-VAS scores in
cancer patients, suggesting that LA has anti-anxiety and anti-stress
effects (Kim et al., 2021). Inhalation of lavender, petitgrain, or
bergamot essential oil containing large amounts of LA was found
to reduce the Anger-Hostility and the Tension-Anxiety scores in
pregnant women (Igarashi, 2013). Lavender essential oil showed
anxiolytic effects in mice by increasing the time spent in the open
arm of the elevated plus maze test (Schuwald et al., 2013). Clary sage
essential oil containing LA as its major bioactive component showed
an antidepressant-like effect by reducing immobility time in the
forced swimming test, an effect blocked by a dopamine antagonist
(Seol et al., 2010). A study using bioinformatics tools found that LA
appeared to modulate serotonin transporters and to have a strong
affinity to serotonin 1A and dopamine D2 receptors, indicating that
LA may be promising as an antidepressant (Avram et al., 2021). In
addition, the abilities of LA to increase parasympathetic activity
(Igarashi, 2013), inhibit Ca2+ influx (Schuwald et al., 2013), and
inhibit sedative activity (Buchbauer et al., 1991) may be related to its
mood-enhancing effects.

Studies have reported that LA may play a role in cognitive
function. Because proper Ca2+ signaling is important in regulating
neuronal function, such as synaptic plasticity, abnormal Ca2+

signaling can lead to synaptic loss in neurodegenerative diseases
(Pchitskaya et al., 2018). Exposure of mice to lipopolysaccharide
(LPS) decreased learning and memory functions, through
mechanisms associated with increased ROS production and
NOX2 expression in brain tissue, as well as neuronal
inflammation (Dong et al., 2021). Moreover, exposure to LPS
significantly increased intracellular Ca2+ overload in a murine
hippocampal cell line showing Ca2+ dyshomeostasis (Dong et al.,

TABLE 1 (Continued) Summary of the effects of LA on oxidative stress, inflammation and endothelial dysfunction.

Models Doses Effects Mechanisms References

bEnd.3 cells, TNF-α stimulation 62.5 or
125 μM

Anti-inflammatory E-selectin, P-selectin↓ VCAM-1, ICAM-1,
NF-κB↓

Aoe et al. (2017)

Abbreviations: AMPK, AMP-activated protein kinase; ACh, acetylcholine; BAL, bronchoalveolar lavage; BP, blood pressure; COPD, chronic obstructive pulmonary disease; DM, diabetes

mellitus; DPPH, 2,2-Diphenyl-1-picrylhydrazyl; eNOS, endothelial nitric oxide synthase; HOMA-IR, homeostatic model assessment-insulin resistance; ICAM, intercellular adhesion molecule;

IGF, insulin-like growth factor; IL, interleukin; LDH, lactate dehydrogenase; MDA, malondialdehyde; MMP, matrix metalloproteinase; NCX, Na+/Ca2+ exchanger; NF-κB, nuclear factor-κB;
NO, nitric oxide; NOX, NADPH, oxidase; ONOO−, peroxynitrite; ROS, reactive oxygen species; SD, sprague dawley; SOCE, store-operated Ca2+ entry; STZ, streptozotocin; TNF, tumor necrosis

factor; TSLP, thymic stromal lymphopoietin; VCAM, vascular cell adhesion molecule.
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2021). LA also reduced store-operated Ca2+ entry elevation induced
by muscarinic receptor inhibition and inflammatory stimuli by
activating the forward mode of Na+/Ca2+ exchanger and Na+/K+

pump in neuron-like and microglial cells (Kim et al., 2022). Under
conditions mimicking Ca2+-related ischemic injury, LA decreased
p47phox expression and LDH release in neuron-like cells and reduced
NOX2 expression, ROS generation, and LDH release in microglial
cells (Hsieh et al., 2021). These findings indicate that LA can protect
neurons and microglia against oxidative stress and inflammatory
responses.

Acetylcholine is a cholinergic neurotransmitter that plays an
important role in cognitive function (Chen Z. R. et al., 2022).
However, acetylcholinesterase (AChE), an enzyme whose primary
function is to degrade acetylcholine, inhibits postsynaptic signal
transmission (Singh and Gupta, 2017). In the absence of AChE,
butyrylcholinesterase (BChE) can compensate, by hydrolyzing
acetylcholine (Mesulam et al., 2002). LA has been reported to
have AChE and BChE inhibitory activities, with IC50 values of
82 μg/mL (Miyazawa et al., 1998) and 169 μg/mL (Bonesi et al.,
2010), respectively. Molecular docking simulations also showed that
LA had a high affinity for the binding site of BChE (Lobine et al.,
2021), further suggesting that LA may be useful for improving
cognitive function in subjects with MCI.

7 Overall effects of LA against MCI-
associated factors

In summary, LA has proved to have antioxidant effect by
reducing NOX2 (Hsieh et al., 2021), p47phox (Hsieh et al., 2018;
Hsieh et al., 2021), ROS (Hsieh et al., 2018; Hsieh et al., 2021), MDA
(Hsieh et al., 2019), peroxynitrite (ONOO−) (Hsieh et al., 2021), and
intracellular Ca2+ levels (You et al., 2013; Moon et al., 2018; Kim

et al., 2022). Also, LA has been reported to have anti-inflammatory
activity by reducing NF-κB activation (Aoe et al., 2017; Moon et al.,
2018; Shin et al., 2018; Hsieh et al., 2019), TNF-α production (Hsieh
et al., 2019; Rai et al., 2020), IL-6 production (Hsieh et al., 2019; Seo
et al., 2021), IL-1β production (Rai et al., 2020), MMP-9 production
(Hsieh et al., 2019; Hsieh et al., 2021), and E-selectin, P-selectin,
vascular cell adhesion molecule-1, and intercellular adhesion
molecule-1 expression (Aoe et al., 2017). In addition, it has been
reported that LA has the ability to reverse endothelial dysfunction by
increasing eNOS expression (Hsieh et al., 2018; Shin et al., 2018),
NO production (Hsieh et al., 2021), and ACh-induced
vasorelaxation (Shin et al., 2018). Therefore, LA may prevent the
development of MCI by mitigating MCI-associated factors such as
oxidative stress, inflammation, and endothelial dysfunction
(Figure 2). Additionally, LA is effective in reducing anxiety and
depressive symptoms related to cognitive decline.

8 Conclusion and future perspectives

In conclusion, numerous in vivo and in vitro studies have shown
that LA is an effective antioxidant and anti-inflammatory agent, and
that it reduces endothelial dysfunction, suggesting that LA can prevent
the development of MCI. Importantly, LA does not have genotoxic,
phototoxic, photoallergenic, or skin-sensitization properties (Api
et al., 2015). However, efforts to develop LA as a drug molecule
must overcome some challenges. Main issues are that the
pharmacokinetic and pharmacodynamic properties of LA are
insufficient for clinical applications. For example, although LA
penetrated through the skin of healthy male subjects after massage
with LA-containing lavender essential oil, the maximum
concentration of LA in blood was only 100 ng/mL, which is
insufficient to have a clinical effect (Jäger et al., 1992). In addition,

FIGURE 2
Possible methods of action of LA in preventing MCI by reducing oxidative stress, inflammation and endothelial dysfunction. Abbreviations: ACh,
acetylcholine; eNOS, endothelial nitric oxide synthase; ICAM, intercellular adhesion molecule; IL, interleukin; MDA, malondialdehyde; MMP, matrix
metalloproteinase; NF-κB, nuclear factor-κB; NO, nitric oxide; NOX, NADPH oxidase; ONOO−, peroxynitrite; ROS, reactive oxygen species; TNF, tumor
necrosis factor; VCAM, vascular cell adhesion molecule.
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the blood levels of LA in mice that inhaled LA at a concentration of
5 mg/L air were found to be only 1–2 ng/mL (Jirovetz et al., 1991).
Moreover, when LA is taken orally, the compound is metabolized to
linalool and α-terpineol by carboxylesterase in gastric juice, following
which both linalool and α-terpineol are conjugated and oxidized to
more polar metabolites and excreted (Bickers et al., 2003). Another
problem is the low solubility of LA in water (0.054 mg/mL) (Cal,
2006). Additional studies, therefore, are needed to investigate the
pharmacokinetic and pharmacodynamic properties of LA, and to
verify the effects of LA in patients at risk of developing MCI.
Collectively, the results summarized in the present review provide
a basis for the development of new strategies for preventing MCI
using LA.
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