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Head and neck squamous cell carcinoma (HNSCC) is a common oral cancer with
poor prognosis and for which no targeted therapeutic strategies are currently
available. Accumulating evidence has demonstrated that programmed cell death
(PCD) is essential in the development of HNSCC as a second messenger. PCD can
be categorized into numerous different subroutines: in addition to the two well-
known types of apoptosis and autophagy, novel forms of programmed cell death
(e.g., necroptosis, pyroptosis, ferroptosis, and NETosis) also serve as key
alternatives in tumorigenesis. Cancer cells are not able to avoid all types of cell
death simultaneously, since different cell death subroutines follow different
regulatory pathways. Herein, we summarize the roles of novel programmed
cell death in tumorigenesis and present our interpretations of the molecular
mechanisms with a view to the development of further potential therapies.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a collection of heterogeneous
malignancies that occur in the mucosal surfaces of the oral cavity, paranasal sinuses, nasal
cavity, salivary glands, pharynx, and larynx (Johnson et al., 2020). Currently, HNSCC ranks as the
sixthmost prevalent type of cancer worldwide, with over 930,000 new cases and 460,000 deaths in
2020 (Bray et al., 2018; Ferlay et al., 2019). Open surgery has been a traditional treatment for
HNSCC, often followed by radiation or chemotherapy (Mehanna et al., 2010; Johnson et al.,
2020). However, the limited effectiveness of these approaches in improving the unfavorable
prognosis of patients can be attributed to the existence of numerous genetic and epigenetic
alterations that underlie the molecular mechanisms involved. Frequently, the culprit is the
complex signaling network involved in programmed cell death.

Three major risk factors for developing HNSCC—tobacco, alcohol, and HPV—have
been frequently identified in the trial. These have also been found to be closely associated
with the emergence of programmed cell death and several important drivers of this (Saad
et al., 2015; Batta and Pandey, 2019; Ferris et al., 2021). In particular, forms of cell death
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targeting the PD1 receptor or its ligand PD-L1 are the focus in the
case of HPV-positive HNSCC, indicating the probable direction of
development for treatments in relation to each subtype of PCD. In a
preclinical model of HNSCC, it has been shown that the combined
cIAP/XIAP inhibition of ASTX660 and necrosis-mediated
TP53 expression have a direct antitumor effect on HPV(+)
subtypes (Xiao et al., 2019). The expression of a pyroptosis-
associated gene index (NLRP1) and an apoptosis-related gene
index (CDKN2A) has been found to predict better survival based
on cell death index scores in two HPV-negative HNSCC cell lines and
greater potential efficacy for HNSCC prognosis (Nan et al., 2023).
This important finding further emphasizes the fact that ferroptosis-
associated targeting of expression levels of the cystine transporter
SLC7A11 are lower in HPV-positive (HPV + ve) tumors than in
HPV-negative (HPV-ve) HNSCC, which has been observed using
RNAseq data (both whole-tumor and single-cell sequencing) (Hémon
et al., 2020). Thus, in the present day, we are eager to examine the deep
pathogenesis of programmed cell death in HNSCC and seek effective
treatments.

Cell death has been divided into accidental cell death (ACD) and
regulated cell death (RCD) by the Nomenclature Committee on Cell
Death (Galluzzi et al., 2018). RCD, also known as PCD, involves
tightly structured signaling cascades, homeostasis, and pathological
processes in multicellular organisms (Koren and Fuchs, 2021).
Although a growing number of classical forms of PCD, such as
apoptosis and autophagy, have been extensively studied and their
significance now interpreted in various human pathologies, changes
in the molecular mechanisms that regulate programmed necrosis are
not commonly observed in cancer (Glick et al., 2010; Carneiro and El-
Deiry, 2020). Various novel forms of programmed cell death, such as
necroptosis, pyroptosis, ferroptosis, NETosis, and cuproptosis, play
significant roles in the development, progression, and regression of
HNSCC (Lee et al., 2018b). Thus, understanding novel PCD is a
promising strategy to subvert treatment resistance, and may be of

equal importance to an understanding of apoptosis. Therefore, it is
necessary to determine the mechanisms underlying these types of
PCD, as well as their connections to cancer.

In this review, we shed light on the antitumor effects of
nonapoptotic PCD in HNSCC and the molecular mechanisms
targeting different PCD subroutines. Furthermore, we also discuss
pathways and biomarkers for the use of natural products in relation to
PCD and predict future orientations for clinical therapies (Figure 1).

2 Overview of mechanical networks in
novel programmed cell death

Necrosis, previously known as the passive and unregulated cell
suicide process, has been recognized as arising from irreversible
damage to cells resulting from pathological processes (hypoxia;
physical, chemical, and biological processes; or immune
responses) (Degterev et al., 2005; Quail and Joyce, 2013).

Cells undergoing necrosis frequently exhibit damage to the
plasma membrane, mitochondrial swelling, ATP depletion in the
cell, and even the release of proinflammatory molecules (Edinger
and Thompson, 2004). In fact, over the past decade, there has been
growing recognition that a significant proportion of necrosis,
actively mediated by the doomed cell, might in fact be a
programmed and deliberate process. Hence, a comprehensive
understanding of the different modes of programmed cell death
is needed. An overview of key PCD modalities, namely, necroptosis,
pyroptosis, ferroptosis, NETosis, and cuproptosis, has come into
focus (Lee et al., 2018b; Zhu and Sun, 2018).
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2.1 Necroptosis

Of the various types of novel PCD, necroptosis is the most
extensively described and investigated. Necroptosis, showing a
distinct mechanism from apoptosis in terms of its influence on
mouse ischemic brain injury and neuroprotection, was first named
by Professor Yuan of Harvard Medical School in 2005 (Degterev
et al., 2005). This programmed form of necrosis features similar
morphological changes to necrosis, including damage to the
plasma membrane, lysis of endoplasmic reticulum,
mitochondrial swelling, release of intracellular contents,
production of proinflammatory cytokines, and even the
elicitation of an immunologic response (Linkermann and
Green, 2014; Tonnus et al., 2019; Yuan et al., 2019). The
distinction from necrosis is that necroptosis strictly follows the
activation of intracellular signaling pathways in cancer and actively
consumes energy (Conrad et al., 2016; Peng et al., 2022). Notably,
different types of stimuli can trigger necroptosis, such as
lipopolysaccharide (LPS), interferon-γ (IFN-γ), Z-DNA-binding
protein 1 (ZBP1), tumor necrosis factor alpha (TNF-α), death
receptors (e.g., FAS), and toll-like receptors (e.g., TLR3 and TLR4)
(Kaiser et al., 2013; Chan et al., 2015; Pasparakis and
Vandenabeele, 2015; Newton et al., 2016). Let us take the most
intensive study of tumor necrosis factor receptor 1 (TNFR1) as an
example. Specifically, after TNF-α binds to TNFR1 on the plasma
membrane, several downstream protein molecules are recruited
into a form referred to as complex I, which consists of TNFR-
associated death domain (TRADD), receptor-interacting protein
kinase 1 (RIPK1), TNFR-associated factor 2 (TRAF2), TNFR-
associated factor 5 (TRAF5), and E3 ubiquitin ligases cellular
inhibitor of apoptosis 1 (cIAP1) linear ubiquitin chain assembly
complex (LUBAC) (cIAP2) (Micheau and Tschopp, 2003;
Bellomaria et al., 2010; Dondelinger et al., 2016). Following
this, cIAPs function as E3 ligases that induce Lys63-domain
polyubiquitination of RIPK1, as well as activating the nuclear
transcription factor–kappa beta (NF-kB) pathway (Dondelinger
et al., 2015; Annibaldi et al., 2018). Subsequently, with the help of
deubiquitinases (e.g., CYLD), RIPK1 undergoes deubiquitination
events to generate a new protein molecule form, including RIPK1,
RIPK3, FADD, TRADD, and caspase-8, called the necrosome (also
known as complex II). It appears that caspase-8 plays a critical role
in this process. When caspase-8 is activated, it will inhibit
phosphorylation in RIPK1 and RIPK3, and the inactivation of
the necrosome leads to apoptosis. However, if caspase-8 is
inactivated, then RIPK1 and RIPK3 will hyperphosphorylate,
resulting in the activation of the necrosome and leading to
necroptosis (Wang et al., 2008; Feoktistova et al., 2011; Lafont
et al., 2018). Subsequently, the mixed-lineage kinase domain-like
pseudokinase (MLKL) will be recruited by the activated
necrosome, which causes two distinct checkpoints to be set to
show biochemical features in the following steps. On the one hand,
ectopic MLKL translocating towards the plasma membrane leads
to the release of damage-associated molecular patterns (DAMPs)
and an inflammation response (Rickard et al., 2014; Murai et al.,
2018). On the other hand, MLKL activates DRP1 in the
mitochondria via PGAM5, causing the accumulation of ROS
and mitochondrial division (Wang et al., 2012; Remijsen et al.,
2014; Basit et al., 2017; Liu et al., 2021b) (Figure 1). In brief,

necroptosis is characterized by the pathogenically blocked catalytic
activity of caspases and necrosome formation. However, it is also
necessary to further study the relationship between cell necroptosis
and tumorigenesis.

2.2 Pyroptosis

Pyroptosis is another form of novel PCD that is morphologically
and biochemically distinct from apoptosis. Sperandio et al.
discovered this inflammatory death phenotype first, observing
overexpressed insulin-like growth factor 1 receptor (IGFIR) in a
293T cell line in 2000 (Sperandio et al., 2004). Compared with
necroptosis, the typical features of pyroptosis are fewer cells with
mitochondrial swelling, extensive cytoplasmic vacuolization with
pyroptosome formation, pore formation, and rupture of the plasma
membrane (Xu et al., 2021). Concerning molecular mechanisms,
there are two main pathways mediating pyroptosis: one is a
canonical inflammasome pathway, which is caspase-1-dependent,
and the other is a non-canonical inflammasome pathway, which is
caspase-1-independent (Fontana et al., 2020; Lu et al., 2022).
Specifically, the former pathway is initiated by pathogen-
associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) via activation of pyroptosome
signaling. This process can be divided into steps involving
various types of stimuli, including nod-like receptors (NLRs) and
absent in melanoma-like receptors (ALRs) (He et al., 2020; Li et al.,
2022d). Taking the NLR family as an example: after recognition of
specific pattern recognition receptors coupled with stimuli, the
pyroptosome is assembled by NOD-like receptor thermal protein
domain-associated protein 3 (NLRP3), apoptosis-associated speck-
like protein containing a CRAD (ASC) complex, and pro-caspase-1
(Cookson and Brennan, 2001; Ramirez et al., 2018). Subsequently,
procaspase-1 is converted to caspase-1, which hydrolyzes and
processes the pro-inflammatory interleukins pro-IL1B and pro-
IL18 into mature IL1B and IL18, respectively, leading to cleavage
of gasdermin E (GSDME) (Miao et al., 2010; Rao et al., 2022).
Meanwhile, the latter pathway is based on LPS in the cytoplasm of
macrophages, monocytes, or other cells, directly binding caspase-4/
5/11 to activate GSDMD. Therefore, GSDMD is a crucial participant
in both the canonical and the non-canonical pathways of pyroptosis.
GSDMD can be cleaved by the N-terminal and C-terminal junction
domains of gasdermins, and activated N-terminal regions form
pores in the cell membrane, resulting in the release of many pro-
inflammatory actors, potassium efflux, and calcium influx (Lee et al.,
2018a; Orning et al., 2019;Wang et al., 2020; Burdette et al., 2021). In
addition, caspase-8 and caspase-3, which exert their effects in the
upstream signaling of the apoptotic pathway, can also initiate
pyroptosis via GSDME cleavage (Wang et al., 2017; Chen et al.,
2019; Wu et al., 2022a). All these signals, including cell lysis, the
release of cytoplasmic contents, and nuclear condensation, lead to a
pyroptosis microenvironment (Quail and Joyce, 2013; Xia et al.,
2019). Thus, this type of novel PCD elicits two main reactions that
can lead to cell lysis, the release of cytoplasmic contents, nuclear
condensation, and even damage to normal cells (Ding et al., 2016;
Liu et al., 2016). Given the activation of all these inflammatory
signals, the association of pyroptosis with innate immunity and
disease needs to be considered (Figure 2).
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FIGURE 1
Molecular mechanisms of necroptosis. Necroptotic cell death can be induced by different types of stimuli and related receptors (e.g., TNF-α and
TNFR). Particular attention can be paid to complex I and complex II. TRADD, RIPK1, TRAF2/5, and cIAP1/2 are recruited in complex I, which activates the
protein RIPK1 and RIPK3. Complex II involves TRADD, RIPK1, FADD, RIPK3, and caspase-8. An important component of intracellular signaling is the
formation of the necrosome in necroptosis, accompanied by caspase-8 inactivation and hyperphosphorylation of RIPK1/3. MLKL is a key
downstream regulator of this pathway, exerting complex effects through multiple phosphorylation and ubiquitination events that determine the release
of inflammatory DAMPs and ROS production, as well as mitochondrial division.

FIGURE 2
Molecular mechanisms of pyroptosis. This kind of cell death can be induced by twomain pathways. When DAMPs and PAMPs activate the canonical
pathway, NLRP3, ASC, and procaspase-1 are recruited as pyroptosomes, then hydrolyzed to form caspase-1. When LPS enters the organism, it can be
activated to another pathway binding to procaspase4/5/11. Both of these need to be attached to GSDMD cleavage and produce GSDME N-fragments.
The N-fragments of GSDME form cell membrane pores, resulting in pyroptosis. With the continuous accumulation of N-terminal formation of pores
on the membrane, the extracellular transport of inflammatory factors (IL-1β/IL-18) occurs, as well as potassium ion outflow and sodium ion inward flow.
Activated caspase-1 also promotes pro-inflammatory interleukins IL-1β and IL-18.

Frontiers in Pharmacology frontiersin.org04

Xi et al. 10.3389/fphar.2023.1228985

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1228985


2.3 Ferroptosis

Ferroptosis, a new form of iron-dependent cell death, was
formally proposed by Dr. Brent R Stockwell in 2012 (Dixon
et al., 2012). From a morphological and molecular point of view,
it is characterized by dysmorphic small mitochondria, decreased
mitochondrial crests, increased mitochondrial membrane density,
ruptured outer mitochondrial membranes, normal nuclear size, and
the absence of condense chromatin, caused by the overwhelming
accumulation of lipid peroxidation and oxidative disturbance of the
intracellular microenvironment (Xie et al., 2016; Li et al., 2020a).
Mechanistically, based on previous studies, ferroptosis occurs when
the natural defense mechanisms that prevent the accumulation of
lipid peroxides are compromised (Stockwell, 2022). Briefly, cysteine
is transported into the membrane via the cystine/glutamate reverse
transporter (system Xc-), while glutamate is transported out of the
membrane. This step can be inhibited easily by sulfasalazine and
erastin. System Xc− is composed of two subunits SLC7A11 and
SLC3A2 that exchange extracellular cysteine and intracellular
glutamate at a ratio that modulates their redox state (Koppula
et al., 2018; Liu et al., 2021a). Subsequently, cysteine is reduced
in the cystine reduction pathway dependent on glutathione (GSH)
or TXNRD1, promoting GSH production (Kuang et al., 2020). Due
to its strong reducing properties, GSH serves as a primary cofactor of
glutathione peroxidase 4 (GPX4), which removes excess lipid
peroxide and promotes the reduction of phospholipid hydrogen
peroxides (PLOOHs) to their corresponding alcohols (PLOHs) in
cells. Additionally, GSH4 is involved in the production of oxidized
glutathione (GSSG) (Maiorino et al., 2018).

One of the key elements of ferroptosis often manifests in the
accumulation of iron in cells. Given the presence of a low abundance
of ferroportin, responsible for iron efflux, and a high level of
transferrin receptor 1 (TFR1), responsible for cellular iron
uptake, extracellular ferric iron transports into cells, binding to
transferrin, and reduces to ferrous protein through six-
transmembrane epithelial antigen of prostate family member 3
(STEAP3) (Masaldan et al., 2018; Chen et al., 2021).
Subsequently, ferrous protein can be transported into ferrous
iron with the help of mammalian iron transporters, including
DMT1 (Cadieux et al., 2012; Song et al., 2021). Reduction to a
ferrous state, combined with hydrogen peroxide, is likely to produce
a Fenton reaction, which damages cells and tissues through the
generation of excessive oxidation of polyunsaturated fatty acids and
reactive oxygen species, thereby resulting in ferroptosis (Yanatori
and Kishi, 2019). Above all, three main events occur in ferroptosis,
namely, the inhibition of the cystine/glutamate transporter system,
the increase of lipid peroxidation products, and progressive iron-
related lipid ROS accumulation. Additionally, treatment of
polyunsaturated fatty acids (PUFAs) is required for the onset of
ferroptosis, and its function relies on the activation of enzymes
involved in biosynthesis, such as ACSL4 and LPCAT3. These are
then attached to acyl-coenzyme A derivatives to produce
phosphatidylethanolamine (PE), identified as producing
membrane lipids that are prone to peroxidation, ultimately
leading to ferroptosis (Jiang et al., 2021b; Gan, 2022) (Figure 3).

2.4 NETosis

After the identification of common forms of programmed cell
death, such as necroptosis, pyroptosis, and ferroptosis, substantial
efforts were made to identify other unfamiliar types of PCD,
including NETosis, mitotic catastrophe, parthanatos, and anoikis.
NETosis is a form of PCD driven by NET release, which consists of
the release of depolymerized chromatin and intracellular granular
proteins in response to infection or injury. It is a form of
inflammatory cell death of neutrophils, first observed in 2004
(Brinkmann et al., 2004). The unique morphological changes
indicate leafy depolymerization of the loss of the nucleus and
cytoplasmic granule membranes, contact of chromatin with
intracytoplasmic granules, cell membrane damage, and the
formation of an extracellular net-like structure. The occurrence
of NETosis requires the production of NADPH oxidase-mediated
ROS and involves pathogen-activated platelets (e.g., activated by
bacteria, fungi, or viruses), interleukin 8, transforming growth factor
beta, and other inducers (Remijsen et al., 2011; Brinkmann, 2018).
These inducers can promote the transcription and translation of
NETosis-crucial proteins, namely, peptidyl arginine deiminase IV
(PAD4). Subsequently, PAD4 is transformed from the cytoplasm,
translocated to the nucleus, and citrullinated with nuclear histones,
which facilitates chromatin depolymerization to form a network
structure (Demers et al., 2012; Grayson and Kaplan, 2016; Perdomo
et al., 2019). In addition, the release of neutrophil elastase (ELANE),
matrix metalloproteinases (MMP), and myeloperoxidase (MPO)
from cytoplasmic granules may lead to cytoskeletal disassembly,
protein exposition, and extracellular release (Yipp et al., 2012;
Bukong et al., 2018). The initiation of NETosis is a dynamic,
complex process with different pathways and the formation of
nets; the sequences involved in each step need further
mechanistic exploration (Figure 4).

2.5 Cuproptosis

Similarly to iron, as an essential cofactor in all organisms, the
homeostasis of the internal environment in relation to copper is
critical for various physiological processes (Ge et al., 2022). Hence,
researchers have recently defined a completely new concept, referred
to as cuproptosis. This is a non-apoptotic form of PCD caused by
direct binding to lipid-acylated components of the tricarboxylic acid
cycle (TCA) (Tsvetkov et al., 2022). Changes in morphological
features are less reported, but are mostly related to mitochondrial
shrinkage and rupture of mitochondrial membranes (Bian et al.,
2022). Distinct from all other known types, different copper-binding
molecules or potent copper ionophores, such as elesclomol, are
required as a first step to increase levels of intracellular copper.
Ferredoxin 1 (FDX1), one of the direct targets of elesclomol, encodes
a reductase to reduce Cu2+ to Cu+ and regulates protein lipoylation.
Moreover, three copper transport proteins (SLC31A1, ATP7A, and
ATP7B) also determine copper homeostasis. SLC31A1 is responsible
for copper uptake, while ATP7A and ATP7B are responsible for
copper transfer out. The mechanism of cell death caused by
dysregulation of copper homeostasis is consistent with the
mechanism of cell death induced by copper ion carriers (Li et al.,
2022b; Tang et al., 2022; Tsvetkov et al., 2022). Because DLAT and
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DLST are components of the TCA cycle, FDX1 then directs
oligomerization of DLAT and DLST, reducing their levels; this
implies that cuproptosis targets components of the TCA cycle
(Tsvetkov et al., 2022). It has been demonstrated that
mitochondrial respiration is associated with copper death; excess
copper promotes aggregation of lipoylated protein and reduces iron-
sulfur cluster protein; this triggers aggregation and dysregulation of
these proteins, blocking the TCA cycle, leading to proteotoxic stress
and ultimately cell death (Huang et al., 2022). Briefly, cuproptosis
mainly depends on intracellular copper accumulation and the TCA
cycle, while FDX1 and proteolipidation are key regulators (Figure 4).

3 Links between programmed cell
death regulation and carcinogenesis

3.1 Links between regulation of necrosis and
carcinogenesis

As previously mentioned, the process of activation of
necroptosis is crucial to prevent uncontrolled inflammatory
responses and resulting pathological conditions, such as the
occurrence of cancer (Najafov et al., 2017; Xie et al., 2020).
Necroptosis activation has been reported to correlate well with
invasive phenotypes and poor prognosis in HNSCC; indeed,
some necroptosis-related proteins, including RIPK1, RIPK3, and

MLKL, have been found to be higher in mice with OSCC, suggesting
that necroptosis is a crucial event in oral injuries (Wei et al., 2022).
Since the release of DAMPs is one of the key features of necroptosis,
it has been elucidated that necroptotic IL-1β activates the NF-κB
pathway and further leads to increased migration and invasion in
HNSCC, based on findings in two related cell lines. This result
indicated that necroptosis might be a potential tumor promoter in
HNSCC (Li et al., 2020b). Another study has demonstrated that
HNSCC harbors the most frequent genomic amplifications of the
Fas-associated death domain (FADD), which is ascribed to the fact
that RIPK1 undergoes deubiquitination events. The authors
identified FADD knockdown as inhibiting HNSCC, displaying
amplification and increased expression, associated with the
occurrence of necroptosis in vitro (Eytan et al., 2016).
Consequently, targeting of the necroptotic pathway seems to be a
potential therapeutic route with HNSCC oncogenic effects.

3.2 Links between regulation of pyroptosis
and carcinogenesis

Recently, an increasing number of studies have proposed
pyroptosis regulation as a crucial event in the evolution of
HNSCC. GSDME, as the major executive protein of pyroptosis,
has been reported to be strongly expressed in OSCC in a study using
a human OSCC tissue microarray (Wang et al., 2022). Wu et al.

FIGURE 3
Molecular mechanisms of ferroptosis. In ferroptosis, cystine enters and exits the cell membrane through system Xc− (composed of SLC7A11 and
SLC3A2 proteins); this step can be inhibited by erastin. With the accumulation of cystine, GSH levels increase, and GPX4 is activated, inhibiting lipid
peroxidation production.When free iron atoms bind to TFR1, they are reduced to ferrous protein STEAP3. Additionally, DMTI ensures that ferrous proteins
are present in large quantities in the form of divalent iron, which subsequently initiates lipid peroxidation through the Fenton reaction with hydrogen
peroxide in the cells. PUFA also interferes with ACSL4 and LPCAT3, with enzymes involved in the activated biosynthesis of phospholipid, which is
necessary for lipid peroxidation. The production of the above lipid peroxidation will eventually cause death in the form of ferroptosis.
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constructed a scoring system to assess pyroptosis dysfunction on the
basis of integrated TCGA genomic data in each participant in a
cohort of HNSCC patients (Wu et al., 2022b). The low-scoring
group had a more comprehensive tumor mutational load than the
high-scoring group, particularly in TP53 and TTN, indicating that
pyroptosis features in the tumor microenvironment. Kaplan–Meier
survival curves were used to construct gene clusters of HNSCC
patients based on the expression of pyroptosis mRNA, as well as to
compare immune cell infiltration in the high- and low-scoring
pyroptosis groups. Low pyroptosis scores were associated with a
stronger response to immune activation, implying that pyroptosis is
associated with immunotherapy in HNSCC (Deng et al., 2022).
Differentially expressed pyroptosis-related genes might have an
impact on prognosis in HNSCC. Zhu et al. concluded that
NLRP3 can be identified as a potential predictor based on
relative expression outcomes of tumor samples paired with
adjacent normal tissue samples in the context of HNSCC (Zhu
et al., 2022). Given that NLRP3 is one of the most widely studied
receptor proteins at the beginning of pyroptosis, the findings also
indicated that NLRP3 offers potential value in HNSCC
development. Many methodological approaches, such as RT-
qPCR assays and immunohistochemical analyses, can be
exploited to demonstrate the relationship between pyroptosis and
HNSCC. Additionally, an investigation performed by Bottino et al.
sheds light on pyroptosis, indicating that it could serve as a
promising mechanism for regulation of the roles of tumor-
derived extracellular vesicles (Bottino et al., 2021). It is possible
to downregulate gene expression of NLRP3, pro-IL-1β, and pro-

caspase-1 proteins that influence the priming phase of the
inflammatory response in the HNSCC microenvironment (Zhang
et al., 2020; Shen et al., 2022). In summary, the characteristics of
pyroptosis in HNSCC are mainly related to prognosis and
immunotherapy.

3.3 Links between regulation of ferroptosis
and carcinogenesis

In recent years, it has been reported that deregulation of
ferroptosis is associated with numerous cancers, including
HNSCC. Indeed, this form of regulated cell death can play a
fundamental role in suppressing tumor growth. Many studies
have demonstrated the importance of a key regulator of
ferroptosis, solute carrier family 7 member 11 (SLC7A11), which
transports extracellular cystine into cells for glutathione biosynthesis
triggered by lipid peroxidation (Xie et al., 2016; Koppula et al., 2021).
Shi et al. have suggested that both SLC7A11 and GPX4 are highly
expressed in the progression of the HNSCC cell line, regulating
ferroptosis by positively affecting B cells, CD8+ T cells, and CD4+

T cells (Shi et al., 2021). Additionally, through reduction in
ferroptosis, the overexpression of SLC7A11, regulated by
NRF2 nuclear, has been found to be positively modulated by
lymph node metastasis in esophageal squamous cell carcinoma
tissues (Feng et al., 2021). To explore the application of
combination ferroptosis regulation within a tumor environment,
a comprehensive multi-omics analysis of three distinct ferroptosis

FIGURE 4
Molecular mechanisms of NETosis and cuproptosis. NETosis is a form of inflammatory response based on the production of NADPH oxidase-
mediated ROS via external stimulation, such as by viruses and bacteria, followed by transcription and translation of key protein PAD4 and citrullination
with nuclear histones to form network structures via chromatin depolymerization. Cuproptosis is driven by excess copper ions binding to a potent copper
ionophore known as elesclomol. Subsequently, a large quantity of divalent copper ions can be reduced to copper ions by FDX4 and applied to
induce abnormal oligomerization of thiolated proteins through the thiolated proteins in TCA; in addition, copper ions can also reduce Fe-S cluster protein
levels, which together induce proteotoxic stress and eventually lead to cell death.
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patterns was conducted in patients with OSCC; these were found to
be linked to low gene copy number burden, high levels of immune
checkpoint expression, and prognosis (Gu et al., 2021). Another
study has also validated the prognostic value of ferroptosis
regulation in OSCC. The authors identified 25 ferroptosis-related
differentially expressed lncRNAs, revealing a high-risk lncRNA
signature associated with poor prognosis in HNSCC (Tang et al.,
2021). Furthermore, advanced detection methods involving single-
cell transcriptomics have revealed that essential ferroptosis
regulators contribute to the development of HNSCC, including
muscular contraction and humoral immunological responses, and
play a crucial role in immune infiltration (Liu et al., 2022). Therapies
associated with HNSCC can be expected to focus on the regulation
of ferroptosis cell death regulators, such as GPX4 and SLC7A11, and
HNSCC prognosis.

3.4 Links between regulation of NETosis and
cuproptosis and carcinogenesis

As the first line of defense at the site of infection, neutrophils play
an important role in the innate immune system. Tumor cells can cause
NETosis in vivo and in vitro (Tanaka et al., 2014; Huang et al., 2015).
Accumulating evidence from multiple studies suggests that NETosis
appears to be associated with tumorigenesis, progression, and
metastasis, indicating that NETosis has a direct effect on tumor cell
proliferation via protease or activation signaling (Sangaletti et al., 2012;
Tripodo et al., 2017). Of note, the relationship between OSCC and
NETosis can be observed in the formation of NETs in a coculture of
neutrophils with CAL-27 cell lines, accompanied by expression of the
PI3K/Akt/PBK pathway (Garley et al., 2020). Overall, Decker suggests
that elevated NETosis in the blood can be used as a valid biomarker for
the detection of early HNSCC progression and prevention of tumor
metastasis (Decker et al., 2019).

Cuproptosis has been recognized as a novel form of regulatory
cell death, and has been confirmed to promote the occurrence and
development of tumors. Based on exploration through
bioinformatics, researchers have established that cuproptosis-
related lncRNA has an impact on prognosis in HNSCC (Li et al.,
2022c; Yang et al., 2022). By comparing data on overall survival, risk
score distribution, and survival status by group, we elucidated the
relationship between cuproptosis and the immune
microenvironment in HNSCC, highlighting the fact that
cuproptosis metabolism may be a possible predictive biomarker
for HNSCC treatment (Zhang et al., 2022). Additionally, the results
suggested that OSCC cell metastasis is closely associated with
cuproptosis with high expression of AFOC-DEGs (Li et al., 2022a).

4 Effects of natural products associated
with programmed cell death on
carcinogenesis

Recently, therapeutic approaches aiming to identify and
characterize representative regulators of programmed necroptosis
have represented an emerging field in the treatment of HNSCC.
Natural plants are considered to be an invaluable resource in targeting
these pathways and appropriating them for therapeutic benefit.

4.1 Effects of natural products associated
with necroptosis on carcinogenesis

Considering that natural products are fully present in many
plants and foods with preventive and curative properties,
representing an inexhaustible source of active molecules, these
substances need to be further explored for anticancer drug
discovery in the future. A predominant type of naphthoquinone,
namely, shikonin, a compound derived from the Chinese plant
Lithospermum erythrorhizon, has been found to exert inhibitory
effects on tumor growth. One study has reported an increase in
reactive oxygen species (ROS) production and observed dose-
dependent upregulation of RIPK1, RIPK3, and MLKL, leading to
the induction of necroptosis. With a strong inhibitory effect on 5–8F
cells, the shikonin group in this study exhibited transparent
cytoplasm and incomplete plasma membrane, indicating that
shikonin may exhibit promising properties in the treatment of
nasopharyngeal carcinoma (Liu et al., 2019a). Similarly,
paeoniflorigenone, a plant extract from the family Paeoniaceae,
inhibits necroptosis in human YD-10B HNSCC cells. This extract
has been used for medicinal purposes against inflammatory diseases,
including cancer. Paeoniflorigenone leads to the dephosphorylation
of key necroptotic proteins (RIP and MLKL) in YD-10B cells,
significantly suppressing cell migration and invasion (Park et al.,
2022). Certain food compounds, including capsaicin, that restore the
susceptibility of cancer cells to standard chemotherapeutic
treatments have been described many times in the literature. One
study has ultimately suggested that necroptosis might be a major
cause of the inhibition of the cell viability of oral squamous
carcinoma cells resulting from co-application of capsaicin with
four conventional anticancer agents (Huang et al., 2021b). In
summary, a final goal in this domain is to assess these active
compounds to define their molecular roles in HNSCC treatment
and subsequently investigate them clinically for the prevention or
treatment of incurable diseases based on the mechanisms underlying
necroptosis.

4.2 Effects of natural products associated
with pyroptosis on carcinogenesis

Triptolide (TPL), a trioxide diterpene, is one of the main
active components of Tripterygium wilfordii Hook F (TwHF),
which exhibits potent anticancer effects in multiple cancers (Jiang
et al., 2021a; Deng et al., 2021). TPL has been found to induce
pyroptosis-like cell death in a nasopharynx cancer cell line, with a
decrease of cell viability, the release of IL-1β cytokine, cytoplasmic
swelling, and membrane rupture, but no apoptosis. Lysis of
GSDME and activation of the caspase-3 pathway on the
mitochondria were observed in this experiment, underlining
the essential role of decreased tumorigenicity in this type of
cell death (Cai et al., 2021). Anthocyanins, which are glycoside
derivatives, are polyphenol compounds that are widely employed
in cancer prevention at various stages (Lin et al., 2017).
Researchers have also demonstrated that anthocyanin, in
combination with caspase-1 inhibitors, can induce pyroptosis
while suppressing OSCC carcinogenic activities. Their results
also suggest that NLRP3, caspase-1, and IL-1β are essential
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components in the investigation of pyroptosis (Yue et al., 2019).
Because studies of this type of cell death have not been sufficiently
powerful, novel active compounds are required to distinguish the
contributions of caspase-1/3/11 to the pyroptotic signaling
pathway in HNSCC.

4.3 Effects of natural products associated
with ferroptosis on carcinogenesis

It is well known that artemisinin engages in outstanding
antimalarial activity; however, artemisinin is also renowned for its
special biological interest in the domain of antitumor therapy, such as
in renal cancer, breast cancer, and HNSCC (Liu et al., 2019b; Li et al.,
2021; Zheng et al., 2022). Artesunate has been found to exhibit a specific
cytotoxic effect on HNSCC cells through the upregulation of lipid
reactive oxygen species (ROS) generation and the downregulation of
cellular glutathione (GSH) levels, both of which are crucial mediators of
ferroptosis (Dixon et al., 2012; Roh et al., 2017). Collectively, this effect
may be suboptimal in dihydroartemisinin because of the activation of
both ferroptosis and apoptosis pathways. The administration of DHA
could arrest cells in an iron-dependent manner, and possibly by means
of arresting cell circles in the G2/Mphase (Lin et al., 2016). Both in vitro
and vivo models have demonstrated that dihydroartemisinin is a
ferroptosis inducer, thereby increasing cellular iron-free levels and
increasing sensitivity to cancers (Chen et al., 2020). Very recently, it
has been shown that a widely available tetracyclic triterpenoidmolecule
found in natural products, namely, cucurbitacin B (CuB), triggers
ferroptosis. This compound is one of the most abundant members
of the Trichosanthes kirilowii Maximowicz family, with a wide range of
pharmacological activities, such as strong anti-inflammatory,
antipyretic, and anticancer activities (Chan et al., 2010; Dakeng
et al., 2012). Furthermore, it has been reported that CuB is
associated with intracellular accumulation of iron ions and GSH
depletion in human nasopharyngeal carcinoma cells, resulting in the
downregulation of lipid peroxidation and GPX4 expression, and
eventually leading to ferroptosis (Huang et al., 2021a). Importantly,
natural compounds regulate ferroptosis for HNSCC progression by

targeting the GSH/GPX4 pathway, lipid metabolism, and iron
metabolism.

5 Conclusion and future perspectives

Over the last few decades, the majority of the attention in this
field has been focused on the ways in which apoptosis and autophagy
modes are activated in cancer cells; nevertheless, further in-depth
studies of the complexity of cancer cells may indicate that they are
probably not able to avoid multiple different kinds of cell death
simultaneously. In presenting this review, we have paved the way for
the more likely development of the other relevant modes of PCD
that have been reported in the context of HNSCC (Table 1).

Among these modes of cell death, inducers are mostly related to
external factors, such as in the cases of ferroptosis and copoptosis,
both of which are associated with the accumulation of relevant ions,
while pyroptosis and necroptosis are influenced by stimulated
inflammatory responses, with the exception of necroptosis
occurring in line with caspase-8 inactivation.

All of these patterns involve multiple organelles that are
regulated in terms of cellular morphology. Necroptosis,
pyroptosis, ferroptosis, and copoptosis are generally associated
with the mitochondria, although necroptosis is primarily
associated with chromatin depolymerization, and the production
of net structures is also a representative marker in NETosis.
Research has shown that necroptosis and pyroptosis are
primarily characterized by mitochondrial swelling, plasma
membrane cleavage, and the release of intracellular contents,
whereas ferroptosis and copoptosis are mostly characterized by
the rupture of the outer mitochondrial membrane and wrinkling
of the shape, with the nucleus remaining relatively normal in size
and with an intact cytoplasmic membrane. In contrast, pyroptosis is
distinguished by pore development and substantial cytoplasmic
vacuolization. Regarding biochemical features, necroptosis and
pyroptosis are closely related to the formation of the necrosome
and pyroptosome, and ROS are generated in necroptosis,
ferroptosis, and NETosis; in addition, ferroptosis and copoptosis
are regulated by caspase-independent pathways.

TABLE 1 Current reports concerning hallmarks of major types of RCD.

Type Inducer Morphological features Biochemical features Major regulators

Necroptosis Caspase-8 inhabitation damage of plasma membrane; lysis of
endoplasmic reticulum; swelling of
mitochondrial; release of intracellular contents

Activation of RIPK1/RIPK3/MLKL; cytosolic
necrosome formation

Positive: RIPK1, RIPK3, and
MLKL

Pyroptosis DAMPs&PAMPs; LPS fewer swelling cells in mitochondrial, extensive
cytoplasmic vacuolization, pore formation and
rupture on plasma membrane; release of
intracellular contents

Activation of CASP1; Activation of CASP4/5/
11; pyroptosome formation; GSDMD-
N–induced pore formation; IL1β/IL-
18 release

Positive: CASP1, CASP4/5/11,
and GSDMD

Ferroptosis Excess iron; Erastin dysmorphic small mitochondria, decreased
mitochondrial crests, increased mitochondrial
membrane density, ruptured outer
mitochondrial membranes

Iron accumulation; lipid peroxidation;
caspase-independent

Positive: ACSL4,
LPCAT3 Negative:
SLC7A11,SLC3A2 GPX4

Netosis pathogens (e.g.,
bacteria, fungi, viruses)

loss of the nucleus and cytoplasmic granule
membranes, contact of chromatin with
intracytoplasmic granules, cell membrane
damage and form a extracellular net-like
structure

Neutrophil activation; production of
NADPH oxidase-mediated ROS; PAD4-
mediated Citrullination

Positive: PAD4, MPO, MMP,
ELANE
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Based on distinctive molecular mechanisms and major
regulators, one promising therapeutic avenue that has emerged in
potentially overcoming necroptosis, pyroptosis, and ferroptosis
resistance in tumor cells is the application of natural products;
some of these, as described in our review, can be used as prognosis
markers for neoplastic diseases. Nevertheless, it also should be noted
that the development of a specific PCD inhibitor remains a
significant therapeutic need. For instance, these may include
inhibitors of RIPK1/3 targeting the necroptotic machinery, such
as the natural product nigratine (also known as 6E11), a flavanone
derivative, which is regarded as an inhibitor of RIPK1 kinase
targeting the necroptotic machinery and has been found to
effectively protect aortic endothelial cells from cold hypoxia-
reoxygenation injury (Delehouzé et al., 2017; Delehouzé et al., 2022).

Pyroptosis is driven by caspase-1-dependent or -independent
pathways and by NLRP3, which is associated with a multi-protein
complex referred to as the pyroptosome. Preliminary evidence
shows that distinct checkpoints are set in place to mediate
pyroptosis between the caspase-1 pathway and pyroptosome
production. Luteoloside, a flavonoid isolated from Gentiana
macrophylla, has shown promise for hepatocellular carcinoma
invasion and metastasis as a caspase-1 and
NLRP3 inflammasome inhibitor (Fan et al., 2014).

Moreover, a distinct checkpoint is set in place to mediate
ferroptosis through the ubiquitination of GPX4. DMOCPTL, a
derivative of the natural product parthenolide, has been found to
exert an anticancer effect in inhibiting breast tumor growth and to
prolong mouse lifespan by directly binding to GPX4 protein (Ding
et al., 2021). On the whole, therapeutic strategies targeting small-
molecule inhibitors could be a viable approach for defense against
HNSCC.

At one time, open surgery was considered to be a risky treatment
option for HNSCC, as it often resulted in disfiguring side effects and
even death due to complications. Therefore, alternative therapeutic
approaches, such as pharmaceutical therapy and radiation therapy,
have been developed to target tumor cells and induce their safe
demise. At present, however, with the deepening of our
understanding of unique molecular regulators and mechanisms
for each type of PCD, many questions remain unanswered.
Possible considerations for the cancer therapy field are: which
PCD mode should be preferred to induce distinct tumors?
Should these modes be employed simultaneously or sequentially?
What is the interplay between these different modes of PCD?
Although much is known regarding the biological activity
involved in each type of PCD, the molecular events upstream
and downstream of major regulators remain largely obscure.

In summary, it is valuable for the development of targeted
therapies to define more reliable regulators and molecules to
better pinpoint critical therapeutic windows. More in-depth
clinical studies and further explorations of the factors associated
with different PCD modes are needed to develop more accurate and
individualized methods for the diagnosis and treatment of HNSCC.
With a better understanding of the complex mechanisms involved in
PCD and associated potential therapies, we anticipate a
breakthrough in novel drug discovery for the prevention of
HNSCC in the future.
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