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Background: In patients with hepatocellular carcinoma (HCC), the tumor
microenvironment (TME) is resistant to immunotherapy because of its
specificity. It is meaningful to explore the role of macrophage, which is one of
the most abundant immune cells in the TME, in cellular communication and its
effect on the prognosis and immunotherapy of HCC.

Methods:Dimensionality reduction and clustering of the single-cell RNA-seq data
from the GSE149614 dataset were carried out to identify the cellular composition
of HCC. CellChat was used to analyze the communication between different cells.
The specifically highly expressed genes of macrophages were extracted for
univariate Cox regression analysis to obtain prognostic genes for HCC cluster
analysis, and the risk system of macrophage-specifically highly expressed genes
was developed by random forest analysis andmultivariate Cox regression analysis.
Prognosis, TME infiltration, potential responses to immunotherapy, and
antineoplastic drugs were compared among molecular subtypes and between
risk groups.

Results: We found that HCC included nine identifiable cell types, of which
macrophages had the highest communication intensity with each of the other
eight cell types. Of the 179 specifically highly expressed genes of macrophage,
56 were significantly correlated with the prognosis of HCC, which classified HCC
into three subtypes, which were reproducible and produced different survival
outcomes, TME infiltration, and immunotherapy responses among the subtypes.
In the integration of four macrophage-specifically highly expressed genes for the
development of a risk system, the risk score was significantly involved in higher
immune cell infiltration, poor prognosis, immunotherapy response rate, and
sensitivity of six drugs.
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Abbreviations: HCC, hepatocellular carcinoma; TME, tumor microenvironment; TAM, tumor-associated
macrophage; scRNA-seq, single-cell RNA sequencing; GEO, Gene Expression Omnibus; TCGA, The
Cancer Genome Atlas; UMI, unique molecular identifier; MT, mitochondrial; HVG, highly variable gene;
PCA, principal component analysis; CDF, cumulative distribution function; ssGSEA, single-sample gene
set enrichment analysis; MSigDB, Molecular Signatures Database; TIDE, Tumor Immune Dysfunction and
Exclusion; pDC, plasmacytoid dendritic cell; NK cell, natural killer cell; DDR, DNA damage response; CR,
complete response; PR, partial response; SD, stable disease; PD, progressive disease; PPT1, palmitoyl
protein thioesterase 1; DAB2, disabled-2; FTL, ferritin light chain; SAT1, spermidine/spermine-N1-
acetyltransferase 1; and qRT-PCR, quantitative real-time polymerase chain reaction.
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Conclusion: In this study, through single-cell RNA-seq data, we identified nine cell
types, among which macrophage had the highest communication intensity with
the rest of the cell types. Based on specifically highly expressed genes of
macrophage, we successfully divided HCC patients into three clusters with
distinct prognosis, TME, and therapeutic response. Additionally, a risk system
was constructed, which provided a potential reference index for the prognostic
target and preclinical individualized treatment of HCC.

KEYWORDS
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Introduction

The liver is a crucial organ with fundamental metabolic and
immunological activities that sits at the crossroad of confluence of
intestinal and systemic blood circulation, making it a prime location
for multi-factor organ interactions (Kohlhepp et al., 2023).
Approximately 844 million people worldwide are estimated to
suffer from liver disease (Ramachandran et al., 2020). With a
mortality-to-morbidity ratio of 0.95 (Chen et al., 2020), liver
cancer is the most dangerous form of liver illness, and
hepatocellular carcinomas (HCCs) are the most diagnosed
malignancies of liver origin. The “trilogy pattern” describes how
HCC develops and is characterized by cirrhosis, hepatitis B, and liver
cancer (Liao et al., 2023). HCC is difficult to diagnose because
symptoms do not occur until advanced stage or distant metastasis.
Therefore, patients do not respond well to treatment, and cell
diversity and complexity are believed to be key factors leading to
treatment failure and fatal outcomes.

Using bulk RNA sequencing data, biomarkers for the diagnosis
and prognosis of HCC are screened. For example, in a pan-cancer
genomic study, PHF19 was uncovered to be a carcinogenic factor for
HCC (Zhu et al., 2021). Several complement genes (C1R, C6, C7,
CFP, and CFHR3) were also identified to be prognostic biomarkers
in HCC patients (Qian et al., 2022). Moreover, immune- (Xin et al.,
2022) and ferroptosis-related (Lin and Yang, 2022) long non-coding
RNAs were also reported to be prognostic indicators for HCC.
Notwithstanding great progress in distinguishing biomarkers based
on bulk RNA sequencing data, these findings focused on mixed cells
of HCC tissues and detected only an average gene expression level of
mixed cells.

One of the most accurate ways to determine cell identification,
status, function, and reaction is to examine the activity of its genes.
At the transcriptome level, single-cell RNA sequencing (scRNA-seq)
analysis offers a way to categorize, describe, and distinguish each cell
(Jovic et al., 2022). In recent years, scRNA-seq technology has been
increasingly applied in HCC studies, which has been used to analyze
individual cells in tumor cells, tumor stem cells, and the tumor
microenvironment (TME) (Zheng et al., 2018; Sun et al., 2021). As
one of the main drivers of tumor heterogeneity, the TME is
acknowledged as a highly dynamic network throughout cancer
incidence, progression, and prognosis, as well as therapeutic
treatments (Zhou et al., 2021). Tumor-associated macrophages
(TAMs), as one of the most numerous immune cells invading
the TME, are present at all stages of HCC development and play
a crucial role as coordinators of disease course. TAMs play a critical

role in the immune response and disease evolution, from benign
tumors to malignant tumors, promoting angiogenesis
immunosuppression, treatment resistance, and metastasis
(Kohlhepp et al., 2023; Zheng et al., 2023). Presently, by
eliminating existing TAMs, blocking TAM recruitment,
reprogramming TAM polarization, regulating TAM products,
and restoring TAM phagocytosis, targeted TAM therapy for
HCC has achieved promising results (Xu et al., 2022). Qu et al.
(2022) proposed a prognostic signature model applying M2-like
macrophage-related biomarkers. However, comprehensive
macrophage-related preclinical models are still needed to identify
macrophage-targeted therapy.

In this study, we detected the cellular composition of HCC by
scRNA-seq analysis, defined the type of HCC, constructed a risk
system according to the specifically highly expressed genes of
macrophages, and used it for prognosis assessment,
immunotherapy response prediction, and drug screening, which
provided clues for further clinical research of TAMs as a potential
therapeutic direction of HCC.

Materials and methods

Download and preprocessing of scRNA-seq
and RNA-seq data

The scRNA-seq dataset and RNA-seq dataset of HCC were
downloaded by accessing the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/), and the scRNA-seq
dataset was numbered GSE149614. There were two HCC RNA-seq
datasets from the GEO database, GSE76427 and GSE14520. Other
available RNA-seq datasets for HCC include TCGA-LIHC (https://
portal.gdc.cancer.gov/) and HCCDB18. In addition, RNA-seq data
and prognostic information about the immunotherapy cohort
IMvigor210 (bladder cancer) (http://research-pub.gene.com/
IMvigor210CoreBiologies), GSE91061 (melanoma), GSE135222
(non-small-cell lung cancer), and GSE78220 (melanoma) datasets
were obtained. For the GSE149614 dataset, the following quality
control indicators were used to eliminate gene expression
interference in low-quality cells: 200 < total number of expressed
genes per cell (nGenes); 200 < total number of UMIs per cell;
percentage of unique molecular identifiers (UMIs) mapped to
mitochondrial genes (MT%) < 10%; and unit read counts the
ratio of the number of genes (log10GenesPerUMI) > 0.8. For
RNA-seq datasets, samples that lack clinical follow-up
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information and survival data were removed, and for genes with
multiple probes (for GEO data) or transcripts (for TCGA data), the
median expression was used as the expression level for analysis.

Dimension reduction and clustering of
scRNA-seq data

Seurat includes a variety of built-in functions for dimensionality
reduction and clustering of scRNA-seq data (Hao et al., 2021). First,
to eliminate technical noise or bias and ensure comparability
between each unit, the log-normalization function was used for
standardization. The feature subset that shows high intercellular
variation in the dataset is also called a highly variable gene (HVG),
and its quality greatly impacts the accuracy of clustering. The
FindVariableFeatures function in Seurat was used to detect the
HVG. The samples were integrated, and the
FindIntegrationAnchors function found the integration anchors.
The IntegrateData function converted the anchor information into
an integrated expression matrix. Before clustering, principal
component analysis (PCA) is required for dimension reduction,
which can not only reduce the indicators to be analyzed but also
retain the original data information as much as possible (Pei et al.,
2023). The clustering of cells was mainly based on two functions:
FindNeighbors and FindClusters. Biological annotation in each
cluster was examined to serve the basis for follow-up analysis
(Jovic et al., 2022). The cluster was marked by automatic
annotation through CellMarker 2.0 and manual annotation
according to related studies (Peng et al., 2019; Su et al., 2021).

Analysis of intercellular communication

Intercellular communication networks from scRNA-seq data
can be quantitatively inferred, analyzed, and visualized using
CellChat (Jin et al., 2021). The gene expression data of different
cell types identified in GSE149614 were input into CellChat (Chi
et al., 2023a), and the CellChatDB.human file was used as a reference
to generate a network map of the number and intensity of
interactions between cells.

Clustering of HCC was performed by
identifying macrophage-specifically highly
expressed genes

The specifically highly expressed genes of macrophages
identified in GSE149614 were extracted, and univariate Cox

regression analysis was carried out according to their expression
in the TCGA-LIHC cohort. Prognostic factors were selected for
consensus clustering analysis in ConsensusClusterPlus (Wilkerson
and Hayes, 2010). The cumulative distribution function (CDF)
curve, delta area curve, and consensus matrix were generated for
different k-values to demonstrate the optimal clustering effect (Yuan
et al., 2022).

Analysis of the genome variation map
among subgroups

Mutated data in MAF format exported by TCGA’s mutect2 was
processed using the “maftools” package in the R package (Miao et al.,
2022). The total number of mutations in the sample was measured, and
the geneswithmutation number> 3were identified. The high-frequency
mutation genes of subgroups were screened by Fisher’s exact test and
could be viewed as a waterfall map. Niknafs et al. discovered that
immune checkpoint blockade treatment response is correlated with
persistent tumormutation burden (pTMB), which includesmutations in
single-copy areas and those present in multiple copies per cell (Niknafs
et al., 2023). pTMB was calculated and compared between subgroups
according to different calculation methods.

Immune and stromal fraction analysis of the
tumor microenvironment

The cell types that make up HCC were identified in GSE149614,
and the differences in the content of the identified cell types among
macrophage subgroups were evaluated in the TCGA-LIHC cohort. The
total infiltrating stromal cell scores and total immune cell scores in the
TME were calculated using ESTIMATE (Yoshihara et al., 2013). Based
on RNA-seq data, MCP-counter (Becht et al., 2016) inferred the
absolute infiltration abundance of eight immune cells and two
stromal cells. A previous study provided a way to calculate a
comprehensive view of the immune landscape in the TME,
immunophenoscore (Charoentong et al., 2017), in which the levels
of infiltration of 28 types of immune cells in HCC samples were
assessed.

Screening prognostic model gene indexes
from macrophage-specifically highly
expressed genes using the machine learning
method

Random forest is a compositional supervised learning method.
“RandomForestSRC,” developed by Ishwaran and Kogalur (2016),
calculated the importance of each gene during the training of
macrophage-specifically highly expressed genes and ranked them
from high to low and then chose the genes. Then, the stepAIC
function of MASS helps eliminate the genes that cause multiple
collinearities, and the remaining genes became the indexes of the
prognostic model, and the equation was Risk score �
∑n

i�1(Coefi × Exp i).
Here, “Coef” and “Exp” refer to the Cox regression coefficient

and expression level of the gene, respectively.

TABLE 1 Primer sequences for PPT1 siRNA and SAT1 siRNA.

Gene Primer sequence (5′-3′)

si PPT1#1 CTGTTGCAATCCCTTAAGCATGG

si PPT1#2 CTGGAATTTACGTCTTATCTTTA

si SAT1#1 ATGGAAGAACAAGTAATCTTAAC

si SAT1#2 TGGAAGAACAAGTAATCTTAACT
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Prognostic performance evaluation of the
risk model

A prognostic model was used to quantify the risk score of
samples in the training set (TCGA-LIHC cohort) and three
independent verification sets (HCCDB18, GSE76427, and
GSE14520). The “survminer” package divided the risk group for
each cohort according to the risk score and generated a
Kaplan–Meier curve (Chen et al., 2022). The “survivalROC”
package generated a time-dependent receiver operating
characteristic (ROC) curve based on the risk score (Dong et al.,
2023). The closer the area under the ROC curve (Hao et al., 2021) is
to 1, the more accurate the model is in predicting prognosis.

Pathway correlation analysis of the risk score

Single-sample gene set enrichment analysis (ssGSEA) calculated the
enrichment score for each sample paired with a gene set (Chi et al.,
2023b). The h.all.v7.4.symbols.gmt gene set and 13 core biological
pathway gene signatures were used here, the former obtained from
the Molecular Signatures Database (MSigDB) (Liberzon et al., 2015)
and the latter from the study by Mariathasan et al. (2018). The
correlation between the gene set membership score or pathway
enrichment score and the risk score was defined by Pearson’s
correlation analysis.

Analysis of immunotherapy response

Tumor Immune Dysfunction and Exclusion (TIDE) was produced
to predict the potential response to immunotherapy; the TIDE score
was calculated, which consists of two parts, dysfunction score and
exclusion score, and the levels of the two parts are usually negatively
correlated in cancer (Jiang et al., 2018). When the immune dysfunction
gene has a higher weight, the weight of the immune dysfunction gene
and the respective expression amount are multiplied and then added
together to obtain the dysfunction score. The exclusion score was
summed up by multiplying the expression of the exclusion genes
with higher weight.

Drug sensitivity prediction

The “pRRophetic” package (Geeleher et al., 2014) used the gene
expression matrix adopted the linearRidge function of the Ridge
package through the internal algorithm to carry out the ridge
regression analysis to complete the prediction of drug sensitivity
and further combined with the sample grouping file to find the drugs
with different sensitivities under different groups.

Cell culture and transfection

HCC cells (Hep3B and Huh7) were purchased from the Typical
Culture Reserve Center of China (Shanghai, China), and human
hepatocytes (THLE-2) were purchased from Cellcook Biotech
Company (Guangzhou, China). Hep3B and Huh-7 cells were cultured

in DMEM (Gibco, United States), while THLE-2 cells were cultured in
BEGM (Gibco, United States) supplemented with fetal bovine serum
(Gibco, United States) and penicillin/streptomycin at 37°C under 5%
CO2. The negative control small interfering NC (si NC), PPT1 siRNA,
and SAT1 siRNA (Sagon, China) were transfected into the cells utilizing
Lipofectamine 2000 (Invitrogen,United States). The primer sequences for
PPT1 siRNA and SAT1 siRNA are listed in Table 1.

Quantitative real-time polymerase chain
reaction

TRIzol (Thermo Fisher, United States) reagent was used to
extract the total RNA from Hep3B, Huh-7, and THLE-2 cell
lines. cDNA was created from 500 ng of RNA using the HiScript
II SuperMix (Vazyme, China). The PCR amplification conditions
comprised 46 cycles of 94°C for 10 min, 94°C for 10 s, and 60°C for
45 s. GAPDH acted as the internal reference. The primer sequences
for target genes are listed in Table 2.

Cell viability detection

Cell viability was detected using the Cell Counting Kit-8 assay
(Beyotime, China). Cells from different treatments were cultured in
96-well plates at a density of 1 × 103 cells per well. CCK-8 solution
was applied at the indicated time points. After incubation at 37°C for
2 h, the OD 450 values of each well were detected using a microplate
reader (Thermo Fisher, United States).

Statistical analysis

All statistical analyses and visualizations were implemented by
using R software. The statistical tests used included Student’s t-tests,
Fisher’s exact test, chi-square test, and Kruskal–Wallis test. For all
statistical results, p < 0.05 was regarded as a significant difference,
marked with *.

Results

Cellular composition and intercellular
communication in HCC

To study the cellular composition of HCC, single-cell
transcriptomes for 22 samples from four relevant sites from
GSE149614 were collected, and 63,977 cells were reserved for
differentiation after quality control. Unsupervised cell clustering
revealed nine cell types based on the expression of lineage-specific
marker genes: hepatocytes, B cells, fibroblasts, endothelial cells,
T cells, plasmacytoid dendritic cells (pDCs), myeloid cells, NK
cells, and macrophages (Figure 1A). Each cell type contained
specific highly expressed genes, such as CDH5, PLV AP, VMF,
and CLDN5 to endothelial cells; CD2, CD3D, CD3E, and CD3G to
T cells; COL1A1, COL1A2, and DCN to fibroblasts; CD14, CD163,
and CD68 to macrophages; CD79A and CD79B to B cells; LYZ to
myeloid cells; KLRF1, FGFBP2, and KLRC1 to NK cells; FCER1A
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and LILRA4 to pDCs; and SERPINA1 and HNF4A to hepatocytes
(Figure 1B). The composition proportion of cell types in tissue
samples showed that the distribution proportion of nine kinds of
cells in each sample was different; hepatocytes, T cells, and
macrophages were the main cell types of HCC (Figure 1C).
FindAllMarkers also helped identify specifically highly expressed
genes for each type of cell (Figure 1D). According to the results of
CellChat analysis and visualization, the communication intensity
between the nine kinds of cells was determined. By disassembling
the interaction between each cell and the other eight kinds of cells, it
was found that the cell with the highest intensity of communication
with B cells, endothelial cells, myeloid cells, NK cells, and pDCs was

macrophages. At the same time, macrophage was also one of the
cells with the strongest communication with fibroblasts,
hepatocytes, and T cells (Supplementary Figure S1). These results
reflected the important role of macrophage in HCC.

Three subtypes of HCC were defined
according to the specifically highly
expressed gene of macrophage

A total of 179 specifically highly expressed genes were filtered in
macrophage, and their prognostic significance in the TCGA-LIHC

TABLE 2 Primer sequences for PPT1, DAB2, FTL, SAT1, and GAPDH.

Gene Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′)

PPT1 GGCGTACTCCAAAGTTGTTCAGG CTGCCAAGAAGATGCTGTGGTTG

DAB2 CTCTGTCCAGTCCTCACCACAT GTTCTGAGACGGGAGGAGCAAA

FTL TACGAGCGTCTCCTGAAGATGC GGTTCAGCTTTTTCTCCAGGGC

SAT1 TACCACTGCCTGGTTGCAGAAG CTTGCCAATCCACGGGTCATAG

GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG

FIGURE 1
Cellular composition of HCC. (A) Uniform Manifold Approximation and Projection (UMAP) visualizes the distribution of cell types in GSE149614. (B)
The distribution proportion and expression level of specific genes in each type of cell. (C) The proportion of cell types in each tissue sample in GSE149614.
(D) The volcano map shows the differential marker genes for each type of cell.

Frontiers in Pharmacology frontiersin.org05

Wang et al. 10.3389/fphar.2023.1228052

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1228052


dataset was calculated by univariate Cox regression analysis. A total
of 56 genes were identified as prognosis-related genes. The types of
samples in the TCGA-LIHC dataset were defined according to the
expression of 56 genes; k-values that could not simultaneously meet
the CDF decline were not so drastic, and the CDF value which was
not too small was found. The optimal k value that met the criteria
was initially set as 3 (Figures 2A, B). A consensus clustering heatmap
showed the clustering of the samples in the TCGA-LIHC cohort and
GSE14520 cohort at k = 3, and it seems reasonable to divide the HCC
samples in these two cohort groups into three categories (Figures 2C,
D). The different distribution of samples when three clusters were
divided was observed through PCA, which further confirmed the
reliability of dividing the TCGA-LIHC cohort and GSE14520 cohort
into three subtypes (Figures 2E, F). The subtypes of the TCGA-LIHC
cohort and GSE14520 cohort had the same survival trend. At any
time, C2 had the greatest chance of survival, C3 had the least chance
of survival, and C1 had a greater chance of survival than C3 and less
than C2 (Figures 2G, H).

Genomic alterations and clinical features of
three macrophage-related subtypes

The differences of three macrophage-related subtypes were
compared in terms of genomic characteristics and
clinicopathological features. A total of 39 high-frequency mutant

genes showed significant differences in mutation rates among three
macrophage-related subtypes, among which the mutation rate of
TP53, the most common mutation gene in human cancer, was
26.49% in C1, 20.19% in C2, and 49.21% in C3. The gene with the
highest mutation rate in C2 was CTNNB1 (40.38%), and the
mutation rate in C1 and C3 was 20.54% and 9.52%, respectively.
The gene PLA2R1 with the third highest mutation rate in C1 had a
mutation rate of 4.81% in C2, but no mutation was found in C3
(Figure 3A). Among the three macrophage-related subtypes, the
pTMB of C2 with the best prognosis was significantly higher than
that of C3 with the worst prognosis (Figure 3B). The characteristics
of N stage, M stage, stage and grade, age, sex and, T-stage
distribution were similar among the three macrophage-related
subtypes without statistical difference (Figure 3C).

Discriminations in signaling pathways and
immunological features of three
macrophage-related subtypes

By analyzing the enrichment of different biological pathways
among subtypes, it was clearly found that C2 was the subtype
most significantly negatively correlated with tumor-promoting
signal pathways (such as TGF-β signaling, PI3K-AKT mTOR
signaling, KRAS signaling up, and epithelial–mesenchymal
transition) and immune activation pathways (such as

FIGURE 2
Three subtypes of HCCwere defined according to themarker gene of macrophage. (A) CDFwhen k takes different values. (B) Consensus clustering
delta area curve for each category number k compared with K–1. (C) A consensus clustering heatmap dividing the sample in the TCGA-LIHC cohort into
three subgroups. (D) The heatmap for generating three clusters in the GSE1452 cohort when k takes 3. (E) PCA shows the different distributions of
samples in TCGA-LIHC when three clusters are divided. (F) The PCA of GSE14520 cohort shows the distribution of the sample. (G, H) Subtype
survival trends in the TCGA-LIHC cohort and GSE14520 cohort. The significance of the difference was marked with *, *p < 0.05, and ns, no difference.
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inflammatory response, complement, interferon alpha response, and
interferon gamma response) among three macrophage-related
subtypes (Supplementary Figure S2). The nine kinds of cells
identified in HCC also showed different distribution contents
among three macrophage-related subtypes. The relative content of
these nine kinds of cells in C2 was the least, while that in C3 was the
highest (Figure 4A). The ESTIMATE score, immune score, and
stromal score also showed significant differences among the three
macrophage-related subtypes. The trend of the three indexes in the
three macrophage-related subtypes was the same, which was the
lowest in C2 and the highest in C3 (Figure 4B). Consistent with
the results of ESTIMATE evaluation, the immune cells and stromal
cells evaluated by MCP-counter and ssGSEA also showed different
abundance levels in the three macrophage-related subtypes, with the
lowest abundance in C2 and the highest abundance in C3 (Figures 4C,
D). Additional CIBERSORT analysis illustrated the difference in
macrophage subtypes with the highest score of macrophages_M0
in the C3 cluster and the lowest in the C2 cluster (Figure 4E).
Immunological features were carried out in three clusters of the
GSE14520 cohort with similar findings (Supplementary Figure S3).

Different responses of three macrophage-
related subtypes to immunotherapy and
anti-tumor drugs

To screen the subtypes that were expected to bemore suitable for
immunotherapy from the three macrophage-related subtypes, TIDE
was used to calculate the TIDE score and the potential response rate
to immunotherapy based on the RNA-seq data of three
macrophage-related subtypes in TCGA-LIHC and GSE14520.
The three macrophage-related subtypes in TCGA-LIHC showed
significant differences in the TIDE score, dysfunction score, and
exclusion score distribution and response rate to immunotherapy.
Compared to C1 (40%) and C3 (17%), C2 had a much greater
response rate to immunotherapy at 66% (Figure 5A). The three
macrophage-related subgroups in the GSE14520 cohort showed
significant variations in the TIDE score, exclusion score
distribution, and immunotherapy response rate. The response
rate of C2 to immunotherapy in this cohort was also the highest
among the three macrophage-related subtypes and was significantly
higher than that of C1 and C3 (Figure 5B). Although C2 was most

FIGURE 3
Genomic alterations and clinical features of three macrophage-related subtypes. (A) The waterfall map shows the mutation rates of the 20 genes
with the highest mutation rates in three macrophage-related subtypes. (B) PTMB differences among three macrophage-related subtypes. (C) Age,
gender, T stage, N stage, M stage, and stage and grade distribution among three macrophage-related subtypes. The significance of the difference was
marked with * and ****p < 0.0001.
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suitable for immunotherapy, this subtype was the most resistant
subtype of the three macrophage-related subtypes to sunitinib,
paclitaxel, imatinib, dasatinib, pyrimethamine, and bortezomib
(Figures 5C, D).

Construction and verification of the risk
system consisting of important
macrophage-specifically highly expressed
genes

The random forest algorithm was utilized to carry out
macrophage marker gene selection, and the out-of-bag error
was used as an index to quantify the classification error and
evaluate performance. A total of 10 important specifically highly

expressed genes, namely, STA1, FCER1G, FTL, MARCKS, CPVL,
DAB2, RGL1, CD68, CD63, and PPT1, were selected according to
the relationship between the error rate and the number of
classification trees and the out-of-bag feature importance of
macrophage-specifically highly expressed genes (Figures 6A,
B). Stepwise multivariate regression analysis realized the
development of a risk system according to the following
formula: risk score = 0.293× PPT1 + 0.149× DAB2 +0.148×
FTL-0.204× SAT1 (Figure 6C). Using this risk system, each
sample in the TCGA-LIHC cohort, GSE14520 cohort,
HCCDB18 cohort, and GSE76427 cohort was assigned a risk
score, and a higher risk score was significantly associated with a
poor prognosis in each cohort. However, the time at which the
risk system maximizes the accuracy of survival prediction was
different in different cohorts. For example, the performance of

FIGURE 4
Discriminations in signaling pathways and immunological features of three macrophage-related subtypes. (A) Differences in the distribution of nine
kinds of cells among three macrophage-related subtypes identified by scRNA-seq analysis. (B) ESTIMATE analysis. (C)MCP-counter analysis. (D) ssGSEA
analysis. (E) CIBERSORT analysis. The significance of the difference was marked with *, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, no
difference.
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predicting 1-year overall survival (OS) in the TCGA-LIHC
cohort and GSE14520 cohort was the best, and the AUC of
ROC was 0.72 and 0.74, respectively. The prediction accuracy
of the risk system for 3-year OS of the HCCDB18 cohort was the
highest, reaching 0.74, while the prediction accuracy of 5-year OS
(AUC = 0.81) of the GSE76427 cohort was much higher than that
of 1-year (AUC = 0.7) and 3-year OS (AUC = 0.67)
(Figures 6D–G).

Predictability of the risk model to TME
characteristics, immunotherapy response,
and drug sensitivity

We found 35 pathways showing significant differences between
the two risk groups. The risk score was positively correlated with
immune and carcinogenic pathways but negatively correlated with
metabolic pathways in these 35 pathways, including oxidative

FIGURE 5
Different responses of three macrophage-related subtypes to immunotherapy and anti-tumor drugs. (A) TIDE score, dysfunction score, and
exclusion score distribution and response rate to immunotherapy of three macrophage-related subtypes in TCGA-LIHC dataset. (B) The distribution of
the TIDE score, dysfunction score, and exclusion score and the response rate to immunotherapy of the three macrophage-related subtypes in the
GSE14520 cohort. (C) IC50 values of sunitinib, paclitaxel, imatinib, dasatinib, pyrimethamine, and bortezomib in the three macrophage-related
subtypes of the TCGA-LIHC dataset. (D) The sensitivity of sunitinib, paclitaxel, imatinib, dasatinib, pyrimethamine, and bortezomib in the three
macrophage-related subtypes of the GSE14520 cohort. The significance of the difference was marked with *, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001, and ns, no difference.
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phosphorylation, fatty acid metabolism, peroxisome, bile acid
metabolism, and xenobiotic metabolism (Figure 7A). The risk
score was highly positively correlated with the cell cycle, DNA
damage response (DDR), DNA replication, mismatch repair, and
homologous recombination (Figure 7B). Among the nine kinds of
cells that comprise HCC identified by scRNA-seq analysis, the
content of endothelial cells in the low-risk sample was
significantly higher than that in the high-risk sample, while the
content of macrophages, myeloid cells, and pDCs was significantly
increased in the high-risk sample compared with the low-risk
sample (Figure 7C). The immune score, immune cells including
B lineage, myeloid dendritic cells, activated/central memory
CD4 T cells, T cells, monocytic lineage, CD8 T cells,
CD4 T cells, macrophage, regulatory T cells, cytotoxic
lymphocytes, and activated dendritic cells had significantly higher
abundances in high-risk samples than in low-risk samples (Figures
7D–F). CIBERSORT analysis not only validated the B- and T-cell
differences but also distinguished the macrophage subtype
discrepancies between the two risk groups. Higher proportions of

macrophage_M0 and lower proportions of macrophage_M1 were
observed in the high-risk group, while the low-risk group displayed
the opposite phenomenon (Figure 7G). TME characteristics were
executed in two risk groups of the GSE14520 cohort with analogous
observations (Supplementary Figure S4). Moreover, the high-risk
group was significantly relevant to the high TIDE score, exclusion
score, and low dysfunction score (Figure 8A). Macrophage-
specifically highly expressed genes PPT1 and DAB2 and risk
score in the risk system showed a significant positive correlation
with the TIDE score and exclusion score, while SAT1 showed
significant negative correlation with the dysfunction score
(Figure 8B). There was a very significant difference in the
response rate to immunotherapy between the two risk groups,
with a potential response rate of 51% in the low-risk group and
23% in the low-risk group (Figure 8C). The correlation analysis
between the risk score and the sensitivity of anticancer drugs showed
that the risk score was significantly linked with the sensitivity of
most drugs such as pyrimethamine, vinblastine, and masitinib
(Figure 8D).

FIGURE 6
Construction and verification of the risk system consisting of important macrophage marker genes. (A) The relationship between the number of
classification trees and error rate and the out-of-bag feature importance of macrophage marker genes. (B) Random survival forest variable hunting
analysis. (C)Multivariate Cox regression forest map of fourmacrophagemarker genes in the risk system. (D–G) The prognostic predictive performance of
the risk system was evaluated in TCGA-LIHC, GSE14520, HCCDB18, and GSE76427 cohorts: Kaplan–Meier survival curve and ROC curve.

Frontiers in Pharmacology frontiersin.org10

Wang et al. 10.3389/fphar.2023.1228052

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1228052


FIGURE 7
Predictability of the risk model to TME characteristics. (A) The correlation between the risk score and 35 pathways that showed significant
differences between the high-risk group and low-risk group (X means p > 0.05). (B) The association between the risk score and 13 core biological
pathways (X means p > 0.05). (C)Differences in the distribution of nine kinds of cells among three macrophage-related subtypes identified by scRNA-seq
analysis. (D) ESTIMATE analysis. (E) MCP-counter analysis. (F) ssGSEA analysis. (G) CIBERSORT analysis. The significance of the difference was
marked with *, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, no difference.
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Predictability of the risk model for prognosis
and immunotherapy responses in different
immunotherapy cohorts

Survival analysis and immunotherapy response assessment were
performed in four immunotherapy cohorts according to the risk
system. The risk system significantly distinguished the 2-year
survival rate between high-risk and low-risk samples in the
IMvigor210 cohort. Responses to immunotherapy comprised four
conditions: complete response (Becht et al., 2016), partial response
(Becht et al., 2016), stable disease (Liberzon et al., 2015), and
progressive disease (PD). Here, 39% of the low-risk group
responded to immunotherapy, while 20% of the high-risk group
responded to immunotherapy (Figure 9A). The OS of the
GSE135222 cohort was also differentiated under the calculation
of the risk model, and the difference in response rates to
immunotherapy was significant between the two risk groups (low

vs. high = 67% vs. 11%) (Figure 9B). The risk model failed to
significantly predict survival and immunotherapy differences in the
GSE78220 cohort, with all samples in the high-risk group
progressing to PD and 17% of those in the low-risk group
achieving CR to immunotherapy (Figure 9C). The risk model
could significantly identify the difference in the 3-year prognosis
of patients in the GSE91061 dataset but could not significantly
distinguish the difference in immunotherapy response between the
two risk groups (Figure 9D).

Validation of the expression of four model
genes in HCC cells

To verify the efficacy of our predictive model, we validated the
expression of PPT1, DAB2, FTL, and SAT1 using PCR in HCC cells
(Hep3B and Huh7), as well as human normal hepatocytes (THLE-

FIGURE 8
Predictability of the risk model to immunotherapy response and drug sensitivity. (A) TIDE score, dysfunction score, and exclusion score of high-risk
and low-risk groups. (B) Pearson’s correlation analysis of macrophage marker genes and risk score in the risk system with TIDE score, dysfunction score,
and exclusion score. (C) The response rate of the two risk groups to immunotherapy. (D)Drug sensitivity prediction. The significance of the differencewas
marked with *, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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2). We found that PPT1 and FTL were highly expressed in
hepatocellular carcinoma cell lines, while DAB2 and SAT1 were
highly expressed in human hepatocytes (Figures 10A–D). We then
used siRNA to inhibit the expression of PPT1 in HCC cell lines and
SAT1 in human hepatocytes THLE-2. The results of PCR assay
showed that the siRNA possessed good transfection efficiency
(Figures 10E–G). We then verified the cell viability of HCC cell
lines after inhibition of PPT1 in Hep3B and Huh7 cell lines using
CCK8 experiments. The results displayed that cell viability
decreased after inhibition of PPT1 (Figures 10H, I). All the
aforementioned results validate the reliability of our prediction
model.

Discussion

HCC is a common liver disease, and its progression is regulated
by the immune system (Donne and Lujambio, 2023). The main
cellular components of HCC include cancer cells, immune cells, and
stromal cells, and the relationship between different cell types and
clinical relevance of HCC is not clear (Arvanitakis et al., 2023).
Immune cells are considered to be the main contributors to tumor
immunosuppression, anti-tumor drug resistance, and tumor
clearance. T cells (36%) accounted for the highest proportion of
all immune cell types in HCC, followed by NK cells (29%) and
macrophages (25%) (Zhang et al., 2022). In this study, we found that
HCC was composed of nine types of cells through scRNA-seq
analysis, with hepatocytes, T cells, and macrophages accounting
for the highest proportion. The sequencing results of a previous
study showed that specific TAMs are a hub node that connects

different cell groups in the cell–cell interaction network and can
regulate tumorigenesis and anti-tumor immunity (Zhou et al.,
2021). In this study, through the analysis of the communication
between nine kinds of cells, we found that the cell with the highest
intensity of communication with B cells, endothelial cells, myeloid
cells, NK cells, and pDCs was macrophages. At the same time,
macrophage was also one of the cells with the strongest
communication with fibroblasts, hepatocytes, and T cells, which
also reflected the hub role of macrophage in HCC.

There is important evidence that TAM-based immune
classification may provide tools for customized chemotherapy
and immunotherapy (Sun et al., 2022). In this study, the subtype
of HCC was defined according to the marker genes of macrophage.
We identified 56 prognosis-related genes in the 179 specifically
highly expressed genes of macrophage and classified HCC into three
subtypes according to their level in the transcriptome. The subtypes
with the best and worst prognoses were C2 and C3, respectively.
Indicators related to immunotherapy response, including pTMB
and TIDE score, showed significant differences between C2 with the
best prognosis and C3 with the worst prognosis. C2 showed the
highest pTMB and response rate of immunotherapy and the lowest
TIDE score, which indicated that C2 was the most suitable subtype
of immunotherapy among the three subtypes. For C3 with the worst
prognosis, we found that this subtype was more suitable for targeted
therapy and chemotherapy than C2 and was sensitive to sunitinib,
paclitaxel, dasatinib, pyrimethamine, and bortezomib.

Identifying specific macrophage markers to design targeted and
personalized drugs is essential for the prevention and treatment of
malignant liver tumors (Cheng et al., 2022). The effectiveness of
macrophage markers as a strategy for designing patient prognostic

FIGURE 9
Predictability of the risk model for prognosis and immunotherapy responses in different immunotherapy cohorts. (A) Risk model assesses prognosis
and immunotherapy response in the IMvigor210 cohort. (B) The prognosis and immunotherapy response rate of samples in the GSE135222 cohort were
predicted according to the risk model. (C) The riskmodel predicted the outcome of prognosis and immunotherapy response in the GSE78220 cohort. (D)
Discrimination of patient prognosis and immunotherapy response by the risk model in the GSE91061 dataset.
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gene classifiers has been applied in a variety of cancers, such as
glioma (Sun et al., 2019), prostate cancer (Siefert et al., 2021),
bladder cancer (Jiang et al., 2022), and triple-negative breast
cancer (Bao et al., 2021). In this study, Cox regression analysis
and random survival forest analysis were applied to select four genes
from 179 specifically highly expressed genes of macrophage to
achieve the development of the risk system. Among them, PPT1
(Palmitoyl protein thioesterase 1) is highly expressed in HCC tissues,
especially in macrophages. The research further revealed that HCC
patients with low intra-tumoral PPT1+ macrophage infiltration tend

to have a survival advantage, indicating that targeting PPT1 may
serve as an immunotherapeutic biomarker in HCC (Weng et al.,
2023). DAB2 (disabled-2) is highly expressed in tumor-infiltrating
TAM, and its genetic ablation can significantly damage the
formation of lung metastasis. DAB2 is associated with poor
prognosis of human lobular breast and gastric carcinomas
(Marigo et al., 2020). Furthermore, the overexpression of
DAB2 eliminated the effectiveness of dendritic cell vaccines in
the context of dendritic cell-relevant tumor immunotherapy
(Ahmed et al., 2015). Hypoxia-inducible FTL (ferritin light

FIGURE 10
Experimental validation of predictive models. (A–D) PCR was performed to detect the expression of PPT1, DAB2, FTL, and SAT1 in THLE-2, Hep3B,
and Huh-7 cells. (E–F) The inhibitory efficiency of si PPT1 was verified in Hep3B and Huh-7 cell lines. (G) The inhibitory efficiency of si SAT1 was verified in
THEL-2 cells. (H) Alterations in cell viability following inhibition of PPT1 expression in Hep3B cells. (I) Alterations in cell viability following inhibition of
PPT1 expression in Huh-7 cells. N = 3. The significance of the difference was marked with *, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
The results are presented as the mean ± SEM.
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chain), one of the hub ferroptosis regulators (Yan et al., 2023),
functions as a new biomarker for the responsiveness to
temozolomide in glioblastoma, as well as a prognostic marker
(Liu et al., 2020a). SAT1 (spermidine/spermine-N1-
acetyltransferase 1) was chosen as a protective factor to construct
a ferroptosis-relevant prediction model in HCC patients (Wang
et al., 2021). Further research demonstrated that the expression of
SAT1 was repressed in HCC tumor tissues compared with normal
liver tissues (Long et al., 2023), which was also demonstrated in our
validation test. The tumor-suppressor protein, p53, was discovered
to have the ability to induce ferroptosis and inhibit tumor growth
through facilitating SAT1 expression (Liu et al., 2020b). In this
research, these four genes may be treated as novel marker genes of
macrophage in HCC. In addition, PPT1 and DAB2may also serve as
new markers for immunotherapy.

In this study, our analysis showed that the risk system integrated
with these four genes showed accuracy and reliability in predicting
OS in all four HCC cohorts, and it also helped screen patients
suitable for immunotherapy and predict the sensitivity of some
targeted drugs and chemical drugs to patients, which may be
beneficial to the choice of personalized treatment options for
patients.

To sum up, the current study applied scRNA-seq analysis to
determine nine types of cells in HCC and to identify the core role
of macrophage in HCC. Moreover, three HCC models with
different prognoses, TME, and immunotherapy response levels
were defined according to specifically highly expressed genes in
macrophages, and a risk system based on the aforementioned
macrophage genes was constructed, which provided a new insight
into the prognosis target and preclinical personalized treatment
choice of HCC.
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