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Intranasal administration is a drug delivery approach to provide a non-invasive
pharmacological response in the central nervous system with relatively small
peripheral side effects. To improve the residence time of intranasal drug delivery
systems in the nasal mucosa, mucoadhesive polymers (e.g., chitosan) can be used.
Here, insulin-loaded chitosan nanoparticles were synthesized and their
physiochemical properties were evaluated based on requirements of intranasal
administration. The nanoparticles were spherical (a hydrodynamic diameter of
165.3 nm, polydispersity index of 0.24, and zeta potential of +21.6 mV) that
granted mucoadhesion without any noticeable toxicity to the nasal tissue. We
applied a new approach using the Krebs–Henseleit buffer solution along with
simulated nasal fluid in a Franz’s diffusion cell to study this intranasal drug delivery
system. We used the Krebs–Henseleit buffer because of its ability to supply
glucose to the cells which serves as a novel ex vivo diffusion medium to
maintain the viability of the tissue during the experiment. Based on diffusion
rate and histopathological endpoints, the Krebs–Henseleit buffer solution can be a
substituent solution to the commonly used simulated nasal fluid for such drug
delivery systems.
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1 Introduction

Intranasal (IN) drug delivery is a promising strategy to enhance the absorption of poorly
penetrating active ingredients, such as proteins and small molecules, into the brain (Inoue
et al., 2020; Veronesi et al., 2020). Neurodegenerative diseases often present a significant
challenge for drug development due to the presence of multiple barriers, including the
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blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier
(Bahadur et al., 2020). However, the IN route of administration
offers a direct transport of drugs to the brain, bypassing these
barriers (Warnken et al., 2016; Fonseca et al., 2021; Pandey et al.,
2021; Rabiee et al., 2021; Agrawal et al., 2022; Bahadur and Jha, 2022;
Formica et al., 2022; Vitore et al., 2023). Although there are still
limitations to be considered, intranasal drug delivery is a promising
delivery method for the treatment of neurological disorders
(Fonseca et al., 2021). This approach takes advantage of the nasal
epithelium, which provides a direct connection between the central
nervous system (CNS) and the external environment (Keller et al.,
2022). Moreover, mucoadhesive polymers can prolong drug
retention time in the nasal mucosa, enhancing brain drug
permeability compared to conventional systemic approaches (Yu
et al., 2019; Wilson et al., 2021).

The IN route of administration for mucoadhesive-based or
coated drug delivery systems (DDSs) offers a non-invasive and
safe strategy for drug delivery to the CNS while reducing the
correlated side effects of systemic drug delivery (Agrawal et al.,
2018; Baboota and Ali, 2022; Moradi and Dashti, 2022). Chitosan
(Cs) is a mucoadhesive biopolymer that has garnered attention for
use in IN-DDSs due to its unique physical and chemical properties
(Aderibigbe and Naki, 2019; Tashima, 2020). Cs is a biodegradable,
biocompatible, and cationic biopolymer that can interact with
negatively charged mucosal surfaces (Aajami et al., 2019). Its
hydrophilic nature allows it to form a gel-like structure upon
hydration (Pita-López et al., 2021), enabling it to create a strong
physical bond with the mucosal surfaces and making it a reliable
candidate for IN-DDSs (Sadeghi AMM. et al., 2008; Mura et al.,
2022). Once an IN-DDS is developed, several experiments are
required to study the interfering factors that affect the rate and
extent of drug diffusion, mimicking the normal physiology of drug
access to the brain (Bartos et al., 2021; Hafner, 2022).

Ex vivo experiments are valuable tools to study the function and
behavior of biological systems in a controlled and simplified manner
before proceeding to in vivo and clinical studies (Shi et al., 2019).
Excised tissues, in particular, provide a means of evaluating the
diffusion and toxicity of intranasal drug delivery systems (IN-DDSs)
(Erdő et al., 2018). However, reliable diffusion investigations require
the use of healthy and live tissues (Ladel et al., 2019; Salade et al.,
2019; Berkhoff, 2023), as the metabolic stability and permeation
mechanisms are highly dependent on tissue cell viability
(Djupesland, 2013; Kolanjiyil et al., 2019; Shim et al., 2019).
Currently, despite the wide range of therapeutics being developed
as IN formulations, there is no validated protocol to test the
diffusion of nasal excised tissues, which raises concerns about
potential tissue damage that could adversely affect the diffusion
rate (Williamson et al., 2019). Therefore, there is a need for more
reliable methods to simulate drug penetration through the nasal
epithelium.

The nasal tissue is a thin, porous, and highly vascularized
epithelium that makes it a suitable site for local, systemic, and
brain drug delivery (Bajracharya et al., 2019). Currently, the receptor
compartments in Franz’s cells in ex vivo IN-DDS studies are filled
with either simulated nasal fluid (SNF) or phosphate-buffered saline
solution (PBS) (Chatzitaki et al., 2020; Fahmy et al., 2020; Khunt
et al., 2020; Chin et al., 2021). While these solutions mimic the
extracellular local microenvironment of the nasal cavity, they cannot

guarantee tissue viability during the experiment, which may alter
cellular transport (Carneiro et al., 2019). Diffusion plays an
important role in the exchange of many different chemicals in all
living tissues. However, following tissue death, the rate of diffusion
may be influenced by changes in the local pH, glucose consumption,
and cellular energy availability (Kia’i and Bajaj, 2019). While
conducting ex vivo studies, factors such as tissue preparation
method, experiment duration, experiment temperature,
equipment used, and diffusion solution employed, among others,
must be taken into consideration (Salade et al., 2019). Therefore, it is
crucial to explore and develop alternative solutions that could be
used to improve tissue preparation for conducting these
experiments.

In this context, the Krebs–Henseleit buffer (KHB) solution is a
widely used medium for ex vivo studies of drug diffusion across
gastrointestinal membranes (Li et al., 2023; O’Shea et al., 2022). It is
used to provide nutrients to the tissue and mimic the ionic
composition of tissue fluid, thereby maintaining osmolality and
pH constancy of biosamples (Tambe et al., 2019; Xu et al., 2021). The
KHB also helps in preserving tissue viability, which allows for
accurate measurements of active transport efficiency (Minasian
et al., 2013; Neyshaburinezhad et al., 2020; Britto-Júnior et al.,
2021). Apart from its use in such physiological and biochemical
studies, the KHB finds its application in tissue slice experiments,
organ perfusion, and BBB research (Sekhar et al., 2019; Buchko et al.,
2020; Pearen et al., 2020). The use of the KHB in ex vivo experiments
provides stability to experimental conditions, which is relevant to
the physiological conditions of living cells in biological samples and
is readily available in laboratory settings (Berkhoff, 2023). These
factors enable consistent, accurate, and relevant results, making it an
ideal medium for ex vivo experimentation.

This study aimed to develop and characterize a stable, safe,
biocompatible, effective, and mucoadhesive insulin-loaded Cs-based
DDS for IN administration. Moreover, it sought to design a more
valid ex vivo experiment with a special focus on the KHB as a new
diffusion medium that can maintain tissue viability to monitor
insulin penetration efficacy more accurately. To prevent adverse
effects on the nasal epithelium, an isotonic formulation with a
stabilized pH value of 5.5 ± 0.5 was used, conforming to the
European Pharmacopeia criteria for nasal preparations
(Monograph, 2017). This is the first study to compare the use of
the SNF and KHB in Franz’s cell for the diffusion of insulin-loaded
Cs-NPs through the ovine nasal epithelium (OVINAE).

2 Materials and methods

2.1 Chemicals

Low-molecular-weight Cs (Mw < 100 kDa), potassium
dihydrogen phosphate (KH2PO4), sodium hydroxide (NaOH),
hydrochloric acid (HCl), sodium chloride (NaCl), magnesium
sulfate (MgSO4), potassium chloride (KCl), sodium bicarbonate
(NaHCO3), calcium chloride (CaCl2), D-glucose, potassium
bromide (KBr), and acetic acid were of analytical grade, and
high-performance liquid chromatography (HPLC)-grade double-
deionized water (DDW), methanol, and acetonitrile were purchased
from Sigma-Aldrich, St. Louis, United States. The active
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pharmaceutical ingredient form of human insulin was kindly
provided by Ronak Daroo Co. (Tehran, Iran) as a gift.

2.2 Methods

2.2.1 Preparation of insulin-loaded Cs-NPs
Insulin-loaded Cs-NPs were synthesized according to the poly-

electric complexation (PEC) method (Sadeghi A. et al., 2008). In
brief, Cs was dissolved in acetic acid (1% v/v) and stirred at room
temperature. The pH of the Cs solution was adjusted to 5.5 ± 0.1 by
adding NaOH (1.0 M). The insulin solution was prepared in HCl
(0.01 N), and the pHwas adjusted to 8.0 ± 0.1 by NaOH (1.0 M). The
best concentration and the volume ratios of Cs/insulin were
determined according to a set of optimization experiments, with
the one-factor-at-a-time method, based on the ranges reported
previously (Sarmento et al., 2006; Sadeghi A. et al., 2008; Shamsa
et al., 2018; Chen et al., 2019).

The insulin-loaded Cs-NPs were separated from the aqueous
medium containing non-associated insulin through centrifugation
at 20000 rpm for 20 min at 4°C, and the supernatant was submitted
to determine encapsulation efficiency (EE) and loading capacity
(LC). The concentration of free drugs in the supernatant was
measured by reversed-phase HPLC (Agilent, Germany) at the
wavelength of 215 nm, mobile phase: sodium sulfate buffer
solution and acetonitrile, flow rate 0.75 mL/min, column: C18,
4 µm. The EE and LC of Cs-NPs were calculated using equations
(A) and (B), respectively, given as follows. All measurements were
performed in triplicate and averaged:

EE � Total drug − f ree drug
Total drug

× 100, (A)

DL � Total drug − f ree drug
Nanoparticle weight

× 100. (B)

2.2.2 Characterization of insulin-loaded Cs-NPs
The physicochemical characteristics of NPs were assessed using

dynamic light scattering (DLS; Malvern, Worcestershire, UK) for
particle size, polydispersity index (PDI), and zeta potential (ζ). The
sample volume used for the analysis was kept constant at 1 mL. To
further analyze the surface morphology and to verify the DLS
information, NPs were evaluated by using a scanning electron
microscope (SEM; TESCAN, MIRA III model, Czech Republic)
at an operating voltage of 30 kV. For microscopy, 50 µL of 1:
10 diluted solution of insulin-loaded Cs-NPs with DDW was
spread on a cover slide and dried using the vacuum desiccator in
less than an hour. Thereafter, NPs were sputter-coated with a gold
layer and observed under a SEM. Furthermore, the air-dried Cs-NPs
were separated from free insulin by centrifugation (vide supra) and
evaluated by Fourier-transform infrared (FTIR) spectroscopy
(Bruker, Germany). Free insulin, Cs polymer, and insulin-loaded
Cs-NPs were taken with KBr pellets on FTIR, and their spectra were
analyzed to structure characterization.

In this continuum, in vitro cumulative release profiles for insulin
in SNF (pH 6.5 ± 0.1), from 0 to 240 min, at 33°C ± 2°C (nasal cavity
temperature), were diagrammed based on the sample and separate
method using a centrifuge (Sigma, United States) (Weng et al., 2020).
In the predetermined time intervals (15, 30, 60, 120, and 240 min),

200 µL of the supernatant following the centrifugation at 18000 rpm
for 20 min at 4°C was collected. These samples were assayed via
HPLC (Agilent, Germany) in the aforementioned conditions to
determine the concentration of insulin at each time interval.
Withdrawn samples were replaced with the same amount of
fresh SNF each time to keep the experiment volume constant. To
study the kinetics of drug release from Cs-NPs, the data were plotted
in various kinetic models, i.e., the zero-order, first-order,
Korsmeyer–Peppas, and Higuchi’s model (Paarakh et al., 2018).

2.2.3 Ex vivo diffusion evaluation of insulin-loaded
Cs-NPs

The diffusion of both insulin solution and insulin-loaded Cs-
NPs across the OVINAE was evaluated using Franz’s diffusion cell
while the mucosal surface faced the donor compartment (Sood et al.,
2014). The Cs-NPs, equivalent to 4 mg of insulin, were poured on
the membrane into the donor compartment previously incubated
with the KHB for 10 min. Fresh diffusion media (SNF and KHB,
pH 6.5 and pH 7.4, respectively) were used in the receptor
compartments and maintained at 33°C ± 2°C under constant
stirring. The medium (200 μL) was withdrawn serially from a
receptor compartment in predetermined time intervals (15, 30,
60, 120, and 240 min). Withdrawn samples were replaced with
the same quantity of fresh relevant buffer solution and assayed
using HPLC (Agilent, Germany) at 215 nm. The cumulative
diffusion was plotted and analyzed using mathematical kinetics
models.

2.2.4 Evaluation of SNF and KHB toxicity on the
OVINAE

The OVINAE was obtained from a local butchery (Kermanshah,
Iran) within 30 min of sacrificing the animal. Once decapitated at a
local butchery, the OVINAE was soaked in the KHB (pH 7.4). The
mucotoxicity studies on the OVINAE were conducted to evaluate
the effects of the KHB on the tissue structure in comparison to those
of the SNF (Seju et al., 2011). After the diffusion experiment with
both buffer solutions, the tissues were carefully removed from
Franz’s cells fixed in formalin solution (10% V/V) for 24 h,
stained with hematoxylin–eosin (HE), and implanted in paraffin
blocks for section preparation. Histological sections (5–6 μm) were
observed under a light microscope (Olympus, Japan). To determine
the effect of buffer solutions on the nasal tissue, the toxicity
indicators such as the epithelial detachment (ED), mural
destructive lesions of venules and arteries, and the intercellular
space widening (ISW) of the tissue were considered as endpoints.

2.2.5 Evaluation of the toxicity of insulin-loaded
Cs-NPs on the OVINAE

Last but not the least, mucotoxicity studies on the OVINAE
were performed to ensure the biocompatibility of the synthesized
Cs-NPs (Seju et al., 2011). We used PBS (pH 6.8 ± 0.1) as a
negative control (NC), isopropyl alcohol as a positive control
(PC), and insulin-loaded Cs-NP solution (pH 6.00 ± 0.1) as a test
sample (Ramreddy and Janapareddi, 2019). The ~1 cm2 OVINAE
was incubated with the test samples and negative and positive
controls for 1 h. Then, histological sections were prepared and
evaluated under the light microscope (Olympus, Japan) as
previously mentioned.
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2.2.6 Statistical analysis
Data were analyzed using SPSS version 20 (SPSS Inc., Chicago, III.,

United States) and shown as means ± SEM (standard error of the
mean). An independent-sample t-test was performed to show the
differences between tissues mounted on Franz’s diffusion cells filled
with the KHB and SNF. The one-way analysis of variance (ANOVA)
was employed to show mucotoxicity in NPs, control NC, and PC
groups, and post hoc Tukey’s HSD was pursued when ANOVA
indicated a significant difference (p < 0.05). In all statistical
evaluations, a value of p < 0.05 was considered as the significant level.

3 Results

3.1 Preparation of insulin-loaded Cs-NPs

Insulin-loaded Cs-NPs were successfully prepared according to
the PEC method (Sadeghi A. et al., 2008). The insulin-loaded Cs-
NPs were obtained upon the addition of different volumes of the
insulin solution to the Cs solution in a dropwise manner. The
concentration of both Cs and insulin solutions was adjusted at 1 mg/
mL, and the volume ratio of Cs/insulin was optimized at 1:0.75, as
the higher insulin concentration resulted in the aggregation of the
particles. The insulin’s EE and DL of Cs-NPs were found to be
69.05% and 27.97%, respectively. The final pH of the insulin-loaded
Cs-NP solution was recorded at 6.00 ± 0.1.

3.2 Characterization of insulin-loaded
Cs-NPs

The highest possible Cs/insulin volume ratio without a
deleterious effect on the size and PDI of the NPs and minimal
effect on the EE was selected to synthesize the NPs. Accordingly, the
ratio of 1:0.75 led to a hydrodynamic diameter of 165.3 nm and PDI
of 0.24, which were in an excellent range for an IN formulation.
According to these values, a narrow size range distribution results in
stability, homogeneity, and less aggregation (Figure 1A). In addition,
the zeta potential was +21.6 mV (Figure 1B). Moreover, SEM
analysis of insulin-loaded Cs-NPs confirmed that the NPs were
spherical and had a uniform size distribution (Figure 2).

Furthermore, the FT-IR spectra of pure Cs, insulin-loaded Cs-
NPs, and insulin are illustrated in Figures 3A–C, respectively. The
functional peaks of Cs were at 3415.40 cm−1 (OH stretching),
2875 cm−1 (CH stretching), and 1638.12 cm−1 (amide I;
Figure 3A). The spectrum of Cs exhibited an amine deformation
peak at 1617.53 cm−1 and an amide I carbonyl stretch at
1638.12 cm−1 (Figure 3A). In the spectrum of the insulin-loaded
Cs-NPs, the amine deformation peak of Cs shifted from
1617.53 cm−1 to 1432 cm−1, and the peak at 1638.12 cm−1

changed into a sharp peak at 1576 cm−1 meant an interaction
was occurring at the amine groups on the Cs, and this can
correspond to the binding of insulin to these sites (Figure 3B).
The insulin spectrum expressed distinct shoulder absorptions in the
amide I (1655 cm−1) and amide II (1533.72 cm−1) regions as
characteristic of typical protein spectra (Figure 3C). In addition,
the peak intensity of amino groups of Cs at 1153 cm−1 was decreased
after complexation with insulin (Figure 3C). The characteristic band

FIGURE 1
(A) Insulin-loaded chitosan nanoparticles’ hydrodynamic diameter (165.3 nm), polydispersity index (0.24), and (B) zeta potential (+21.6 mV) in a
suitable range for intranasal administration.

FIGURE 2
Scanning electron micrograph of insulin-loaded chitosan
nanoparticles confirming the narrow size distribution and uniform
spherical shape of the nanoparticles.
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of insulin at 1655 cm−1 and the Cs at 1638 cm−1 did not appear in the
insulin-loaded Cs-NP spectra because they were masked due to the
physical interaction between Cs and insulin. Hence, the FT-IR
results presented here suggested that a successful interaction has
occurred between the polymer and drug after complexation driven
by opposite-charged Cs and insulin.

The cumulative amount of insulin released from Cs-NPs was
plotted against time for 4 h. Our findings showed that the release of
insulin from Cs-NPs was more than 90% within this time interval in
a biphasic drug release pattern from Cs-NPs, with a burst release
occurring within the first 15 min and a gradual release over 4 h
(Figure 4). A mathematical model describing the drug release from
the Cs-NPs was the Korsmeyer–Peppas model, as the cumulative
release best fitted in this model (R2 = 0.9792; Supplementary Figure

S1), in comparison to zero order (R2 = 0.8528; Supplementary Figure
S2A), Higuchi (R2 = 0.9533; Supplementary Figure S2B), first order
(R2 = 0.931; Supplementary Figure S2C), and Hixson (R2 = 0.9065;
Supplementary Figure S2D).

3.3 Ex vivo diffusion evaluation of insulin-
loaded Cs-NPs in SNF and KHB solutions

Here, the KHB (268 mOsmol) was compared to the SNF
(391 mOsmol), as the glucose-free medium was commonly
employed for these types of assays (Table 1). The feasibility of
using the KHB instead of the SNF in the ex vivo models for IN
formulation studies was evaluated for both insulin-loaded Cs-NPs

FIGURE 3
(A) Fourier-transform infrared spectrum of chitosan with its characteristic peaks, (B) FT-IR spectrum of the insulin-loaded chitosan nanoparticle
implying an effective interaction between Cs and insulin, and (C) FT-IR spectrum of insulin with its characteristic peaks.

FIGURE 4
In vitro cumulative release of insulin from chitosan nanoparticles in the simulated nasal fluid (pH 6.5 ± 0.1), 0–240 min, at 33 °C ± 2 °C and constant
shaking.

Frontiers in Pharmacology frontiersin.org05

Jamshidnejad-Tosaramandani et al. 10.3389/fphar.2023.1227423

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1227423


and insulin solution. For the insulin solution, initial diffusion (20%)
for the SNF- and KHB-filled apparatus was 0.06 and 5.80 min,
respectively. However, the half diffusion rate (50%) was 21.89 min
and 289.32 min for SNF- and. KHB-filled apparatus, respectively.
Additionally, the inferring values for 70% of the diffusion rate of
insulin in the SNF and KHB apparatus from the extrapolating of
data were estimated to be 529.29 h and 3251.91 h, respectively
(Supplementary Table S1). Similarly, the time of initial diffusion
(20%) for insulin-loaded Cs-NPs in the SNF-filled apparatus was
3.83 min in comparison to the KHB-filled apparatus, which was
5.04 min. The diffusion rate of 50% occurred at 21.23 and 65.35 min
for SNF and KHB groups, respectively. Furthermore, 70% of the
insulin diffusion using insulin-loaded Cs-NPs was 66.45 and
360.30 min for SNF and KHB groups, respectively
(Supplementary Table S2). This trend analysis for the SNF and
KHB showed an approximately similar pattern in diffusion data over
time for both the insulin solution and insulin-loaded Cs-NP
diffusion which confirmed the validity of KHB usage instead of
the SNF for ex vivo IN diffusion studies (Figure 5).

Moreover, the results of both diffusion experiments proved the
effectiveness of the Cs-NPs in comparison to the insulin solution in
the IN route of administration. The diffusion efficacy of insulin in

the insulin-loaded Cs-NP groups was compared to the insulin
solution and showed increased insulin diffusion (solid lines vs.
dashed lines) in both buffer solutions. Diffusion rates for both
insulin-loaded Cs-NPs and insulin solution confirmed the
validity of KHB utilization instead of the SNF for ex vivo
intranasal diffusion studies. It is notable that a smaller amount of
cumulative diffusion rate was recorded for the KHB group in all the
measurement points. Furthermore, the deviation between SNF and
KHB groups increased during the diffusion time, due to the higher
diffusion in the SNF groups that reached the maximum value in the
latest part of the experiment (Figures 6A,B). Moreover, we evaluated
the histological indications of SNF- and KHB-affected membranes
to validate this methodology as an alternative to the conventional ex
vivo test using the SNF. In this perspective, there is no previous
comparable study that relates to the cell viability of the OVINAE.

3.4 Statistical evaluation of SNF and KHB
toxicity on the OVINAE

The inspection of the histopathological tissue samples mounted on
Franz’s cell prefilled with the KHB and SNF revealed that lesions were

TABLE 1 Compositions of the simulated nasal fluid (pH 6.4) and Krebs–Henseleit buffer solution (pH 7.4).

Buffer solution Composition mM (mOsmol) Total (mOsmol)

NaCl KCl CaCl2 MgSO4 KHPO4 D-glucose

Simulated nasal fluid 150.061 (300.12) 39.97 (79.94) 3.94 (11.83) - - - 391.89

Krebs–Henseleit buffer solution 118 (236) 4.8 (9.6) 2.5 (7.5) 1.2 (2.4) 1.2 (2.4) 11 (Vitore et al., 2023) 268.9

FIGURE 5
Comparison of the ex vivo diffusion rates of insulin solution and insulin-loaded chitosan nanoparticles from a freshly isolated ovine nasal tissue in the
Krebs–Henseleit buffer (orange solid and dashed lines) and simulated nasal fluid (blue solid and dashed lines).
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distributed in both groups and variances were homogeneous as assessed
for equality of variances (Supplementary Table S3). Therefore, we
concluded that there are no statistically significant differences
between the means. An independent t-test was run on the data with
a 95% confidence interval (CI) for the means differences of the ED,
AWD, VWD, and ISW to establish whether there were differences in
these variables between KHB and SNF groups. The results revealed no
difference between the SNF (2.3488 ± 0.16) andKHB (2.2000 ± 0.11) for
the ED (t = 0.767; degree of freedom (df) = 106; p = 0.447); non-
significant difference between the SNF (2.2558 ± 0.12) and KHB (2.00 ±
0.11) for the VWD variant (t = 1.460; df = 106; p = 0.147); a minor
difference between the SNF (2.1860 ± 0.14977) and KHB (1.3846 ±
0.10212) for the AWD (t = 4.583; df = 106; p = .000); but a relatively
meaningful difference between the SNF (3.00 ± 0.14119) and KHB
(4.00) for the ISW (t = −8.729; df = 106; p = 0.00). The 95% CI of the
difference between means did not indicate an overall alternation of
tissue between the means of the SNF and KHB samples (Table 2). The
histopathological observations of the nasal mucosa statistically
confirmed that the KHB is a practical milieu supporting the viability
of the OVINAE in comparison to the SNF.

3.5 Evaluation of the toxicity of the insulin-
loaded Cs-NPs on the OVINAE

The histological sections of OVINAE samples stained with HE
are shown in Figure 7. A sample of the NC, incubated in PBS, was

not disintegrated structurally, and the whole structure of tissue
remained intact without considerable morphological changes of
the mucosa. However, some minor changes including mural
destructive lesions of venules and disintegration of tissue were
seen (Figure 7A). On the other hand, the nasal mucosa treated
with isopropyl alcohol, PC, showed overtly delocalization of the
epithelial layer from the beneath layer. Additionally, in some parts,
arteriole walls were destroyed, small venules were widely damaged,
and mural destructive lesions of venules occurred. In comparison to
other groups, mural destructive lesions of venules are the most
prominent aspect of the tissue in the PC treatment. However, ED
was scarce in this group (Figure 7B). Instead, all the toxicity
indicators including ED and AWD were not observed in the
sample treated with insulin-loaded Cs-NPs, and the basal
membrane as well as the superficial part of the submucosa
remained unaffected. Nevertheless, mural mild destructive lesions
of venules were seen in some sections in this group (Figure 7C).
Overall, the structure of tissue was conserved in comparison to all
other groups ensuring the efficacy, safety, and tolerability of insulin-
loaded Cs-NPs for nasal mucosa.

Table 3 shows the toxicity statistics of the OVINAE samples
after 1 h incubation in the NC, PC, and insulin-loaded Cs-NP
samples. In all three groups, lesions were recorded after
evaluation. In this context, for ED, the difference between all the
groups was negligible. On the other hand, the assessment of the
toxicity indications, including the ISW, AWD, and VWD,
demonstrated that the NP group was similar to the NC group

FIGURE 6
Histopathological analysis of tissue mounted on Franz’s cells filled with the (A) Krebs–Henseleit buffer solution (pH 7.4) and (B) simulated nasal fluid
(pH 6.4), after a 4-h ex vivo diffusion test, under the lightmicroscope (Olympus, Japan), ×10magnification. The yellow arrows show epithelial detachment
(ED), arterial wall damage (AWD), venule wall damage (VWD), and intercellular space widening (ISW).

TABLE 2 Lesion frequencies of ovine nasal epithelium tissues used in two supporting solution media.

Lesion Simulated nasal fluid Krebs–Henseleit buffer solution

Epithelial detachment 2.34 ± 0.162 2.20 ± 0.116

Arterial wall damage 2.18 ± 0.149 1.38 ± 0.102

Venules wall damage 2.25 ± 0.129 2.00 ± 0.113

Intercellular space widening 3.00 ± 0.129+ 4.00 ± 0.000

+Significant difference at p ≤ 0.05.
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and significantly different from the PC group. This indicated the
safety and tolerability of insulin-loaded Cs-NPs for the OVINAE.

4 Discussion

4.1 Development of insulin-loaded Cs-NPs

The Cs-NPs were formed based on the complexation of the
positively charged amino groups of Cs at pH lower than its
isoelectric point (pI) and negatively charged functional groups of
insulin at pH above its pI. The preparation method of insulin-
loaded Cs-NPs was a relatively straightforward methodology based
on the self-assembly of the polymer and the drug, avoiding harsh
chemical solvents and conditions (Sarmento et al., 2006; Sadeghi A.
et al., 2008; Shamsa et al., 2018; Chen et al., 2019). The optimization
experiment results showed that the higher the insulin solution volume
up to the equal amount to the Cs solution, the higher EE would be.
However, it resulted in much lower zeta potential and higher sizes
which were unwarranted for nasal absorption and, thus, omitted from
the further steps (data not shown). The final pH of the insulin-loaded
Cs-NP solution (6.00 ± 0.1) was suitable for IN administration because
the natural pH of the nasal cavity is 5.5–6.5 (Chin et al., 2021).

The mucoadhesive properties of positively charged NPs are
largely determined by their interaction with negatively charged
mucus, primarily through their zeta potential (Abruzzo et al.,
2021; Gao et al., 2023; Spleis et al., 2023). This interaction was
heavily influenced by the ratio of Cs to insulin in the formulation. To
increase the zeta potential, we used the highest possible Cs/insulin
volume ratio without a deleterious effect on the size and PDI of the
NPs and minimal effect on the EE. According to these values, a

narrow size range distribution resulted in stability, homogeneity,
and less aggregation (Figure 1A). Additionally, the high zeta
potential (+21.6 mV) warranted the mucoadhesion of Cs-NPs to
the nasal tissue.

The predicted drug diffusion (delivery) time from the nasal cavity to
the whole brain tissue ranged from 30 min to 2 h, depending on the
animal models, formulations, and tracer molecules (Crowe and Hsu,
2022). The drug reaches the deeper parts of the brain such as the
hypothalamus at its maximum level in 30 min (Crowe and Hsu, 2022).
Furthermore, the CNS clearance is accomplished in about 4 h (Crowe
and Hsu, 2022). Therefore, these values give a cue to estimate the
elapsed time for studying IN-administered formulations. Accordingly,
the cumulative amount of insulin released from Cs-NPs was plotted
against time for 4 h. Our findings showed that the release of insulin
from Cs-NPs was more than 90% within this time interval.

Concerning the Cs-based DDSs, numerous studies have
revealed the successful encapsulation of insulin using PEC and
ion gelation methods (Bhattacharyya et al., 2018; Ibie et al., 2019;
Liu et al., 2019; Rong et al., 2019; Rathore et al., 2020; Cui et al.,
2022; Arpaç et al., 2023). In comparison with the recent studies,
our findings are consistent with the previous investigation for
insulin-loaded Cs-Dz13Scr nanoparticles with a size of 159.3 nm
and PDI of 0.331 (Weng et al., 2020). This study resulted in a
higher EE (88%), but lower zeta potential (−1.08 mV) (Weng
et al., 2020). Additionally, Wong et al. reported insulin-loaded
Cs-NPs with a scaled-up step, resulting in a size of 479 nm, PDI of
0.34, zeta potential of 14.47 mV, and EE of 88.71% (Wong et al.,
2020). Nevertheless, since the common goal of these studies was
to deliver insulin orally, the EE was a more important parameter
than the size and zeta potential. On the other hand, Nojoki et al.
used tween 80 as a surfactant in a film hydration method to
synthesize Cs-transfersulin as an IN-DD. The particle size was
reported as 137.9 ± 28.2 nm, PDI 0.20, zeta potential +23.4 mV,
and EE and DL 65.1% ± 0.9% and 9.1% ± 0.4% (Nojoki et al.,
2022), respectively. However, they did not manage an ex vivo
experiment to study the diffusion behavior of the insulin-loaded
Cs-NPs in comparison to the insulin solution (vide infra).

4.2 Ex vivo analysis of diffusion and toxicity

A novel ex vivomodel of a freshly isolated OVINAE was utilized
for permeation assay. Herein, the KHB in the receptor compartment

FIGURE 7
Ovine nasal epithelium tissue after 1 h incubation in the (A) negative control (NC), (B) positive control (PC), and (C) insulin-loaded chitosan
nanoparticle stained with hematoxylin–eosin and observed under a light microscope (×10 magnification).

TABLE 3 Toxicity indicators of the ovine nasal epithelium incubated in the
insulin-loaded chitosan nanoparticle sample, negative control, and positive
control.

Lesion NC PC NPs

Epithelial detachment 2.5106 ± 0.11ab 2.9259 ± 0.19b 2.0476 ± .0.20a

Arterial wall damage 1.6383 ± 0.10a 2.8889 ± 0.15b 1.4762 ± 0.11a

Venule wall damage 1.2553 ± 0.06a 3.8148 ± .076b 1.1905 ± 0.08a

Intercellular space widening 2.5106 ± 0.12a 3.1852 ± 0.16b 2.0952 ± 0.20a

NC, negative control; PC, positive control; NPs, insulin-loaded chitosan nanoparticles.
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was used since cell viability is guaranteed in the KHB solution to
practically mimic the near-to-real condition. The glucose
component of the KHB can preserve cell viability and, thus,
tissue integrity during the procedure (Bailey and Ong, 1978). As
shown in Figure 5, a slight variance in insulin diffusion rate may be
presumably as a result of dissimilar osmolarity between the SNF and
KHB and the changed tissue behavior toward these media.
Moreover, the diffusion efficacy comparison of insulin in the
insulin-loaded Cs-NP group and insulin solution showed
increased insulin diffusion in both buffer solutions with a smaller
amount of cumulative diffusion rate for the KHB group in all the
measurement points. This deviation might be due to the different
compositions and pH of the SNF and KHB, which can alter the
tissue diffusion capacity due to ED resulting from the damaging
condition for the tissue in the SNF group (Figure 6A). Conversely,
the integrity and viability of the OVINAE in the KHB solution can
be preserved due to the glucose supply and the mild pH which might
increasingly hamper the insulin penetration in both insulin solution
and insulin-loaded Cs-NP groups (Figure 6B). As shown in Table 1,
the KHB contains MgSO4 and KHPO4 components. In this line, an
array of studies showed the anti-corrosive and cytoprotective
activities of MgSO4 (Koning et al., 2019; Mohammadi et al.,
2020; Zhu et al., 2020). Moreover, MgSO4 helps the glucose
consumption of the OVINAE during the ex vivo experiment of
drug diffusion and inhibits cell starvation. The SNF cannot support
the metabolism of the tissue during the experiment and would be
corrosive due to the lack of the mucin and MgSO4.

The histopathological observations of the nasal mucosa,
statistically confirmed that the KHB is a practical milieu
supporting the viability of the OVINAE through glucose
supply in comparison to the SNF which is a glucose-free
medium. However, it is important to take into account that
the KHB does not mimic the composition and the pH of nasal
fluid, so the results may not fully translate the in vivo situation
either. Another important aim is to modify SNF and KHB
formulations that can imitate the critical features of the
relevant biological fluid, while conserving the tissues, and keep
the membranes viable during the procedures of DDS permeation.
This work provides the foundation for further work on modified
formulations of buffer solutions to conserve membrane integrity
while investigating the DDS permeability.

The synthesized NPs were characterized considering the IN-DDS
requirements. Results showed that insulin was encapsulated in Cs-NPs
in the appropriate zeta potential, size, and PDI, suitable to submit to IN
preclinical settings. The histological studies indicate that Cs-NPs can
increase the delivery of insulin without any notable toxicity to the nasal
tissue. Thus, insulin-loaded Cs-NPs can be utilized as potential IN-
DDSs by longer residence time and sustained diffusion in the IN insulin
delivery. In agreement with the previous commonmethod, our novel ex
vivo test showed that the designed IN-DDS could improve insulin
permeability through the OVINAE.
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