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Introduction: Cancer registries and hospital electronic medical records are
commonly used to investigate drug repurposing candidates for cancer.
However, administrative data are often more accessible than data from cancer
registries and medical records. Therefore, we evaluated if administrative data
could be used to evaluate drug repurposing for cancer by conducting an example
study on the association between beta-blocker use and breast cancer mortality.

Methods: A retrospective cohort study of women aged ≥50 years with incident
breast cancer was conducted using a linked dataset with statewide hospital
admission data and nationwide medication claims data. Women receiving beta
blockers and first-line anti-hypertensives prior to and at diagnosis were compared.
Breast cancer molecular subtypes and metastasis status were inferred by
algorithms from commonly prescribed breast cancer antineoplastics and
hospitalization diagnosis codes, respectively. Subdistribution hazard ratios (sHR)
and corresponding 95% confidence intervals (CIs) for breast cancermortality were
estimated using Fine and Gray’s competing risk models adjusted for age, Charlson
comorbidity index, congestive heart failure, myocardial infraction, molecular
subtype, presence of metastasis at diagnosis, and breast cancer surgery.

Results: 2,758 women were hospitalized for incident breast cancer. 604 received
beta-blockers and 1,387 received first-line antihypertensives. In total, 154 breast
cancer deathswere identified over amedian follow-up time of 2.7 years. We found
no significant association between use of any beta-blocker and breast-cancer
mortality (sHR 0.86, 95%CI 0.58–1.28), or when stratified by beta-blocker type
(non-selective, sHR 0.42, 95%CI 0.14–1.25; selective, sHR 0.95, 95%CI 0.63–1.43).
Results were not significant when stratified by molecular subtypes (e.g., triple
negative breast cancer (TNBC), any beta blocker, sHR 0.16, 95%CI 0.02–1.51).

Discussion: It is possible to use administrative data to explore drug repurposing
opportunities. Although non-significant, an indication of an association was found
for the TNBC subtype, which aligns with previous studies using registry data.
Future studies with larger sample size, longer follow-up are required to confirm
the association, and linkage to clinical data sources are required to validate our
methodologies.
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Introduction

Drug repurposing is a promising supplement to de novo drug
discovery and development due to time and cost savings
(Parvathaneni et al., 2019; Pushpakom et al., 2019; Roy et al.,
2021). Repurposed drugs have lower attrition rates across clinical
trial and regulatory approval phases compared to their de novo
counterparts (Parvathaneni et al., 2019; Pushpakom et al., 2019; Roy
et al., 2021). This is particularly relevant to oncology, where on
average only 3.4% of drugs successfully traverse from Phase I clinical
trials to market approval (Wong et al., 2019). Real-world data,
including administrative healthcare data, may be used to discover or
validate drug repurposing candidates via pharmaco-epidemiological
analyses (Pushpakom et al., 2019; Ozery-Flato et al., 2020; Xu et al.,
2020; Chen et al., 2021). The benefits of administrative healthcare
data are longitudinal individual-level records, large population-
based sample sizes, and widespread availability (Katkade et al.,
2018; Ilomaki et al., 2020; Franklin et al., 2021; Tan et al., 2023).
These advantages are attributable to embedded data collection
processes during routine provision of healthcare.

Beta-blockers have been identified as potential repurposing
candidates for cancer due to emerging evidence from preclinical
studies (Sloan et al., 2010; Cole and Sood, 2012; Magnon et al., 2013;
Creed et al., 2015; Chang et al., 2016; Le et al., 2016), retrospective
observational studies across various cancer types (e.g., melanoma
(De Giorgi et al., 2013), ovarian cancer (Watkins et al., 2015;
Couttenier et al., 2019), colorectal cancer (Jansen et al., 2014),
prostate cancer (Lu et al., 2015; Malik et al., 2023), and breast
cancer (Botteri et al., 2013; Lofling et al., 2022)), and recent
prospective clinical trials (Shaashua et al., 2017; Hiller et al.,
2020). Despite advances in breast cancer therapeutics, metastasis
remains the key prognostic marker for poor survival and the
main cause of death (Weigelt et al., 2005; Jung et al., 2011).
Preclinical evidence suggests that beta-blockade reduces metastasis
by limiting tumour cell invasion, inflammation in the tumor
microenvironment, and lymphatic vasculature remodelling (Palm
et al., 2006; Sloan et al., 2010; Creed et al., 2015; Chang et al., 2016; Le
et al., 2016). Additionally, beta-blockers may interact with breast
cancer treatments to exert their protective effects (Pasquier et al.,
2011; Reeder et al., 2015; Chang et al., 2023). However, a meta-
analysis of epidemiological and perioperative studies by Yap et al.
(2018) raised the possibility that the effects of beta-blockers on
cancer outcomes may be tumor type-specific, as significant benefits
were observed only in melanoma and ovarian cancer (Yap et al.,
2018). Several retrospective observational studies found that beta-
blocker use is associated with improved cancer outcomes in breast
cancer (Powe et al., 2010; Barron et al., 2011; Melhem-Bertrandt
et al., 2011; Botteri et al., 2013; Sorensen et al., 2013; Choy et al.,
2016; Gillis et al., 2021; Lofling et al., 2022), while other studies have
reported no significant association (Cardwell et al., 2013; Ganz et al.,
2011; Sakellakis et al., 2014; Modi et al., 2020-; Cardwell et al., 2016).
Moreover, meta-analyses by Løfling et al. (2022), Caparica et al.
(2021) and Spini et al. (2019) have demonstrated more consistent
protective effects of beta-blockers amongst women with triple

negative breast cancer (TNBC) (Spini et al., 2019; Caparica et al.,
2021; Lofling et al., 2022). Previous observational studies
predominantly used data from population-based cancer registries
and hospital electronic medical records (Mohammadzadeh et al.,
2017), which contain detailed histopathological and other clinical
information about cancer. However, cancer registry data may be
unavailable or unfit for research purposes, especially in some
developing countries (Valsecchi and Steliarova-Foucher, 2008;
Abdul-Sater et al., 2021).

There is currently a paucity of studies using administrative
healthcare data alone to investigate oncology-related repurposing
hypotheses. To address this, we aimed to evaluate a drug
repurposing opportunity in cancer using administrative
healthcare data by analysing the association between beta-blocker
use and breast cancer survival. We used an active comparator study
design that compared beta-blocker users to users of first-line anti-
hypertensives to reduce confounding and healthy user bias (Lund
et al., 2015). In the absence of detailed cancer-related clinical
information in the administrative dataset, we used longitudinal
hospital admission data and prescription medication claims to
infer incident cancer cases, baseline medication use and
comorbidities, as well as breast cancer molecular subtypes.

Materials and methods

Data sources

We conducted a cohort study using hospitalization data from
the Victorian Admitted Episodes Dataset (VAED), linked to
medication claims data from the Australian Pharmaceutical
Benefits Scheme (PBS) and death data from the National Death
Index. Probabilistic linkage was performed by the Australian
Institute of Health and Welfare (Madden et al., 2022), based on
first name, middle names, surname, date of birth, date of death,
street address, suburb, postcode, and sex. This linked dataset
consists of 450,958 individuals discharged from any public or
private hospital in the state of Victoria, Australia (total
population of 6.5 million) between 1 July 2012 and 30 June 2018,
and had one of the following four conditions recorded at the
hospital: diabetes complication, acute coronary syndrome, stroke,
or hip fracture.

The VAED data contains hospital admission data for each
person from 1 July 2006 to 30 June 2018, including admission
and discharge dates, principal and up to 39 additional diagnostic
codes based on International Statistical Classification of Diseases
and Related Health Problems, 10th Revision, Australian
Modification (ICD-10-AM) (The International Statistical
Classification, 2019), procedural codes based on Australian
Classification of Health Interventions (ACHI) (Australian
Classification, 2019), demographic information including age in
5-year groups and sex. The PBS is a nationwide single-payer
system that subsidizes prescription medications for Australian
citizens, permanent residents, and people from countries with
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reciprocal healthcare arrangements with Australia. Linkage to the
PBS allowed identification of prescription medicine claims from
1 January 2005 to 30 June 2018, including information on the
medication name, strength, quantity supplied, and dispensing date
(Mellish et al., 2015). The National Death Index provided the date
and causes of death. Cause of death includes the underlying cause
and other causes of death.

Study population

The study cohort was defined as women, aged ≥50 years
discharged from any Victorian hospital between 1 November
2012 to 30 June 2018 with breast cancer as the principal diagnosis
(ICD-10-AM code C50). This start date was necessary because
medications costing less than the general co-payment amount
were not recorded in the dataset for general beneficiaries prior to
1 July 2012 (Mellish et al., 2015), and we required a 120-day
window for medication exposure ascertainment prior to hospital
admission. The first hospitalization with breast cancer recorded
as a principal diagnosis during the study period was defined as
the index hospitalization. The discharge date of the index
hospitalization was defined as the index date. The cohort was
limited to women aged ≥50 years to exclude premenopausal
women because of the use of different treatment strategies,
poorer prognoses, and to reduce heterogeneity between beta-
blocker users and comparators (Azim et al., 2016). People with
prior hospital admissions with cancer recorded as any diagnoses
since 1 July 2006 or dispensing records of any antineoplastics
from 1 January 2005 until the index hospitalization were
excluded to obtain an incident cancer cohort.

Exposure

We determined exposure to beta-blockers and comparator
medications (first-line antihypertensives), using a 120-day
lookback period from the admission date (inclusive) of index
hospitalization (Figure 1). Pre-diagnostic use of beta-blocker was
chosen as the exposure of interest to address the hypothesis that
beta-blockers have synergistic effects with breast cancer treatment
during the diagnostic period (Pasquier et al., 2011; Reeder et al.,
2015). Beta-blocker exposure was defined by having at least one

beta-blocker dispensing record within the lookback period
(Supplementary Appendix S1). We classified people as having
received either selective or nonselective beta blockers based on
the most recent dispensing date. To reduce confounding by
indication, the comparators were defined as people with at least
one dispensing record of a first-line anti-hypertensive medication
with no beta-blocker dispensing record during the look-back period.
Comparator medications were selected based on first-line
recommendations in the Australian Therapeutic Guidelines
(Blood Pressure Reduction, 2021), including angiotensin-
converting enzyme inhibitors, angiotensin-receptor blockers,
thiazide-like diuretics and dihydropyridine calcium channel
blockers. All medications were defined based on the Anatomical
Therapeutic Chemical (ATC) classification of medications
(Supplementary Appendix S1 and S2).

Covariates

Molecular subtypes of breast cancer diagnoses were inferred
using an algorithm of breast cancer medications (Table 1), based on
Australian clinical practice guidelines (eviQ Cancer Institute NSW,
2021; Immunomodulators and antineoplastics, 2021). This was
completed using medication dispensing records from the 2 years
during and after the index date, including medications that target the
estrogen and/or progesterone receptor, namely, selective estrogen
receptor modulators (tamoxifen, toremifene), aromatase inhibitors
(letrozole, anastrozole, exemestane) and gonadotrophin-releasing
hormone agonist (goserelin), and HER2 targeting monoclonal
antibodies (trastuzumab and pertuzumab).

The Charlson comorbidity index by Quan et al. was used to
identify 17 comorbidities based on ICD-10-AM codes from all
hospitalizations on or before the index date (Supplementary
Appendix S3) (Charlson et al., 1987; Quan et al., 2005).
Weighted Charlson comorbidity scores were calculated, excluding
cancer and metastasis because everyone in the cohort had one or
both of these. Baseline metastasis was identified from the index
hospitalization using ICD-10-AM codes C77 for regional lymph
node metastasis, and C78, C79, and C80 for distant metastasis.
Breast cancer surgery during index hospitalization was ascertained
using recorded procedural codes. Breast cancer surgery codes
include those for excision of lesions and mastectomy
(Supplementary Appendix S4) (Victorian Cancer Quality, 2018).

FIGURE 1
Study flowchart.
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Outcomes

The primary outcome in this study was breast cancer mortality
and the secondary outcome was all-cause mortality. Follow-up
started from the index date until the end of the study period
30 June 2018. People who died prior to hospital discharge were
excluded. Breast cancer death was determined using ICD-10-AM
code C50 recorded in the National Death Index using both
underlying and other recorded causes of death. We included
other recorded causes of death in the definition to improve
sensitivity as it has been reported that only 77.5% of breast
cancer-related deaths had breast cancer coded as the
“underlying” cause of death in the National Death Index
(Multiple causes of death, 2012).

Statistical analyses

Descriptive analyses were used to describe characteristics of the
study cohort. Categorical variables are reported with frequencies and
percentages; continuous variables with medians and interquartile
ranges (IQR). Statistical significance in the cohort characteristics
between the groups was determined using parametric or non-
parametric tests as appropriate, with an alpha level of 0.05.

Multivariable analyses were conducted for all beta-blockers, and
selective and nonselective beta-blockers separately. All models were
adjusted for age group, weighted Charlson comorbidity index,
congestive heart failure, myocardial infarction, baseline metastasis
(no metastasis, regional or distant metastasis), breast cancer
molecular subtypes and breast cancer surgery during the index
hospitalization. Congestive heart failure and myocardial
infarction were used as separate covariates due to both being the
main indications for beta-blocker use. We carried out competing-
risk analyses using Fine and Gray’s subdistribution hazards model to
estimate the subdistribution hazards ratios (sHR) and 95%
confidence intervals (CI) for breast cancer mortality (Fine and
Gray, 1999). Deaths due to other causes were used as competing
events in breast cancer mortality analyses. Cox proportional hazards
model was used to estimate the hazard ratios (HR) and 95% CI for
overall survival.

Stratified analyses were conducted for age groups (<65 years
vs. ≥ 65 years), weighted Charlson comorbidity index (<3 and ≥3),
hormone-receptor positive breast cancer, TNBC, and cancer
baseline metastasis (no metastasis, regional or distant metastasis)
to examine potential effect modification.

All analyses were conducted using SAS version 9.4 (SAS Institute
Inc., Cary, NC, United States).

Results

Cohort description

From a cohort of 2,758 women ≥50 years with breast cancer,
there was a total of 604 beta-blocker users in our study cohort,
including 89 nonselective and 515 selective beta-blocker users
(Figure 2; Table 2). There were in total 1,387 users of first-line
antihypertensives (active comparators). The median age of our study
population was 71 years.

Beta-blocker users were older than the comparators (≥80 years
old: 29% vs. 18%, p < 0.001). (Table 2). Beta-blocker users tended to
have more comorbidities compared to comparators (weighted
Charlson comorbidity index of ≥4: 23% vs. 14%, p = 0.005).
Beta-blockers users were more likely to have congestive heart
failure and a history of myocardial infarction than comparators
(15% vs. 5%, p < 0.001; 12% vs. 4%, p < 0.001). Beta-blocker users
and comparators had similar distributions of baseline metastasis,
breast cancer molecular subtypes, and breast cancer surgery during
the index hospitalization period.

Breast cancer survival

There were in total 154 breast cancer deaths over the median
follow-up time of 2.7 years (IQR 2.8 years, Table 3). After adjusting
for all covariates, there was no difference in breast cancer survival
between any beta-blocker users and the comparators (sHR 0.86, 95%
CI 0.58–1.28). When stratified by beta-blocker type, there was no
difference in breast cancer mortality between nonselective (sHR
0.42, 95% CI 0.14–1.25) or selective beta-blocker users (sHR 0.95,
95% CI 0.63–1.43) compared to the comparators.

Results were similar when stratified by age group, weighted
Charlson comorbidity index, baseline metastasis and breast cancer
molecular subtype (Figure 3). In particular, we did not find a
significant association between beta blocker use and breast cancer
survival in women with TNBC (any beta-blocker, sHR 0.16, 95% CI
0.02–1.51; selective beta-blocker, sHR 0.22, 95% CI 0.02–2.63).
Results could not be determined for all HER2 positive subgroups
and TNBC subgroup for non-selective beta-blocker users due to
small number or lack of events.

All-cause survival

There were 265 all-cause deaths over the same follow-up period
(Table 3). In the multivariable analyses, there was no significant

TABLE 1 Molecular subtype classification based on breast cancer medications.

Breast cancer molecular
subtype

Estrogen and/or progesterone receptor
targeting agent

HER2 targeting
agent

Conventional
chemotherapya

Luminal (A/B) + +/− +/−

HER2 positive − + +/−

Triple negative − − +

+, Presence of one or more dispensing record. −, Absence of a dispensing record. +/−, presence or absence of dispensing record.
aDefined using ATC, codes starting with L01.
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difference in all-cause mortality between any beta-blocker use (HR
1.02, 95% CI 0.79–1.32) compared to the comparators. Results
remained similar when stratified by beta-blocker type:
nonselective beta-blocker (HR 0.80, 95% CI 0.45–1.42) and
selective beta-blocker (HR 1.07, 95% CI 0.81–1.40).

Discussion

In this example using administrative healthcare data to
investigate a drug repurposing candidate for cancer, we found no
association between either use of any beta-blocker, nonselective
beta-blocker use, or selective beta-blocker use, and short-term breast
cancer mortality (median 2.7 years of follow-up). The results are
aligned with a meta-analysis of 13 studies by Caparica et al. (2021)
who reported no significant difference between beta blocker use and
breast cancer mortality (Caparica et al., 2021). However, notably
recent studies using cancer registry data or hospital electronic
medical records with longer follow-up times and larger sample
sizes have demonstrated that beta-blockers prolong breast cancer
survival in TNBC patients. A recent meta-analysis of four
independent studies by Løfling et al. (2022) reported a 26%
reduced risk of breast cancer death in women with TNBC with
the use of beta blockers compared to no use (Lofling et al., 2022). For
example, Botteri et al. (2013) observed a 48% reduced risk of breast
cancer death in women with TNBC who used any beta-blockers (n =
74) over 5 years (Botteri et al., 2013). Løfling et al. (2022)
demonstrated a 34% improved breast cancer-survival with beta
blocker use in women with TNBC (n = 312) over 5 years
(Lofling et al., 2022). Our analyses indicated a possible reduction
in breast cancer mortality for women with TNBC using beta-
blockers compared to comparators (sHR 0.16, 95% CI 0.02–1.51),
although results were not statistically significant. This may be due to

short follow-up, small sample size, fundamental differences in study
cohorts, and residual confounding (see limitations below).

The key advantage of administrative healthcare data over cancer
registry data or electronic medical records is the presence of
longitudinal and comprehensive records of medication use. In
this study, we ascertained baseline use of beta-blockers by using
longitudinal prescription medication claims. This allowed us to
accurately identify the type of beta-blocker use (selective vs. non-
selective) dispensed prior to breast cancer diagnosis. Studies using
cancer registry data without linkage to medication claims often rely
on patient self-reports or hospital electronic medical records to
identify baseline use of medications (Pop et al., 2019). Self-reporting
in cancer registry data is subject to recall bias. Moreover, hospital
electronic medical records may not have exact information when the
medication was initiated and may include initiation of exposure
medication use after a breast cancer diagnosis. Ascertaining
exposure of medications after the index date may lead to an
immortal time bias, where people by design need to survive
event-free until the exposure starts at a time after the index date
(Suissa, 2008). Immortal time bias could distort results towards
favourable drug-outcome associations (Weberpals et al., 2016). This
was demonstrated in a meta-analysis by Zhong et al. (2016), which
found that post- but not pre-diagnostic use of beta-blockers was
associated with improved cancer survival (Zhong et al., 2016).

Cancer registries remain the gold standard real-world data
source for evaluating drug repurposing opportunities for cancer
due to rich clinical information on cancer diagnosis and
management. However, administrative healthcare data are
considered as alternative data sources if cancer registry data are
unavailable or unfit for research purposes, especially in developing
countries (Valsecchi and Steliarova-Foucher, 2008; Abdul-Sater
et al., 2021). Several previous studies have used administrative
data to evaluate drug repurposing opportunities for cancers other

FIGURE 2
Cohort extraction process.
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TABLE 2 Baseline characteristics of the study sample.

Characteristic All beta-blocker
users

Nonselective beta-blocker
users

Selective beta-blocker
users

Comparators p-value

Total women, n 604 89 515 1387 —

Age group in years, n (%)

50–69 204 (33.8) 27 (30.3) 177 (34.4) 467 (47.0) <0.001b

70–79 227 (37.6) 34 (38.2) 193 (37.5) 480 (34.6) 0.2b

≥80 173 (28.6) 28 (31.5) 145 (28.2) 255 (18.4) <0.001b

Weighted Charlson Comorbidity indexc

Median (IQR) 2.0 (2.0) 2.0 (2.0) 3.0 (4.0) 1.0 (2.0) 0.02d

0–1, n (%) 274 (45.4) 43 (48.3) 136 (26.41) 756 (54.5) <0.001b

2–3, n (%) 193 (32.0) 27 (30.3) 187 (36.3) 443 (31.9) 0.99b

≥4, n (%) 137 (22.7) 19 (21.4) 192 (37.3) 188 (13.6) <0.001b

Myocardial infarction, n (%) 72 (11.9) 9 (10.1) 63 (12.2) 56 (4.0) <0.001b

Congestive heart failure, n (%) 93 (15.4) 11 (12.4) 62 (12.0) 68 (4.9) <0.001b

Regional metastasis, n (%) 187 (31.0) 25 (28.1) 165 (32.0) 422 (30.4) 0.81b

Distant metastasis, n (%) 24 (4.0) <6 (<6.7)a <24 (<4.7)a 69 (5.0) 0.33b

Luminal breast cancer, n (%) 444 (73.5) 63 (70.8) 381 (74.0) 1059 (76.4) 0.18b

HER2 positive breast cancer, n (%) 15 (2.5) <6 (<6.7)a <15 (<2.9)a 35 (2.5) 0.96b

TNBC, n (%) 42 (7.0) 7 (7.9) 35 (6.8) 119 (8.6) 0.22b

Breast cancer surgery during index
admission, n (%)

559 (92.6) 80 (89.9) 479 (93.0) 1273 (91.8) 0.56b

TNBC, triple negative breast cancer.
aSmall cell suppression (<6) required by Australian Institute of Health and Welfare.
bChi-square test.
cCancer and metastasis were excluded in the weighted Charlson comorbidity index.
dKruskall-Wallis test.

TABLE 3 Crude mortality rate and hazard ratios by beta-blocker use.

All beta-blockers
users

Non-selective beta-blockers
users

Selective beta-blocker
users

Comparators

Total, n 604 89 515 1,387

Follow-up time (years),
median (IQR)

2.72 (2.62) 2.57 (2.92) 2.77 (2.54) 2.73 (2.90)

Breast cancer survival

Breast cancer-related deaths, n (%) 49 (8.1) <6 (<6.7)a <49 (<9.5)a 105 (7.6)

Unadjusted sHR (95% CI) 1.03 (0.74–1.45) 0.60 (0.22–1.63) 1.10 (0.78–1.56) reference

Adjusted sHRb (95% CI) 0.86 (0.58–1.28) 0.42 (0.14–1.25) 0.95 (0.63–1.43) reference

All-cause survival

All-cause deaths, n (%) 98 (16.2) 13 (14.6) 85 (16.5) 167 (12.0)

Unadjusted hazard ratios (95% CI) 1.33 (1.03–1.70) 1.28 (0.73–2.26) 1.33 (1.03–1.73) reference

Adjusted hazard ratiosb (95% CI) 1.02 (0.79–1.32) 0.80 (0.45–1.42) 1.07 (0.81–1.40) reference

CI, confidence interval; sHR, subdistribution hazard ratio; IQR, interquartile range.
aSmall cell suppression (<6) required by Australian Institute of Health and Welfare.
bAdjusted for age group, weighted Charlson comorbidity index, congestive heart failure, myocardial infraction, metastasis at baseline (no metastasis vs. localized or distant metastasis), breast

cancer molecular subtype and breast cancer surgery during the index hospitalization.
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than breast cancer (Chen et al., 2019; Chen et al., 2020; Ng et al.,
2021; Park et al., 2021). Some of these studies even have enriched
administrative healthcare data (Ng et al., 2021), or linkage to
external registry to provide or confirm cancer-related clinical
information (Chen et al., 2019; Chen et al., 2020).

Due to the lack of cancer-specific histopathological clinical data
in our dataset, we acquired information on incident breast cancer
cases from longitudinal hospitalization data and prescription
medication claims. We identified the first hospitalization record
where breast cancer was recorded as a primary diagnosis and used
this as a proxy for the date of breast cancer diagnosis. Cancer
registries usually record incident cancer cases and provide accurate
dates of diagnosis (Yuen et al., 2011; Okuyama et al., 2018).
However, Yuen et al. have demonstrated good sensitivity (84.8%)
and specificity (99.9%) between administrative data and actual
recorded dates of diagnosis in cancer registry (Yuen et al., 2011).

We used diagnosis and procedural codes from hospitalization
data and prescription medication claims data to infer breast cancer
molecular subtypes and staging. We developed a novel algorithm to
estimate breast cancer molecular subtypes from commonly
prescribed antineoplastics used to treat each molecular subtype of
breast cancer. Molecular subtype was used to stratify and adjust our
analyses. Moreover, we used the presence of breast cancer surgery at
index hospital admission and diagnosis codes for metastasis to infer
early breast cancer cases. The meta-analysis by Caparica et al. (2021)

evaluated the association between beta-blocker use and breast cancer
survival in early breast cancer cases given their better prognoses
(Caparica et al., 2021). Given that early breast cancer cases were
likely to have localized operable tumors or no metastasis, we
included both the presence of breast cancer surgery during index
hospitalization and metastasis as independent covariates for
adjustment in our analyses.

Strengths of our study include the use of active comparators
and competing risk analyses. The use of active comparators
minimizes confounding by indication (Lund et al., 2015), and
other differences in baseline characteristics between the exposure
groups. The active comparators also minimize healthy user bias
as all women in the study were active users of preventive
cardiovascular medications and the healthcare system (Lund
et al., 2015). Despite this, a higher proportion of beta-blocker
users had congestive heart failure and higher weighted Charlson
comorbidity scores than the comparators, therefore, our model
adjusted for both of these. We also considered competing risks in
our time-to-event survival analyses using Fine and Gray’s
subdistribution hazard model. Competing risk events can lead
to overestimation of risk when using the conventional Cox
proportional hazards regression model (Tan et al., 2018). This
is especially true when analyzing a cohort with a substantial
proportion of older people, as the incidence of diseases that are
attributable to aging and frailty increases (Tan et al., 2018).

FIGURE 3
Forest plots of subgroup analyses by beta-blocker use. Adjusted subdistribution hazard ratios reported based on Fine and Gray’s subdistribution
hazard model. Note: small cell suppression (<6) is required by Australian Institute of Health and Welfare. *Hazards ratio could not be estimated due to
small number or lack of breast cancer deaths in subgroups.
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There are important limitations to this study. First, the limited
sample size and short follow-up time (median 2.7 years) led to
underpowered analyses. Second, the study cohort included people
admitted to hospitals with diabetes, acute coronary syndrome,
stroke, or hip fracture only. This limited the ability to generalize
the results to a general population of women with breast cancer. To
address these two limitations, future studies would benefit from
using larger scale administrative data from a nationwide or general
population-based cohort to both increase the power of study and
generalizability of results. Third, there is the potential of
confounding by severity as beta-blockers are not first-line anti-
hypertensives and are prescribed for people with additional
cardiovascular comorbidities, notably ischaemic heart disease and
congestive heart failure (Blood Pressure Reduction, 2021). We
considered first-line anti-hypertensives as the best possible active
comparator medications as they have previously been used in other
studies to reduce confounding (Gillis et al., 2021; Lofling et al.,
2022), and included myocardial infarction and congestive heart
failure as covariates in the models. Furthermore, there could be
residual confounding due to undetermined histopathological
characteristics of breast cancer tumors, for example, tumor size
and Ki-67 expression, which are conventionally available from
cancer registry data but not in our dataset. Fourth, we used
dispensing records during follow-up to estimate breast cancer
molecular subtype, which may lead to selection bias in the
stratified analyses by molecular subtypes. This is because people
need to survive during follow-up until receiving the breast cancer
treatments (Acton et al., 2023). Furthermore, we were not able to
validate the sensitivity and specificity of the algorithm used in
inferring breast cancer molecular subtypes as we did not have
information on the subtypes available. Future validation studies
with data linkage to cancer registries are required to confirm the
validity of the algorithm. Moreover, we were unable to classify breast
cancer molecular subtype for 14% of women as they did not have
dispensing records of either breast cancer antineoplastics or
conventional chemotherapy. Therefore, the algorithm could not
infer the breast cancer molecular subtypes for women who have
undergone surgery or radiotherapy only. Lastly, given that this study
only includes data from patients treated until mid-2018, our results
do not include the effects of emerging immunotherapies used since
2019 (Barzaman et al., 2021). Preclinical studies have reported that
beta-blockade enhances the response to immunotherapy, for
example, anti-CTLA4 therapy (Fjaestad et al., 2022), raising the
possibility that beta blocker use might enhance new immunotherapy
regimens.

Conclusion

Use of administrative data as an alternative to registry data
increases opportunities to identify novel drug repurposing
candidates. In addition to being more widespread and accessible
than registry data, administrative data often has longitudinal and
comprehensive records of medication use that can be used to
ascertain medication exposure. The current study emphasizes the
need for use of large administrative datasets to provide sufficient
power to identify associations. The current study describes the
development of methodologies to infer cancer-related clinical

information from variables available in administrative dataset.
Future studies with linkage to clinical data sources are required
to validate these methodologies.
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