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Objectives: Health economic evaluations (HEEs) help healthcare decision makers
understand the value of new technologies. Artificial intelligence (AI) is increasingly
being used in healthcare interventions. We sought to review the conduct and
reporting of published HEEs for AI-based health interventions.

Methods: We conducted a systematic literature review with a 15-month search
window (April 2021 to June 2022) on 17th June 2022 to identify HEEs of AI health
interventions and update a previous review. Records were identified from
3 databases (Medline, Embase, and Cochrane Central). Two reviewers screened
papers against predefined study selection criteria. Data were extracted from
included studies using prespecified data extraction tables. Included studies
were quality assessed using the National Institute for Health and Care
Excellence (NICE) checklist. Results were synthesized narratively.

Results: A total of 21 studies were included. The most common type of AI
intervention was automated image analysis (9/21, 43%) mainly used for
screening or diagnosis in general medicine and oncology. Nearly all were cost-
utility (10/21, 48%) or cost-effectiveness analyses (8/21, 38%) that took a
healthcare system or payer perspective. Decision-analytic models were used in
16/21 (76%) studies, mostly Markov models and decision trees. Three (3/16, 19%)
used a short-term decision tree followed by a longer-term Markov component.
Thirteen studies (13/21, 62%) reported the AI intervention to be cost effective or
dominant. Limitations tended to result from the input data, authorship conflicts of
interest, and a lack of transparent reporting, especially regarding the AI nature of
the intervention.

Conclusion: Published HEEs of AI-based health interventions are rapidly
increasing in number. Despite the potentially innovative nature of AI, most
have used traditional methods like Markov models or decision trees. Most
attempted to assess the impact on quality of life to present the cost per QALY
gained. However, studies have not been comprehensively reported. Specific
reporting standards for the economic evaluation of AI interventions would help
improve transparency and promote their usefulness for decision making. This is
fundamental for reimbursement decisions, which in turn will generate the
necessary data to develop flexible models better suited to capturing the
potentially dynamic nature of AI interventions.
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1 Introduction

The use of artificial intelligence (AI) has significantly grown in
the healthcare sector. Exploiting its ability to streamline tasks,
provide real-time analytics, and process larger quantities of data
has contributed to its increased prominence (Panch et al., 2018).
Additionally, it may have the potential to deliver quality care at
lower costs. AI is being used to address challenges ranging from staff
shortages to ageing populations and rising costs (Dall et al., 2013).
The number of AI technologies approved by the US Food and Drink
Administration (FDA) was nearly 350 between 2016 and mid-2021,
compared to less than 30 in the preceding 19 years (Miller, 2021).

Several systematic reviews have been published that examine
health economic evaluations (HEEs) for AI in healthcare. The most
recent is Voets et al. (1 April 2021) (Voets et al., 2022), who searched
for publications from 5 years prior and included 20 full texts,
discussing the methods, reporting quality and challenges. They
found that automated medical image analysis was the most
common type of AI technology, just under half of studies
reported a model-based HEE, and the reporting quality was
moderate. Overall, Voets et al. concluded that HEEs of AI in
healthcare often focus on costs rather than health impact, and
insight into benefits is lagging behind the technological
developments of AI.

An up-to-date representation of the economic evidence base
may be insightful. Clearly, AI is a rapidly developing area in
healthcare, demonstrated by the National Institute for Health and
Care Excellence (NICE) recently incorporating AI technologies into
its Evidence Standards Framework (Unsworth et al., 2021; National
Institute for Health and Care Excellence, 2022). While some of this
rise may be attributable to changes in legislation, it indicates the
importance of AI in the current healthcare climate and the need to
have a contemporary understanding of its economic value.
Additionally, the COVID-19 pandemic has led to a rapid
increase in the digitalization of data and health services including
teleconsultations, online prescriptions and remote monitoring
(Gunasekeran et al., 2021). Therefore, we sought to update the
Voets et al. systematic review. We report updated results consistent
with the original review, by disaggregating the HEEs into costs,
clinical effectiveness, modelling characteristics and methodologies
to understand common techniques, limitations, assumptions, and
uncertainties. This update allows us to advance the discussion
around whether existing modelling methods and reporting
standards are suitable to appropriately assess the cost
effectiveness of AI technologies compared to non-AI technologies
in healthcare.

This review was undertaken to inform ongoing work within the
HTx project. HTx is a Horizon 2020 project supported by the
European Union lasting for 5 years from January 2019. The main
aim of HTx is to create a framework for the Next-Generation Health
Technology Assessment (HTA) to support patient-centred,
societally oriented, real-time decision-making on access to and
reimbursement for health technologies throughout Europe.

2 Data and methods

2.1 Literature search strategy

The search strategy included the period from 1 April 2021 to
17 June 2022, in order to update the original search conducted by
Voets et al. (Voets et al., 2022). The original search used the PubMed
and Scopus databases. For the present update, the original search
strategy was translated for use in MEDLINE, EMBASE, via the Ovid
platform, and Cochrane Central, via Wiley. These databases were
preferred due to their accessibility, and searching all 3 was
considered to provide comparable coverage to PubMed and
Scopus (Ramlal et al., 2021).

The search strategy was simplified into 2 concept pathways: 1.
“Artificial intelligence” and 2. “Health economic evaluations”. The
search queries in Supplementary Appendix SA show the strategies
divided into their respective databases. Subsequent terms in the AI
pathway included, “artificial intelligence”, “machine learning”, and
“data driven”. The second pathway included terms such as, “cost
effectiveness”, “health outcomes”, “cost”, “budget”. An English
language query was applied to the search strategy. The initial
database selection and search strategies were guided by NICE
information specialists. The review and search protocol were not
registered.

2.2 Inclusion and exclusion criteria

Studies were included if they were a HEE of an AI intervention
and a comparator, such as current standard of care or a non-AI
intervention. This included trial-based economic evaluations and
model-based studies. There were no exclusion criteria on types of
economic evaluation, such that cost-effectiveness analyses (CEAs),
cost-utility analyses (CUAs), cost-minimization analyses (CMA)
and budget impact analyses (BIAs) were included. We term all of
these as HEEs, which are defined as the “comparative analysis of
alternative courses of action in terms of both their costs and
consequences” (Rudmik and Drummond, 2013). CEAs evaluate
whether an intervention provides relative value, in terms of cost
and health outcomes, to a respective comparator. CUAs are a subset
of CEAs where the health outcome includes a preference-based
measure such as the Quality Adjusted Life Year (QALY). BIA studies
evaluate the affordability of an intervention for payers to allocate
resources. Included studies reported a quantitative health economic
outcome such as costs, or costs in relation to effectiveness. For the
exclusion criteria in the initial screening of titles and abstracts,
studies that were not original research or systematic reviews such as
commentaries, letters, and editorials were excluded. Overall, the
inclusion and exclusion criteria were consistent with Voets et al.
(Voets et al., 2022).

After duplicates were removed, 2 reviewers independently
screened titles, and abstracts. The reviewers discussed any
discrepancies, and where agreement could not be reached, an
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independent third reviewer was consulted. The same process was
followed for subsequent full-text screening.

2.3 Data extraction

The data extraction was initially completed by 1 reviewer, and
then validated by a second reviewer who independently extracted
and compared data from the included studies. The extraction
strategy was divided into three components, the first and second
components included the characteristics and the methodological
details of the studies. The former included aspects such as the
purpose of the AI technology, medical field, funding, care
pathway phase (prevention, diagnostics, monitoring, treatment)
and the type of AI (i.e., pattern recognition, risk prediction, etc.).
The second table of methodological details included aspects such as
the type of HEE, the comparator, and the outcome measure. The
third component was relevant only for model-based HEEs,
extracting parameters such as model states, time horizon, and
details of sensitivity analyses.

2.4 Data analysis

The extracted data were synthesised using a narrative approach
as heterogeneity between studies inhibited the utility of a
quantitative synthesis. Descriptive statistics were used to
summarize the characteristics of the retrieved studies, where
appropriate.

2.5 Quality assessment

The quality assessment of all included studies was conducted
using the NICE quality appraisal checklist for economic evaluations
(National Institute for Health and Care Excellence, 2012). This
checklist has been adopted in the literature of economic
evaluation reviews (Elvidge et al., 2022) and is used by NICE
when assessing HEE evidence for all public health guidelines.
Included studies with a decision-analytic model were quality
assessed independently by 2 reviewers using the methodological
checklist section of the quality appraisal checklist. The checklist has
11 individual questions to create an overall assessment of whether
there are minor-, potentially serious-, or very serious limitations that
affects the robustness of the results. Quality assessment was not used
as part of the exclusion criteria, as one of the research aims was to
explore the reporting standards.

Although it is not possible to fully remove the potential of
bias due to the subjective nature of the assessment, pre-set
criteria were created to minimize its effects. The criteria are as
follows: studies with very serious limitations included studies
that had significant modelling discrepancies that could materially
change the cost-effectiveness conclusion (e.g., the intervention
changing from dominant to dominated). Also, very serious
limitations are derived from a financial conflict of interest,
where the developer of the AI technology also funded the
HEE. Potentially serious limitations refer to methodological
uncertainties which may change the quantitative result (e.g.,

an increase in the cost-effectiveness ratio), however the
outcome could stay the same (e.g., the increase is not
meaningful). All other limitations were considered to be
minor limitations. The reviewers discussed any discrepancies
in their quality assessments, and if major disagreements
emerged, an independent third reviewer was consulted.

3 Results

3.1 Search results

The searches across the 3 databases yielded 4,475 records,
resulting in 3,033 unique records following deduplication
(Table 1). After screening titles and abstracts against the study
selection criteria 2,993 were excluded due to not relating to a human
health intervention, not reporting a HEE, not relating to an AI-based
intervention, or being a excludable study type (e.g., commentary).
Therefore, 40 studies proceeded to full-text screening. Of those,
16 were excluded based on the selection criteria, and 2 were excluded
as duplicates that had already been included in the Voets et al. review
(Voets et al., 2022). We excluded a further study due to unclear
reporting about whether it was a primary analysis or a review of
other economic models. Therefore, 21 studies remained which were
suitable for data extraction. See Figure 1 for the PRISMA flowchart
showing the inclusion and exclusion stages.

3.2 Overview of included studies

The general characteristics of the 21 included studies are
presented in Table 2. The majority were published in 2022.
There was a wide variation of AI interventions in different
medical fields. The most frequent were general medicine and
oncology (each 4/21, 19%), followed by ophthalmology and
respiratory medicine (each 3/21, 14%), cardiology (2/21, 10%),
and dermatology, mental health, radiology, sleep and analgesics
(each 1/21, 5%). The interventions spanned the screening (9/21,
43%), diagnosis (8/21, 38%), treatment (1/21, 5%) and monitoring
(3/21, 14%) stages of the clinical pathway. Themost common type of
AI evaluated was automated image analysis (9/21, 43%). Others were
risk prediction (6/21, 29%), pattern recognition (2/21, 10%),
personalized treatment recommendation (1/21, 5%), clinical
decision support (1/21, 5%) and combined risk prediction and
clinical decision support (2/21, 10%). Most studies were funded
by governments and industry (each 5/21, 24%), followed by
academia (3/21, 14%). Two (2/21, 10%) were jointly funded by
industry and academia and one (1/21, 5%) was funded by the
European Commission.

3.3 HEE characteristics

The 21 HEEs contained 10 (10/21, 48%) CUAs, 8 (8/21, 38%)
CEAs and 2 (2/21, 10%) BIAs. One (1/21, 5%) HEE reported results
as both a CEA and a CUA. Among the CEAs the outcomes ranged
from cost saved per patient screened, cost per death averted, cost per
DALY averted, cost per case prevented and cost saving per
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additional tooth retention year. The healthcare system perspective
was the most common. Of the 21, 10 (10/21, 48%) took a healthcare
system perspective, 6 (6/21, 29%) payer, 4 (4/21, 19%) societal and
1 study (1/21, 5%) took both a societal and health system
perspective. In some studies, the payer perspective represented
insurers, both public and private.

The time horizon for the 21 studies ranged from 8 weeks to
lifetime, with lifetime being themost common (5/21, 24%). One year
was the secondmost common time horizon (3/21, 14%), followed by
6 months and 5 years with two each (2/21, 10%). Time horizons of
8 weeks, 16 months, 3 years, 15 years, 20 years, 30 years, and
35 years were all present in one study each (1/21, 5%). In two
studies the time horizon was not reported (2/21, 10%). Most HEEs
with a time horizon longer than 1 year used a 3% annual discount
rate (7/13, 54%). Six studies discounted costs and health outcomes
differentially. Of these, 2 studies (2/13, 15%) discounted costs at 4%
and health outcomes at 1.5%, 2 (2/13, 15%) discounted the costs but
did not report discount rates for health outcomes, 1 (1/13, 8%) used
undiscounted costs but did not report discounting of health
outcomes, and 1 (1/13, 8%) did not report discount rates for the

costs but discounted health outcomes at 3%. Table 3 reports all the
methodological details of the included HEEs.

3.4 Modelling characteristics

Of the 21 HEEs, 16 (16/21, 76%) included a decision analytic
model. The modelling characteristics of these are summarized in
Table 4. The most commonmodel types were Markov models (6/16,
38%) and decision trees (4/16, 25%) with 3 (3/16, 19%) using a
short-term decision tree followed by a longer-term Markov
component. Of the remaining 3 studies, there was 1 cost
simulation, 1 Markov chain Monte Carlo simulation, and
1 hybrid decision tree and microsimulation model. Authors
typically justified their chosen model type by linking the decision
to the type of AI intervention, the outcome measure, and the time
horizon. Most Markov models used a cycle length of 1 year, and the
rest used 1 month or 1 day. Studies that used decision tree models
stated their primary reason for doing so was for their simplicity.

In terms of results, 7 (7/21, 33%) HEEs reported the AI
intervention was cost effective versus the comparator relative to
an appropriate threshold value, 5 (5/21, 24%) demonstrated that the
AI intervention was dominant, and 2 (2/21, 10%) demonstrated
equivalence. In 1 (1/21, 5%) study the AI intervention was cost
effective versus one comparator and dominant versus the other. In 2
(2/21, 10%) studies the AI interventions produced savings. Three (3/
21, 14%) studies did not state a preferred cost-effectiveness
threshold to determine if the result was cost effective. The AI
intervention was found to be cost ineffective in 1 (1/21, 5%) study.

Of the studies that reported sensitivity analysis (18/21, 86%),
17 reported one-way sensitivity analyses, though the remaining
study did conduct probabilistic sensitivity analysis. Seven (7/21,
33%) studies reported both one-way and probabilistic analyses,
while 4 (4/21, 19%) reported both one-way and scenario
analyses. Three studies (3/21, 14%) reported one-way,
probabilistic and scenario analyses.

3.5 Quality assessment

A summary of the results from the quality appraisal checklist is
shown in Table 5. The assessment resulted in 6 (6/21, 29%) studies
with very serious limitations, 11 (11/21, 52%) with potentially
serious limitations, and 4 (4/21, 19%) with minor limitations.
Initially the two reviewers disagreed on the assessment for two of
the studies (Ericson et al., 2022; Mital and Nguyen, 2022). Both were
upgraded for the reasons given below.

TABLE 1 Database search results.

Databases Date searched Database version Number of records retrieved

Medline (Ovid) 17th June 2022 Ovid MEDLINE(R) ALL <1946 to 16 June 2022> 1,876

Embase (Ovid) 17th June 2022 Embase <1974 to 2022 June 16> 2,529

Cochrane Central (Wiley) 17th June 2022 Issue 5 of 12, May 2022 70

4,475

FIGURE 1
PRISMA flowchart describing study selection and reasons for
exclusion during full-text screening.
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TABLE 2 Characteristics of the included studies.

Main
author

Year Population Location Description of AI
intervention

Medical
field

Care
pathway
phase

AI
technology

Funding

Adams et al.
(2021)

2021 A representative cohort
of 3,197 baseline
screening patients

United States Risk score predictor Oncology Screening Risk prediction Industry

Areia et al.
(2022)

2022 A hypothetical cohort of
100,000 individuals
aged 50–100 years

United States AI tools to detect
precancerous polyps
during colonoscopy

Oncology Screening Pattern
recognition

EU
Commission
and JSPS

de Vos et al.
(2022)

2022 Dutch Patients Holland Decision-making
support tool to
discharge patients
from ICU

General Diagnostic Clinical decision
support

None

Delgadillo
et al. (2022)

2022 Patients with common
mental health disorders

United Kingdom Decision-support tool
providing personalized
treatment
recommendations
(stratified care)

Mental health Treatment Personalised
treatment
recommendation

Industry and
Academia

Ericson et al.
(2022)

2022 Adult patients who were
not diagnosed with
sepsis at the time of
admission

Sweden Early detection of sepsis General Diagnostic Risk prediction Industry

Fusfeld et al.
(2022)

2022 Kidney transplant
recipients receiving a
for-cause biopsy

United States MMDx-Kidney
assesses the probability
of biopsy rejection or
injury

General Diagnostic Pattern
recognition

Industry

Huang et al.
(2022)

2022 Diabetes patients
without retinopathy

Rural China areas Automated retinal
image analysis system
for diabetic retinopathy
screening

Ophthalmology Screening Automated image
analysis

Industry and
Academia

Kessler et al.
(2021)

2021 High-risk Medicaid
members with multiple
chronic conditions

Southern
California,
United States

Risk score predictor
and decision-support
for pharmacists
offering medicine
management to high-
risk Medicaid members

General Monitoring Risk prediction
and decision
support

Government

MacPherson
et al. (2021)

2021 Adults attending acute
primary services

Malawi Computer-aided digital
chest x-ray (DCXR-
CAD) for HIV-TB
screening

Respiratory Screening Automated image
analysis

Academia

Mallow and
Belk (2021)

2021 Hypothetical cohort
undergoing elective
orthopedic procedures
that commonly have
opioids prescribed

United States Machine learning
algorithm analyzing
alleles involved in
reward pathway of the
brain to identify
patients with a higher
risk of opioid
use (OUD)

Analgesics Diagnostic Risk prediction Industry

Mital and
Nguyen (2022)

2022 Women aged 40–49 United States AI to read
mammography images
to predict breast cancer
risk

Oncology Screening Automated image
analysis

None

Morrison et al.
(2022)

2022 Theoretical cohort of
infants requiring ROP
screening

United States Artificial intelligence
(AI)based retinopathy
of prematurity (ROP)
screening. Both
assistive and
autonomous

Ophthalmology Screening Automated image
analysis

Academia

Nsengiyumva
et al. (2021)

2021 Patients with symptoms
suggestive of
pulmonary TB

Pakistan AI-based radiograph to
triage persons with
possible tuberculosis

Respiratory Diagnostic Automated image
analysis

Government

(Continued on following page)
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Studies deemed to have very serious limitations were those
where an issue in 1 or more quality criteria were highly likely to
materially change the cost-effectiveness conclusion for the AI
intervention. There were several key reasons which led to this
assessment for 5 of the included studies. In one there was an
acknowledged overestimation of cost data, representation issues
between the dataset and target population, and a short 6-month
horizon rather than the 12-month time horizon deemed best
practice by the American College of Radiology (Rosenthal and
Dudley, 2007). In another, adverse health effects were not
captured, which the authors suggested would increase the cost-
effectiveness estimate (Fusfeld et al., 2022). This study also had a
financial conflict of interest where research was funded by the
company which developed the AI intervention. This was true for
another 2 studies (Ericson et al., 2022; Szymanski et al., 2022). In

another study, the result changed from intervention dominant to
cost ineffective when input data, arising from multiple sources and
assumption, were varied during the sensitivity analyses (Ziegelmayer
et al., 2022).

Studies with potentially serious limitations tended to have a
paucity of appropriate input data. Instead, alternative sources, or
multiple sources were used with resulting generalizability issues. It
was common for studies to have assumptions for the cost and
effectiveness of the AI intervention, compliance, and the impact of
the AI intervention on the subsequent treatment pathway. Examples
of this are 1 study that assumed all patients would consent to a test
(Mallow and Belk, 2021); 1 study that used a primary outcome that
was patient reported (Delgadillo et al., 2022) and 1 study that
assumed the effectiveness of the AI intervention last for 10 years,
despite having data for only 5 years (Mital and Nguyen, 2022). These

TABLE 2 (Continued) Characteristics of the included studies.

Main
author

Year Population Location Description of AI
intervention

Medical
field

Care
pathway
phase

AI
technology

Funding

symptoms and
identification of those
who require further
testing

Salcedo et al.
(2021)

2021 Adults undergoing
active TB treatment

United States Monitors real-time
medication
consumption and
adherence for TB
treatment

Respiratory Monitoring Automated image
analysis

Government

Schwendicke
et al. (2022)

2022 31-year-olds, whose
proximal surfaces were
initially either good, or
in an E2, D1 or D2-3
lesion

Germany AI-based software to
detect proximal caries
lesions

Dentistry Diagnostic Automated image
analysis

None

Szymanski
et al. (2022)

2022 Adults aged 65 years or
older registered with
a GP

United Kingdom AF risk prediction
algorithm to improve
AF detection

Cardiology Screening Risk prediction Industry

Tseng et al.
(2021)

2021 Hypothetical cohort of
asymptomatic 65-year-
olds

US AI ECG algorithm to
detect asymptomatic
left ventricular
dysfunction

Cardiology Screening Risk prediction Academia

Turino et al.
(2021)

2021 Adults with newly
diagnosed obstructive
sleep apnea

Spain AI monitoring system
for improving CPAP
compliance

Sleep Monitoring Risk prediction
and decision
support

Government

van Leeuwen
et al. (2021)

2021 71,840 adults aged
66 years from a stroke
registry that received
CTA diagnosis work up
of acute stroke

United Kingdom AI software aiding
detection of
intracranial LVO in
stroke patients

Radiology Diagnostic Automated image
analysis

None

Xiao et al.
(2021)

2021 Asymptomatic adults
aged 65 years and above
for population
screening

China AI diagnosis of
glaucoma

Ophthalmology Screening Automated image
analysis

Government

Ziegelmayer
et al. (2022)

2022 60-year-olds with
20 pack years of
smoking history

United States AI convolutional neural
networks supported
low dose CT at initial
screening for lung
cancer

Oncology Diagnostic Risk prediction None

Atrial Fibrillation, AF; artificial intelligence, AI; continuous positive airway pressure, CPAP; CTA, computed tomography angiography; ECG, electrocardiography; European Union, EU; general

practice, GP; intensive care unit, ICU; japan society for the promotion of science, JSPS; LVO, large vessel occlusions; Molecular microscope diagnostic system, MMDx; Opioid use disorder,

OUD; retinopathy of prematurity, ROP; ROP; tuberculosis, TB.
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TABLE 3 Health economic details of included studies.

Main
author

HEE
type

Intervention Comparator Perspective Discount
rate

Time
horizon

Outcome
measure

Adams et al.
(2021)

CEA Combining Artificial
Intelligence and Lung-
RADS

Lung-RADS Payer NA 6 months Cost saving of AI-
informed management
per patient screened

Areia et al.
(2022)

CEA AI detection of polyps Screening without AI tools Societal 3% 30 years Cost saving of screening
with AI per individual

de Vos et al.
(2022)

CUA AI decision support tool
for ICU discharge
decision-making

Standard care discharge
decisions based on medical
expertise

Societal Costs 4%,
Health
outcomes 1.5%

1 year ICER- cost per QALY
gained

Delgadillo et al.
(2022)

CEA AI personalized
treatment
recommendation to
provide stratified care

Standard of care- stepped care Healthcare
system

NR NR Incremental cost of
stratified care per
patient and additional
case of reliable
improvement

Ericson et al.
(2022)

CUA/
CEA

AI detection of sepsis Standard care for sepsis
diagnosis

Healthcare
system

3% 1 year Cost savings per patient

Fusfeld et al.
(2022)

BIA Pattern recognition in
gene expression in biopsy

Histology biopsy alone Payer Costs 0%,
Health
outcomes NR

5 years Cost per patient and
savings per biopsy

Huang et al.
(2022)

CUA AI based DR screening No screening or
ophthalmologist screening

Healthcare
system and
societal

3% 35 years ICER- cost per QALY
gained

Kessler et al.
(2021)

CEA AI risk score predictor
and decision-support for
medication management

The same cohort pre-AI
intervention start

Payer NR NR Savings per member,
per month

MacPherson
et al. (2021)

CUA AI chest x-ray
interpretation providing a
probabilistic score for TB

Standard of care Healthcare
system

NA 8 weeks ICER- cost per QALY
gained

Mallow and
Belk (2021)

CUA AI prediction to decrease
risk of OUD

Current standard of care Payer 3% 5 years ICER- cost per QALY
gained

Mital and
Nguyen (2022)

CUA Automated
mammography image
analysis

Alternative screening strategies
including no screening,
screening guided by risk scores
(PRS) and screening guided by
family history

Healthcare
system

3% Lifetime ICER- cost per QALY
gained

Morrison et al.
(2022)

CUA Deep learning algorithm Telemedicine and
Ophthalmoscopy

Healthcare
system

Costs NR,
Health
outcomes 3%

Lifetime ICER- cost per QALY
gained

Nsengiyumva
et al. (2021)

CEA AI detection of TB No AI triage before
microbiologic testing. Current
standard of care- smear
microscopy or GeneXpert

Payer NA 1 year Incremental cost per
DALY averted

Salcedo et al.
(2021)

CUA AI monitoring for
tuberculosis treatment
adherence

Standard of care: DOT Societal NR 16 months ICER- cost per QALY
gained and NMB

Schwendicke
et al. (2022)

CEA AI detection for proximal
caries

Caries detection without AI Payer Costs 3%,
Health
outcomes NR

Lifetime ICER- cost per year of
tooth retention gained

Szymanski et al.
(2022)

BIA AI risk score predictor to
detect AF using data from
baseline risk factors

Standard care (opportunistic
screening and diagnosis) or
combined use of standard care
and AI

Healthcare
system

NR 3 years Budget impact in £

Tseng et al.
(2021)

CUA AI detection of ALVD No screening Healthcare
system

3% Lifetime ICER- cost per QALY
gained

(Continued on following page)
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studies did account for the key uncertainties in sensitivity analyses
and the effect was either minor or the initial assumptions were
shown to be robust. Some studies were assessed as having potentially
serious limitations due to unclear reporting, which reduced
transparency around key information such as whether a cost had
been applied for the AI intervention, how it would integrate with
clinical care, and who the anticipated user of the AI
intervention was.

4 Discussion

This paper systematically reviewed 21 HEEs of AI interventions.
The studies mainly evaluated AI-based automated image analysis
interventions for diagnosis and screening in general medicine,
oncology and ophthalmology. Nearly all were CUAs and CEAs
that took a healthcare system or payer perspective, and most had
lifetime time horizons. Some of the HEEs were trial-based analyses,
but the large majority were model-based which mostly used Markov
models. In terms of the HEE results, the AI interventions were cost
effective or dominant in just over half and all the studies performed
sensitivity analyses.

This study reports an updated search to the review conducted by
Voets et al. (Voets et al., 2022), providing a contemporary snapshot
of the HEE evidence base for AI health technologies Our update
captures an additional 15-month period in a time where AI health
based technologies are on the exponential rise, evidenced by the near
quadruple number of initial unique search results since April 2021
(Voets et al., 2022). It appears there has been no change in the most
commonly evaluated purpose of AI being used as a healthcare
intervention, as Voets et al. also found the most common to be
automated image analysis (Voets et al., 2022). Ophthalmology and
screening were the dominant specialty and phase of the care
pathway at which the AI intervention was used, and these were
also prevalent in this updated review. The prevailing type of HEE in
the original review was cost minimization with the preferred
outcome measure of cost saved per case identified. This was
common among our included studies, although we termed it

CEA, but CUA was the most common study type in this update.
There was a difference between the two reviews in how many of the
technologies were found to be cost saving. Voets et al. found the
majority were whilst this was true for only 2 studies in this review.
This could be due to differences in applying the terms ‘cost-saving’
and ‘cost-effective’ as a large proportion of studies in this updated
review were cost-effective.

Another difference was the fact that the large majority of HEEs
in our review were model-based, compared to 45% of those in Voets
(Voets et al., 2022). This could suggest a shift towards using models
to estimate future costs and benefits of AI technologies, permitting
longer time horizons than trial-based evaluations (the most
common time horizon is our review was lifetime, compared to
1 year in Voets). Furthermore, the increasing use of model-based
evaluations may suggest AI interventions are moving towards
traditional value assessment frameworks that are commonplace
in the health technology assessment of medicines. This increase
in model-based technologies may also explain the differences in
results regarding cost saving versus cost effective. Perhaps it is easier
or more expected to generate cost-effectiveness estimates when
using a model compared to non-model HEEs where it may be
more common to focus on costs.

Voets et al. (2022) found that the evidence supporting the
chosen analytical methods, assessment of uncertainty, and model
structures was underreported. Our quality assessment determined
that most studies had potentially serious limitations tending to arise
from the sources and assumptions regarding the input data. These
findings are consistent, which suggests that despite an increase in the
use of more sophisticated economic evaluation techniques, the
evidence supporting them remains limited. In some cases, the
uncertainty and lack of clarity for the reader were due to the
reporting of the HEE rather than the data quality. In numerous
studies it was hard to determine fundamentals such as whether a cost
had been applied for the AI intervention, how it would integrate with
clinical care and who the anticipated user of the AI intervention was.
As mentioned, not all of the studies we identified clearly stated how
the AI intervention would integrate with clinical care. Studies did
not typically thoroughly or transparently estimate subsequent care

TABLE 3 (Continued) Health economic details of included studies.

Main
author

HEE
type

Intervention Comparator Perspective Discount
rate

Time
horizon

Outcome
measure

Turino et al.
(2021)

CEA AI monitoring of CPAP
compliance

Standard of care Healthcare
system

NA 6 months Cost per hour of CPAP
compliance gained
per day

van Leeuwen
et al. (2021)

CUA AI software aiding
detection of intracranial
large vessel
occlusions LVO

Standard of care Societal Costs 4%,
Health
outcomes 1.5%

Lifetime Incremental cost,
incremental effects

Xiao et al.
(2021)

CEA AI detection of glaucoma No screening Healthcare
system

Costs 5%,
Health
outcomes NR

15 years Incremental cost of
PACG prevented

Ziegelmayer
et al. (2022)

CUA AI-based CT scan Stand alone low-dose CT scan Healthcare
system

3% 20 years ICER- cost per QALY
gained

Artificial Intelligence, AI; budget impact assessment, BIA; computerized tomography, CT; cost effectiveness analysis, CEA; cost utility analysis, CUA; diabetic retinopathy, DR; directly observed

therapy, DOT; Disability-adjusted life years, DALY; large vessel occlusions, LVO; left ventricular systolic dysfunction, LVSD; net monetary benefit, NMB; opioid use disorder, OUD; Primary

angle-closure glaucoma, PACG; reporting and data system, RADS.
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TABLE 4 Summary of economic evaluation parameters and outcomes.

Main
author

Model type Model states/tree
summary

Time
horizon,
cycle
length

Sensitivity
analysis

Outcome Result

Adams et al.
(2021)

Cost simulation NR 6 months NR USD 72 to USD 242 saved per
patient screened

Intervention cost-
effective

Areia et al.
(2022)

Markov model No colorectal neoplasia; low risk
adenomas, high risk adenomas,
localized, regional, or distant
CRC; and CRC-related death

30 years,
1 year

One-way and
probabilistic
analysis

0.1% absolute (6.9% relative)
reduction in colorectal
mortality vs. screening without
AI, USD 57 saving per
individual screened

Intervention cost-
effective

de Vos et al.
(2022)

Markov model ICU ineligible, ICU eligible,
General ward, Readmission
ICU ineligible, Readmission
ICU eligible, Discharged, Death

1 year, 1 day One-way,
probabilistic and
scenario analysis

EUR 18,507 per QALY gained
vs. standard care

Intervention cost-
effective

Delgadillo et al.
(2022)

Within trial analysis NR NR NR Incremental cost of stratified
care was £104.50 per patient

Intervention
potentially cost-
effective.
Threshold NR

Ericson et al.
(2022)

Decision tree True- and false-positive and
true negative detections for
sepsis

1 year One-way and
probabilistic
analysis

CEA: 356 ICU deaths averted,
EUR 2.8m saved/CUA:
negative ICER, higher effect,
lower cost

Intervention
dominant

Fusfeld et al.
(2022)

Decision tree Functioning initial transplant,
graft failure + re-transplant,
graft failure + dialysis, death
with functioning graft, death
after graft failure

5 years One-way and
scenario analysis

Savings of USD 19,721 per
biopsy over a 5 year period

Produces savings to
commercial payers
within 2 years

Huang et al.
(2022)

Markov model DR, Mild DR, Moderate DR,
VTDR, Stable DR, Blindness
and death

35 years,
1 year

One-way and
probabilistic
analysis

Using health system
perspective: USD 1,107.63/
QALY vs. no screening,
Dominant vs. ophthalmologist
screening. Using societal
perspective: USD 10,347.12/
QALY vs. no screening,
Dominant vs. ophthalmologist
screening

Intervention cost-
effective using both
perspectives

Kessler et al.
(2021)

Regression analysis NR Mean of
20.5 weeks

NR Saving of USD 554 per member
per month

Produces savings

MacPherson
et al. (2021)

Within trial analysis NR 8 weeks One-way
sensitivity analysis

USD 4,520.47 per QALY gained
vs. standard of care

Intervention not
cost-effective

Mallow and
Belk (2021)

Markov chainMonte
Carlo simulation
model

Alive and Dead. For those who
developed OUD: OUD,
treatment, remission, dead

5 years,
1 month

One-way,
probabilistic and
scenario analysis

USD 2,510 saving per patient,
0.02 QALY gain (private
insurers), USD 2,682 saving per
patient, 0.02 QALY gain (self-
insured employers)

Intervention
dominant using both
perspectives

Mital and
Nguyen (2022)

Hybrid decision tree/
microsimulation
model

No screening, Annual screening
for all, AI + no screening for
low risk, AI + biennial
screening for low risk, PRS + no
screening for low risk, PRS +
biennial screening for low risk,
Family history + no screening
for low risk, Family history +
biennial screening for low risk.
For all interventions any
deemed high risk moved to
annual screening

Lifetime,
1 year

One-way and
probabilistic
analysis

AI + no screening for low risk
dominated PRS + no screening
for low risk, family history +
biennial screening for low risk,
PRS + biennial screening for
low risk, AI + biennial
screening for low risk and
annual screening for all and
extendedly dominated family
history + no screening for low
risk. USD 23,755 per QALY
gained vs. no screening

Intervention cost-
effective vs. no
screening and
dominant vs. other
comparators

Morrison et al.
(2022)

Decision tree Ophthalmoscopy,
Telemedicine, Assistive AI,
Autonomous AI

Lifetime One-way and
probabilistic
analysis

Autonomous AI less costly and
as effective as telemedicine and
ophthalmoscopy. Assistive AI
USD 83,350 vs. telemedicine
and dominated
ophthalmoscopy

Intervention cost-
effective

(Continued on following page)
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TABLE 4 (Continued) Summary of economic evaluation parameters and outcomes.

Main
author

Model type Model states/tree
summary

Time
horizon,
cycle
length

Sensitivity
analysis

Outcome Result

Nsengiyumva
et al. (2021)

Decision tree Triage with AI-based CXR
followed by standard of care
with upfront smear or
GeneXpert

1 year One-way and
scenario analysis

USD 43/DALY averted vs.
smear as microbiologic test.
Dominant vs. GeneXpert as
microbiologic test

Intervention cost-
effective

Salcedo et al.
(2021)

Markov model On treatment, Completed
treatment, Defaulted

16 months,
1 month

One-way,
probabilistic and
scenario analysis

AI dominated DOT NMB:
USD 3,142, 4,057 and 4,973 at
WTP thresholds of USD 50,
100 and 150K respectively

Intervention
dominant

Schwendicke
et al. (2022)

Markov model Sound|E1-2|D1|D2-3, True or
false negative, No treatment,
Development or progression,
Restorative Treatment; True or
false positive, Treatment,
According to dentists’ decision
making in each group, Arrested,
Restorative treatment

Lifetime,
1 year

One-way
sensitivity analysis

AI and no AI showed identical
effectiveness and nearly
identical costs

Equivalence

Szymanski et al.
(2022)

Budget impact
model

Opportunistic screening or AI
screening, ECG assessment

3 years One-way and
scenario analysis

Standard care + AI generated
savings of £71,345,158 and
improved clinical outcomes vs.
standard care. AI alone
generated savings of
£80,441,386 but had worse
clinical outcomes vs. standard
care

Intervention
potentially cost-
effective.
Threshold NR

Tseng et al.
(2021)

Decision tree and
Markov model

No Screen, Screen with AI
algorithm; Treated ALVD,
Untreated ALVD,
Symptomatic, Untreated no
ALVD, Dead

Lifetime, NR One-way and
probabilistic
analysis

USD 43,351/QALY vs. no
screening

Intervention cost-
effective

Turino et al.
(2021)

Within trial analysis NR 6 months Probabilistic
sensitivity analysis

Mean increase of 1.14 h in daily
compliance with AI
intervention. Non-significant
difference in cost between
interventions

Intervention cost-
effective

van Leeuwen
et al. (2021)

Decision tree and
Markov model

Patients suspected of stroke
receiving CTA, Large vessel
occlusion, No or other vessel
inclusion; No IAT eligible, IAT
eligible; Occlusion detected,
Occlusion not detected; mRS
0–5, Death

Lifetime,
1 year

One-way and
scenario analysis

AI cost saving of USD
156,000 and gain of 0.01 QALY

Intervention
dominant

Xiao et al.
(2021)

Markov model Primary angle closure suspect,
primary angle closure, primary
angle closure glaucoma, PACG-
related unilateral blindness and
PACG- related bilateral
blindness

15 years,
1 year

One-way
sensitivity analysis

USD 1,464 per PACG case
prevented over 15 years.
Additional healthcare costs
from screening were not offset
by decreased disease
progression over 15 years

Intervention
potentially cost-
effective.
Threshold NR

Ziegelmayer
et al. (2022)

Decision tree and
Markov model

Decision; CT, CT + AI; Markov;
No BC true negative, No BC
false positive, BC undetected
false negative, BC after
resection, BC palliative, Death

20 years, 1 year One-way and
probabilistic
analysis

AI CT cost saving USD
67.62 vs. CT screening. AI CT
incremental QALY 0.01 vs. CT
screening

Intervention
dominant

*Self-reported as a simulation model. Artificial Intelligence, AI; asymptomatic left ventricular dysfunction, ALVD; bronchial cancer, BC; chest radiograph, CXR; colorectal cancer, CRC; CTA,

computed tomography angiography; Diabetic retinopathy, DR; intensive care unit, ICU; molecular microscope diagnostic system, MMDx; Net monetary benefit, NMB; not applicable, NA; not

reported, NR; opioid use disorder, OUD; Primary angle-closure glaucoma, PACG; polygenic risk scores, PRS; standard of care, SOC.
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TABLE 5 Summary of quality assessment of included studies.

Study Notable limitations identified Assessment

Adams et al. (2021) Strict assumptions regarding underlying parameters, such as an overestimation of costs, which directly determine the
intervention outcome. The 6-month time horizon was short of 12 months deemed best practice by the American
College of Radiology, also potentially impacting cost-effectiveness. Finally, the dataset used was not representative of
the target populations, notably “overrepresenting white persons and underrepresenting racial minorities"

Very serious limitations

Areia et al. (2022) Misrepresentation of population data from clinical trials to clinical practice. The overall death rate modelled was
lower than the actual. Assumption of compliance of tests and the linear relationship between cancer prevention effect
and increased ADR were made, however impact on cost-effectiveness is not severe

Potentially serious
limitations

de Vos et al. (2022) Short time horizon due to literature available for input parameters. Made assumptions from non-Dutch sources
which was controlled for with sensitivity analysis, but limits generalisability of results

Potentially serious
limitations

Delgadillo et al. (2022) There were weaknesses regarding the internal validity. The primary outcome was patient reported, and used a general
measure rather than disorder specific measures. The majority of patients were white which has generalizability
implications

Potentially serious
limitations

Ericson et al. (2022) Limitations arise from patients who should have been included for Sepsis, not included. The model base case was
purposely set to be conservative to not exaggerate the positive effects, however the assumptions made limits the
validity of the outcomes. Finally, the research and funding were funded by the company who developed the
intervention, creating potential for bias

Very serious limitations

Fusfeld et al. (2022) The model does not capture adverse events due to antirejection medication which they suspect MMDx would
increase leading to uncertainty in the result. There is also a potential conflict of interest where the research was funded
by the company which developed the AI technology

Very serious limitations

Huang et al. (2022) Limited data available from study population led to values derived from other countries which were accounted for in
sensitivity analysis. Data regarding sensitivity and specificity of the AI screening derived from one paper, but did not
greatly affect cost effectiveness in the sensitivity analyses

Minor limitations

Kessler et al. (2021) Retrospective observational study limits conclusions on causality. Clinical outcomes were not analyzed Potentially serious
limitations

MacPherson et al. (2021) Trial-based analysis with small number of events and short follow up resulted in less precise treatment estimates.
Study presence in the clinic may have modified health worker behaviour for standard of care. Alternative diagnoses to
TB were not investigated

Minor limitations

Mallow and Belk (2021) The model assumed all patients would consent to the test which excludes the costs and effects if patients refused. The
model also did not exhaust all features of the treatment pathways due to the high number of possibilities

Potentially serious
limitations

Mital and Nguyen (2022) Main limitation is the cost of using AI for breast cancer prediction is not yet known in clinical practice which led to
data retrieved from the European Society of Radiology. This was accounted for with one-way sensitivity analysis with
all results holding. Data for efficacy of AI intervention extrapolated beyond studied period

Potentially serious
limitations

Morrison et al. (2022) Speculative assumptions and imprecision in model inputs. However, the authors used conservative estimates and
performed sensitivity analyses. Model time horizon was lifetime despite the life expectancy in the population (very
premature babies) being unknown

Potentially serious
limitations

Nsengiyumva et al.
(2021)

The analysis examines the intervention in low HIV prevalence, the accuracy of results may vary in high prevalence Minor limitations

Salcedo et al. (2021) The model did not consider possible side effects or delays in appropriate care due to less nurse contact. Relatively
short time horizon that assumes equal quality of life post-treatment between arms

Potentially serious
limitations

Schwendicke et al. (2022) Range of sources for input data which will lead to a degree of bias, although accounted for in sensitivity analyses.
Lacked validity as in practice treatment decision would not be based on image analysis only

Potentially serious
limitations

Szymanski et al. (2022) Used an unvalidated threshold to determine AF risk and assumed 100% adherence to ECG assessment which lacks
external validity. Did not include cost of implementation. The study was funded by the AI developer

Very serious limitations

Tseng et al. (2021) The data estimates for the baseline (SOLVD) probabilities and effects were based on a study published 30 years ago
from the last RCT. The model was calibrated to use a prespecified threshold which was not varied in the sensitivity
analyses. There is also a conflict of interest where the research was funded by the organization which developed the AI
technology

Very serious limitations

Turino et al. (2021) Patients with severe chronic pathologies were excluded which could limit the generalizability of results and the
follow-up period is relatively short. The study collected EQ-5D data but did not report utility data

Potentially serious
limitations

van Leeuwen et al. (2021) Model relied on two key inputs that were assumptions: percentage of missed LVOs in practice, and the capability of
the AI to reducemissed LVOs. These were both varied in the sensitivity analyses and result did not change. Themodel
only included early presenters but IAT would also include late presenters which limits generalizability. The authors
also assumed that false positives would be neutralized by the reader and would not lead to unnecessary care

Minor limitations

(Continued on following page)
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and downstream health outcomes resulting from the use of an AI
intervention. Our findings from this literature review suggest this is
an area that needs to be better considered and reported.

AI-based interventions have the potential to be distinct from
traditional medical interventions if they can learn (from data)
over time. Theoretically, this means the relationship between the
intervention and outcome may not be fixed; an AI intervention
could get more effective over time, unlike the typical effect
waning assumption associated with medicines. This has
implications when considering future benefits and how to
extrapolate this over the time horizon of the HEE. The
prevailing model structures used in HEEs of AI interventions
to date—Markov models, decision trees, and hybrids of the
2—may limit the extent to which studies have been able to
capture and examine the dynamic nature of AI interventions.
Therefore, there is the possibility that the existing HEE evidence
base has not captured the true potential value of many AI
interventions due to limitations imposed by their model
structures, and only a third of our included studies explored
the impact of structural uncertainty in sensitivity analysis.
Furthermore, traditional, ‘simple’ models may not facilitate
easy modelling of downstream costs and benefits, by quickly
becoming slow or unwieldy. This, potentially, fails to show the
full benefit of the AI intervention, inhibiting implementation.
Guo et al. (Guo et al., 2020) acknowledge this through a paradox
of “no evidence, no implementation—no implementation, no
evidence”. More sophisticated types of model, that are less
restricted by the structural limitations that affect simple
decision tree and Markov models may be better placed to
capture full pathway effects in addition to potential time-
dependent effectiveness of AI-based interventions.

Simulation-based modelling presents the opportunity to
build flexible, sophisticated models that can overcome several
limitations of Markov models and decision trees. They can easily
incorporate the history of past events, model factors that can vary
between patients and have a non-linear relationship with
outcomes, and do not use discrete time intervals (Davis et al.,
2014). They can also track the path of each person over time and
estimate individual-level effects or mean group-level effects for a
population (Davis et al., 2014). These possibilities may lead to
models capable of addressing the potential dynamic nature of AI
interventions learning over time and the impact on linked
decision points and subsequent care in a clinical pathway. As
data on AI-based interventions continues to be collected and
reported, the ability to develop these models should improve.
One thing to note, however, is that for these models to underpin
reimbursement decisions HTA agencies would need to be able to

critique and utilize them. This may require new skills, knowledge
and experience and present other challenges. Utilizing these sorts
of models also leads to the debate of whether HTA should be
more ‘living’. This refers to regular and scheduled updates of
recommendations instead of the more traditional ‘one-off’
decisions. Living HTA presents opportunities as well as
challenges (Thokala et al., 2023) and is not yet common practice.

The usefulness of a published HEE for decision making depends
on how well it is conducted and reported. Reporting guidelines play
an important role in improving transparency and completeness and
as new technologies emerge, can help drive best practice. A
prominent reporting standard within the field of HEEs is the
Consolidated Health Economic Evaluation Reporting Standards
(CHEERS) (Husereau et al., 2022). This outlines minimum
reporting standards and was recently updated in 2022. It includes
a 28-item checklist covering methodological approach, data
identification, model inputs, assumptions, uncertainty analysis,
and conflicts of interest. It does not include any reporting items
that are specific to any AI components of the intervention, but the
authors did recognize that CHEERS could be more specific for
certain situations and welcomed opportunities to create additional
reporting guidance. An extension to CHEERS covering AI specific
items could improve the reporting, transparency and ultimately
decision making for AI interventions. This could also help mitigate
the paradox of poor reporting inhibiting adoption of AI
interventions.

The system-wide need and motivation for improving best
practice around data collection and transparency for AI health
interventions is evident. Extensions for AI technologies have
already been developed for other checklists. CONSORT-AI (Liu
et al., 2020) contains AI-specific items for the reporting of RCTs, and
it was done in collaboration with the SPIRIT-AI extension for trial
protocols (Rivera et al., 2020). Including AI-specific items in the
reporting of HEEs may be a logical step to contribute to this
standard setting and help to ensure that all relevant information
is available to decision makers.

4.1 Limitations

This study has some limitations. We updated the Voets et al.
systematic literature review, but searched different databases. It is
possible there may have been relevant studies within our search
window that we missed by not searching the same databases;
however, we believe the databases we searched should give at least
equivalent, and probably superior, sensitivity to the original
review. Indeed, the sensitivity of our search strategy is

TABLE 5 (Continued) Summary of quality assessment of included studies.

Study Notable limitations identified Assessment

Xiao et al. (2021) The predictive accuracy of the intervention came from the literature and may not be generalizable to the setting. Any
varying of this was not reported. There was a lack of robust data on the efficacy of treatment that followed a positive
screening result which was accounted for in the sensitivity analysis

Potentially serious
limitations

Ziegelmayer et al. (2022) Input parameters came from multiple sources including assumptions and numerous published studies, leading to a
degree of bias. Varying the specificity of the AI or CT and cost of AI greatly increased the ICER changing the result
from intervention dominant to not cost-effective

Very serious limitations
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evidenced by the large number of studies excluded at primary
screening (2,993) relative to the total number of unique records
(3,033). The sensitivity of HEE search filters is well known
(Hubbard et al., 2022). While this means our review is highly
likely to have identified all relevant published studies, it does
mean further updates may be labor intensive with lots of records
to screen to identify a relatively small number of relevant studies.

Our review specifically focused on economic evaluations and
whilst out of scope, some studies, such as those only reporting
patient reported outcome measures, may have been of interest to
readers. Additionally, a potential limitation is that our search
only covered the period from 1 April 2021 to 17 June 2022. This
relatively short search period remains informative due to the
rapid advent of AI in healthcare, but it also means that it is likely
that relevant economic evaluations have been published since our
review.

Another limitation relates to the subjective nature of the
NICE quality appraisal checklist. Although the checklist allowed
for a further level of analysis regarding the quality of the
economic evaluation, it should be used as a broad
interpretation rather than a critique of any given study.
Despite negating any potential bias by having 2 reviewers, it is
possible that different reviewers may have implemented the
checklist differently and produced different results.
Additionally, other, similar checklists exist (Philips et al.,
2004; Drummond, 2015; Adarkwah et al., 2016), and although
they broadly serve a similar purpose of understanding the
methodological limitations of HEEs, they may have resulted in
different or more nuanced quality assessments.

5 Conclusion

This updated review, while covering just a 15-month window,
found more economic evaluations of AI health interventions since
the last comprehensive systematic literature review which covered
the preceding 5 years. Many of the included studies were model-
based evaluations and the most common AI intervention was
automated image analysis used for screening or diagnosis in the
areas of general medicine and oncology. Most evaluations reported
the cost per QALY gained.

Overall, the reporting of the studies exhibited limitations. Only a
small number of studies were judged to have just minor limitations,
according to application of the NICE quality assessment checklist.
The majority had potentially serious or very serious limitations
resulting from conflicts between research funding and authorship,
uncertainty in input data changing the outcome of the evaluation,
and lack of transparent reporting of key elements, such as the cost of
the technology and how it will be implemented into clinical practice.
Specific reporting standards for the economic evaluation of AI
interventions would help to improve transparency,
reproducibility and trust, and promote their usefulness for
decision making. This is fundamental for implementation and
coverage decisions which in turn will generate the necessary data
to develop flexible models better suited to capture the potentially
dynamic nature of the AI intervention.
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