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Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of
an ischemic organ or tissue exacerbates the injury, posing a significant health
threat and economic burden to patients and their families. I/R triggers a multitude
of physiological and pathological events, such as inflammatory responses,
oxidative stress, neuronal cell death, and disruption of the blood-brain barrier
(BBB). Hence, the development of effective therapeutic strategies targeting the
pathological processes resulting from I/R is crucial for the rehabilitation and long-
term enhancement of the quality of life in patients with cerebral ischemia/
reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer
to bioactive compounds extracted from Chinese herbal medicine, possessing
anti-inflammatory and antioxidative effects, and the ability to modulate
programmed cell death (PCD). TCM monomers have emerged as promising
candidates for the treatment of CIRI and its subsequent complications.
Preclinical studies have demonstrated that TCM monomers can enhance the
recovery of neurological function following CIRI by mitigating oxidative stress,
suppressing inflammatory responses, reducing neuronal cell death and functional
impairment, as well asminimizing cerebral infarction volume. The neuroprotective
effects of TCM monomers on CIRI have been extensively investigated, and a
comprehensive understanding of their mechanisms can pave the way for novel
approaches to I/R treatment. This review aims to update and summarize evidence
of the protective effects of TCMs in CIRI, with a focus on their role in modulating
oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as
well as promoting blood-brain barrier repairment and angiogenesis. The main
objective is to underscore the significant contribution of TCM monomers in
alleviating CIRI.
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1 Introduction

Ischemic stroke, the most prevalent acute cerebrovascular disease worldwide, is typically
caused by a temporary or permanent reduction in cerebral blood flow resulting from
thrombosis or thromboembolic artery occlusion (Roth et al., 2020). Thrombolytic therapy,
aimed at restoring cerebral perfusion in a timely manner, is the main treatment strategy for
ischemic brain injury (Stoll et al., 2008). However, reperfusion can potentially promote

OPEN ACCESS

EDITED BY

Hui Hui Zhao,
Beijing University of Chinese Medicine,
China

REVIEWED BY

Shaojing Li,
Institute of Chinese Materia Medica,
China Academy of Chinese Medical
Sciences, China
Vincent Kam Wai Wong,
Macau University of Science and
Technology, Macao SAR, China

*CORRESPONDENCE

Manxia Wang,
wmx322@aliyun.com

RECEIVED 11 May 2023
ACCEPTED 04 August 2023
PUBLISHED 16 August 2023

CITATION

Zheng T, Jiang T, Huang Z, Ma H and
Wang M (2023), Role of traditional
Chinese medicine monomers in cerebral
ischemia/reperfusion injury:a review of
the mechanism.
Front. Pharmacol. 14:1220862.
doi: 10.3389/fphar.2023.1220862

COPYRIGHT

© 2023 Zheng, Jiang, Huang, Ma and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 16 August 2023
DOI 10.3389/fphar.2023.1220862

https://www.frontiersin.org/articles/10.3389/fphar.2023.1220862/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1220862/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1220862/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1220862/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1220862&domain=pdf&date_stamp=2023-08-16
mailto:wmx322@aliyun.com
mailto:wmx322@aliyun.com
https://doi.org/10.3389/fphar.2023.1220862
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1220862


secondary cell death and exacerbate brain injury, leading to cerebral
ischemia/reperfusion injury (CIRI) (Datta et al., 2020; Li et al.,
2022a). The pathophysiology and pathogenesis of CIRI are complex
and multifaceted, involving mitochondrial disorders, increased
oxidative stress/reactive oxygen species (ROS), destruction of the
blood-brain barrier (BBB), heightened inflammatory response and
cell death (Leech et al., 2019; Ojo et al., 2019) (Figure 1). Current
treatment for CIRI mainly includes thrombolytic therapy and
conservative symptomatic therapy (such as drug and physical
therapy). Although these traditional approaches can alleviate
clinical symptoms to some extent, they rarely provide a cure by
inhibiting the progression of the disease (Derex and Cho, 2017). The
challenge in drug development stems from the intricate nature of
CIRI’s pathological processes, which encompass pathological
changes driven by factors that are not fully understood, including
programmed cell death (PCD), oxidative stress and inflammatory
responses. These pathological changes not only exert independent
roles but also interact with each other, collectively accelerating CIRI.
Therefore, it is imperative to explore novel drugs that target the
underlying pathological progression of CIRI, with the goal of
enhancing neurological recovery and prognosis in patients.

In recent years, traditional Chinese medicine (TCM) including
herbs, formulas and monomers has gained considerable attention as
an alternative and effective treatment for CIRI (Zhang et al., 2020a).
TCM monomers, isolated from Chinese herbal medicine, are active
substances with definite molecular formula and spatial structure
(Wang et al., 2021a). They usually have specific pharmacological
effects and targets and can be used for the treatment or prevention of

CIRI. With the deepening understanding of TCM in recent years,
some TCMmonomers have demonstrated neuroprotective effects in
CIRI (Wu et al., 2010). Compared with conventional therapy, TCM
monomers possess unique and novel pharmacological mechanism
advantages, allowing them to achieve similar therapeutic outcomes
with reduced toxicity and side effects (Liu et al., 2020). Some
beneficial TCM monomers, such as polyphenols, curcumin and
puerarin, etc., have shown protective abilities in various animal
models of nervous system diseases. Multiple experimental evidence
has shown that TCM monomers may be effective in treating CIRI
due to their antioxidant, free radical scavenging, anti-thrombotic
and neuroprotective properties (Jivad and Rabiei, 2015; Ghandadi
and Sahebkar, 2017; Mollazadeh et al., 2019). Furthermore, these
TCM monomers can modulate multiple signaling pathways,
influencing various pathophysiological processes of CIRI and
alleviating its detrimental effects (Kovalska et al., 2012).
Therefore, TCM monomers represent a crucial area of focus in
the field of CIRI therapy in the future. In this review we arm to
summarize the evidence the protective effects of TCMmonomers on
CIRI through diverse mechanisms. To elaborate the mechanism of
TCM monomers in CIRI, we sorted out the relevant literature from
2013 to 2023 using databases sush as PubMed, Web of Science,
CNKI, etc., with keywords such as “traditional Chinese medicine,”
“cerebral ischemia-reperfusion injury,” “CIRI,” “mechanism,” etc.
We screened 101 articles and identified 69 TCM monomers. The
criteria for screening the literature: 1) based on an animal
experiment, no restriction on animal species, gender, age, weight,
and sample size; 2) involve a focal cerebral I/R damage model,

FIGURE 1
Mechanism of cerebral ischemic/reperfusion injury.
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caused by transient middle cerebral artery occlusion or middle
cerebral artery occlusion/reperfusion (MCAO/R); 3) the
experimental group was treated with only one traditional Chinese
medicine monomer with specific dose or dose range but in no
restriction on mode and time of initial treatment; 4) the control
group was administered by saline, vehicle, or positive control drug or
no treatment; 5) have one of the following outcomes available:
infarct volume, neurological function score (NFS), and biochemical
examinations; 6)including the specific and detailed mechanism of
CIRI. Exclusion Criteria: The following exclusion criteria were also
prespecified: 1) reviews, comments, case reports, editorials, clinical
articles, and in vitro studies; 2) nonfocal brain I/R model, adopting
global models (e.g., bilateral common carotid occlusion), traumatic
models, or only hypoxic ischemic models; 3) absence of control
group 4) outcome measures are not included in the literature; and 5)
duplicated publications.

2 Protective mechanism of traditional
Chinese medicine monomers in CIRI

CIRI is a complex and dynamic process characterized by a series
of mechanisms, including initial injury during the early stages of
ischemia and subsequent injury following reperfusion. Insufficient
blood flow during cerebral ischemia results in inadequate supply of
glucose, oxygen, and excessive glutamate excitatory toxicity (Yang
et al., 2018). The excessive release of glutamate can disrupt ion
balance within cells, leading to Ca2+ overload (Kaviarasi et al., 2019).
Ca2+ overload leads to the release of free radicals and NO, causing
mitochondrial dysfunction and DNA damage, ultimately resulting
in oxidative stress, neurotoxicity and inflammation of excitatory

amino acids, and ultimately lead to cell death including necrosis,
apoptosis and other forms of PCD and neurological disorders
(Thiebaut et al., 2019) (Figure 2). TCM monomers are regarded
as potential therapeutic agents for improving CIRI, reducing
oxidative stress, inflammation and PCD, and modulating the
pathological processes of CIRI through diverse mechanisms.

2.1 Effect caused by anti-oxidative stress

Oxidative stress plays a crucial role in the development of CIRI,
leading to dysregulation of antioxidant defense system, cellular
toxicity, damage and apoptosis (Liu et al., 2015). The imbalance
between reactive oxygen species (ROS)/reactive nitrogen species
(RNS) production and endogenous antioxidant defense mechanisms
is the underlying pathogenesis of CIRI (Li et al., 2018a). Endogenous
antioxidant defense systems, including superoxide dismutase
(SOD), catalase (CAT), glutathione (GSH), and glutathione
peroxidase (GSH-PX), deal with oxidant clearance and reduce
oxidant-mediated brain damage. However, during CIRI, when the
production of ROS/RNS exceeds the clearance capacity of the
antioxidant defense system, oxidative stress is triggered, resulting
in the release of numerous free radicals, lipid peroxidation, cell
membrane damage, mitochondrial membrane destruction, and the
exacerbation of cell injury and apoptosis (Perluigi et al., 2012; Sies,
2015). Moreover, oxidative stress during CIRI can directly induce
DNA damage, activating pro-death signaling pathways and
accelerating the apoptosis or necrosis of nervous system cells,
thus impairing the recovery of neurological function (Li et al.,
2018b). The reduction of oxidative stress through exogenous
antioxidants is necessary in the context of CIRI.

FIGURE 2
TCM monomers can play anti-inflammatory, antioxidant stress and promote angiogenesis in CIRI through related signaling pathways.
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Research conducted on a rat model of middle cerebral artery
occlusion/reperfusion (MCAO/R) has demonstrated increased
oxidative stress in the rat brain following injury. This is evident
from the decrease in SOD activity, increase in lactate dehydrogenase
(LDH) activity, and elevated levels of oxidative stress markers such
as malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric
oxide synthase (iNOS) (Meng et al., 2018). A large number of TCM
monomers have the effect of anti-oxidative stress and could show
good antioxidant activity in both in vivo and in vitro CIRI models
(Xu et al., 2020; Zeng et al., 2022). Studies have found that glycosides
could act as exogenous antioxidants and promote the activity of
antioxidant enzymes. For instance, Ginsenosides have been shown
to inhibit ROS production and enhance the activities of CAT, SOD2,
and GSH-Px (Zhou et al., 2006). In the rat model of MCAO/R,
treatment with Ginsenoside Rb1 (20 mg/kg) significantly reduced
MDA levels and increased the activities of SOD2 and GSH-Px. In
addition, Ginsenoside Rb1 could also reduce the expression of
NADPH oxidase 1 (NOX1), NADPH oxidase 4 (NOX4) and
iNOS, as well as the activity of NOS in MCAO/R mice (Chen
et al., 2015). The precise molecular mechanism underlying the
antioxidant effects of glycosides remains unclear despite previous
studies. Flavonoid monomers, in addition to their antioxidant
effects, have been found to reduce oxidative stress in the MCAO/
R rat model. Chrysin, for example, increased SOD levels and
inhibited MDA expression after 5 days of administering a dose
of 50 mg/kg (Shang et al., 2023). Similarly, eriocitrin was observed to
provide protection against CIRI. In a study, male Sprague-Dawley
rats were orally administered different doses of eriocitrin for
7 consecutive days. The group receiving a dosage of 32 mg/kg
showed a significant increase in SOD expression in brain tissue
and reduced MDA and LDH levels (He et al., 2020). Furthermore,
eriocitrin was found to inhibit the Nrf2/HO-1/NQO1/NF-κB
signaling pathway, alleviating oxidative damage in CIRI rats.
Several other TCM monomers have also exhibited protective
effects against CIRI by inhibiting oxidative stress, such as
arjunolic acid (Yaidikar and Thakur, 2015), berberine (Zhang
et al., 2016a; Shou et al., 2022), salvianolic acid A (Mahmood
et al., 2017) and paeoniflorin (Wu et al., 2020).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-
sensitive transcription factor, when activated, interacts with
antioxidant response elements to mediate antioxidant effects
(Chen and Hsieh, 2020). Previous studies have shown that
natural products or Chinese herbs exert a neuroprotective role
against cerebral ischemia by activating the Nrf2/heme oxygenase
1 (HO-1) pathway. Thymoquinone, a phenolic monomer, has been
found to regulate Nrf2 signaling in disease treatment, exerting a
neuroprotective role and reducing dopaminergic neurodegeneration
through Nrf2 signaling activation and subsequent alleviation of
oxidative stress (Dong et al., 2020). Geraniin, a polyphenol TCM
monomer, possesses antioxidant, anti-inflammatory, and
antithrombotic biological activities. Male MCAO/R rats treated
with intraperitoneal injections of Geraniin for 3 consecutive days
at dosages of 5, 10, and 20 mg/kg·d exhibited significantly inhibited
oxidative stress through Nrf2 activation, leading to increased SOD
activity, reduced MDA and NO levels, and decreased infarct volume
in CIRI. The concentration of 20 mg/kg·d showed the most
prominent effects (Yang et al., 2022a). Britanin, an effective
Nrf2 system inducer, inhibited the oxidative stress process by

activating the Nrf2 protective pathway in the MCAO-R rat
model (Wu et al., 2017a). However, in the CIRI process, the
TCM monomers did not play the antioxidant role solely through
the activation of Nrf2. Nrf2 could act in combination with signaling
pathways such as Akt andMAPK. Akt is another upstreammediator
of Nrf2, and knocking down of Akt can exacerbate brain I/R injury
(Wu et al., 2021a). Neohesperidin, pre-administered via
intraperitoneal injections once a day for 21 consecutive days at
dosages of 10 mg/kg, 20 mg/kg, and 40 mg/kg, significantly
upregulated SOD, GSH-PX and CAT activity, reduced MDA and
MPO levels and increased protein expression of HO-1 in the
MCAO/R rat model, thus preventing oxidative stress. The
elevation of antioxidants was achieved through the Akt/
Nrf2 signaling pathway, thereby protecting neurons from
oxidative stress (Wang and Cui, 2013). A similar mechanism also
has been reported by puerarin (Zhang et al., 2023). Emodin, on the
other hand, can induce Nrf2 signal transduction through
upregulation of AMP-activated protein kinase (AMPK), thereby
preventing inflammation and exerting antioxidant activity (de
Oliveira et al., 2021) (Table 1).

2.2 Inhibition of inflammation

Inflammation is a pathological reaction of the body to infections
or tissue damage, and an important pathological process leading to
ischemic brain injury and neurological dysfunction (Jin et al., 2010).
Following reperfusion in the ischemic area, circulating cells
(neutrophils, monocytes, and macrophages) and tissue resident
cells (microglia, astrocytes, and endothelial cells) gather and
migrate to the ischemic brain tissue in response to chemokines
and cell adhesion molecules. This accumulation of cells is activated
by the release of danger-/damage-associated molecular patterns
(DAMPs), leading to the production of pro-inflammatory
mediators (Arvin et al., 1996; Anrather and Iadecola, 2016).
Inflammatory mediators and DAMPs promote inflammation by
promoting chemotaxis of circulating immune cells (Iadecola and
Anrather, 2011).

Numerous TCM monomers have demonstrated the ability to
reduce inflammation after CIRI by inhibiting the production of pro-
inflammatory cytokines and promoting the production of anti-
inflammatory cytokines. Pro-inflammatory cytokines such as IL-
1β, IL-6, and TNF-α play a crucial role in the inflammatory response
following CIRI. They can activate matrix metalloproteinases
(MMPs), disrupt the integrity of the blood-brain barrier (BBB),
and contribute to BBB injury and hemorrhagic transformation
(Lambertsen et al., 2012; Yang et al., 2019a). In the MCAO/R
model, pretreatment with ginsenoside Rg1 at varying doses
(40 mg/kg/day) once a day for 5 days significantly reduced the
expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-
6. Additionally, it inhibited the nuclear translocation of NF-κB
and the phosphorylation of IκBα (p < 0.01). Ginsenoside
Rg1 also reduced infarct volume, improved neurological deficit
scores, and ameliorated histological appearance (p < 0.05)
(Wang et al., 2018; Zheng et al., 2019). In addition, in a different
study using the MCAO/R rat models, treatment of berberine at
40 mg/kg was able to promote the recovery of motor function after
focal cerebral ischemia by down-regulating pro-inflammatory
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cytokines and up-regulating anti-inflammatory cytokines at this
concentration (Maleki et al., 2018). Phenolic monomers are also
anti-inflammatory agents of cerebral ischemic injury. In a 2 h/22 h
I/R rat model of MCAO, a dose of 200 mg/kg curcumin can reduce
the expression of pro-inflammatory factors IL-6, TNF-α and iNOS
by inhibiting the TLR4/p38/MAPK pathway, thereby inhibiting
inflammatory response and improving brain injury and nerve
function (Huang et al., 2018). Icariin (Zheng et al., 2022),
diosgenin (Zhang et al., 2022), and syringin (Liu et al., 2022)
administered in the MCAO rat model, improved brain injury and
neurologic function by downregulating pro-inflammatory
cytokines TNF-α, IL-1β, and IL-6 to inhibit the inflammatory
response.

The TLR4 and NF-κB pathways are signaling pathways
function to regulate inflammation, and their activation is often
associated with inflammatory responses (Clausen et al., 2016;
Cho et al., 2019). Recent studies have shown that the TLR4/NF-
κB signaling pathway is involved in the destructive inflammatory
process of brain I/R injury. Increased expression of TLR4 protein
in the plasma membrane activates TNF receptor associated factor
6 (TRAF6)/NF-κB signaling through myeloid differentiation
factor 88 (MyD88). Binding of TLR4 to MyD88 leads to the
activation of TRAF6 and NF-κB (Tsakiri et al., 2008). Many TCM
monomers have been shown to target the TLR4/NF-κB pathway
involved in the treatment of CIRI inflammation. In a CIRI study,
rats in the MCAO1h/R24 h model were pretreated with
salvianolic acid B intravenously at a dosage of 30 mg/kg once
a day for 5 days. It was found that salvianolic acid B exerted an

anti-inflammatory and neuroprotective role by inhibiting the
transcriptional activity of the TLR4/MyD88/TRAF6/NF-kB
signaling pathway and reducing the pro-inflammatory
cytokine response (IL-1β, IL-6, and TNF-α) (Wang et al.,
2016). In addition, in another study, MCAO/R rats were
treated with various concentrations (5, 10, and 20 mg/kg) of
Daphnetin. It was found that Daphnetin at 20 mg/kg
concentration could significantly reduce the overexpression of
TNF-α, IL-1β and IL-6 through the TLR4/NF-κB signaling
pathway, and alleviate apoptosis of nerve cells, thus exerting
neuroprotective and anti-inflammatory effects (Liu et al., 2016a)
(Figure 2.).In addition to the TCM monomers, casticin (Huang
et al., 2021a), saikosaponin A (Wang and Yang, 2020), salvianolic
acid D (Zhang et al., 2020b), schisandrin B (Fan et al., 2020) and
Z-Guggulsterone (Liu et al., 2018) have all played
neuroprotective and anti-inflammatory roles in CIRI by
inhibiting TLR4/NF-κB (Table 2).

2.3 Inhibition of programmed cell death

CIRI is a series of processes, including cell death, that leads to
deterioration of neurological function. CIRI has been reported to be
associated with programmed cell death (PCD), including apoptosis,
autophagy, pyroptosis and ferroptosis. Therefore, inhibition of PCD
is very important for CIRI. Further investigations into TCM
monomers have revealed their potential to inhibit PCD and
provide protective effects in CIRI (Figure 3).

TABLE 1 Effects and mechanisms of different TCM monomers on oxidative stress in cerebral ischemia reperfusion injury.

TCM
monomers

CAS No. Molecular
formula

Method
of model

Mechanisms Effects References

Ginsenoside Re 52286-59-6 C48H82O18 MCAO/R ROS↓, MDA↓, SOD2↑, GSH-PX Anti-oxidative stress Zhou et al. (2006)

Ginsenoside Rb1 22427-39-0 C42H72O14 MCAO/R,
ODG/R

SOD2↑, GPX4↑, NOX1,4↓ Anti-oxidative stress Chen et al. (2015)

Chrysin 480-40-0 C15H10O4 MCAO/R MDA↓, SOD2↑ Anti-oxidative stress Shang et al. (2023)

Eriocitrin 13463-28-0 C27H32O15 MCAO/R ROS↓, MDA↓, Nrf2/HO-1/NQO1/
NF-κB↓

Anti-oxidative stress He et al. (2020)

Arjunolic acid 465-00-9 C30H48O5 MCAO/R ROS↓, MDA↓ Anti-oxidative stress Yaidikar and Thakur
(2015)

Berberine 633-65-8 C20H18ClNO4 MCAO/R,
OGD/R

PI3K/AKT↑, ROS↓, MDA↓, SOD2↑,
NQO1↑, Nrf1↑, Nrf2↑

Anti-oxidative stress
and neuroprotection

Zhang et al. (2016a),
Shou et al. (2022)

Salvianolic acid A 115939-25-8 C36H30O16 MCAO/R AKT↑, eNOS↓, peroxynitrite↓ Anti-oxidative stress Mahmood et al. (2017)

Paeoniflorin 23180-57-6 C23H28O11 MCAO/R MDA↓, SOD2↑ Anti-oxidative stress Wu et al. (2020)

Geraniin 60976-49-0 C41H28O27 MCAO/R Nrf2↑, MDA↓, NO↓ Anti-oxidative stress Yang et al. (2022a)

Britanin 33627-28-0 C19H26O7 MCAO/R,
OGD/R

Nrf2↑, MDA↓, NO↓, SOD2↑ Anti-oxidative stress Wu et al. (2017a)

Neohesperidin 20702-77-6 C28H34O15 MCAO/R AKT/Nrf2↑, SOD↑, MPO↓,
MDA↓,GSH-PX↑, CAT↑

Anti-oxidative stress Wang and Cui (2013)

Puerarin 3681-99-0 C21H20O9 MCAO/R,
OGD/R

AKT/Nrf2↑, SOD↑, GPX↑, ROS↓,
MDA↓, SOD2↑, GSH-PX↑, CAT↑

Anti-oxidative stress Zhang et al. (2023)

Emodin 518-82-1 C15H10O5 MCAO/R AMPK/Nrf2↑, SOD↑, GPX↑ Anti-oxidative stress de Oliveira et al. (2021)
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2.3.1 Inhibition of apoptosis
Apoptosis is a regulated form of cell death characterized by cell

contraction, cytoplasmic and nuclear condensation, and the
formation of apoptotic bodies (Obeng, 2021). It is a unique gene-
regulated process of cell death that is primarily triggered or
accelerated during reperfusion or reoxygenation (Li and Jackson,
2002; Vanden Hoek et al., 2003). Various factors, such as disruption
of calcium homeostasis, oxidative stress, DNA damage, and
neuroinflammation, have been implicated in apoptosis induction
(Broughton et al., 2009; Shin et al., 2018). Brain tissue ischemia leads
to a decrease in intracellular ATP levels, resulting in mitochondrial
dysfunction, translocation of Bax from the cytosol to the
mitochondrial outer membrane, caspase activation, and initiation
of apoptosis. Reperfusion not only amplifies this process but also
provides the energy required for apoptosis (Eefting et al., 2004;
Dorweiler et al., 2007). Cell apoptosis is a dynamic process, and the
number of apoptotic cells increases with prolonged reperfusion time,
further exacerbating brain injury (Zhang et al., 2016b). Apoptosis
induced by CIRI is an important pathway of cell death, which can
significantly aggravate neurological impairment in patients with
cerebral infarction (Uzdensky, 2019). Therefore, timely
intervention of cell apoptosis is beneficial to the prognosis of CIRI.

Caspase family members, including Caspase-3 and Caspase-8,
are known to be essential factors regulating apoptosis (Kuranaga,
2012). Some TCM monomers can inhibit apoptosis by targeting
Caspase-3, thereby exerting an anti-apoptotic protective role in

ischemic brain injury (Chen et al., 2020). In MCAO/R rat
models, baicalin and ginkgolide B inhibit cell apoptosis by
increasing the Bcl-2/Bax ratio and decreasing caspase-3 levels
(Yang et al., 2019b; Yang et al., 2021). Ligustrazine, a long-used
therapeutic agent for ischemic cerebrovascular diseases, plays a
significant role in preventing neuronal apoptosis by inhibiting the
expression of CD62P, Sphk1, S1PR1, Bax/Bcl-2, and cleaved
caspase-3 (Gao et al., 2015). In a mouse MCAO/R model with
CIRI, ligustrazine targeted the circ_0008146/miR-709/Cx3cr1 axis
to inhibit apoptosis after CIRI (Li et al., 2022b). TCM monomers
have been reported to act on multiple targets within various
signaling pathways, thereby alleviating CIRI-induced apoptosis.
Polygalasaponin F promotes the expression of Bcl-2 and the Bcl-
2/Bax ratio while inhibiting the expression of Bax and caspase-3 by
activating the PI3K/Akt signaling pathway (Xie et al., 2020). In
oxygen-glucose deprivation/reoxygenation (OGD/R)-treated
primary cortical neurons, platycodin D decreases the expression
of Bax but increases the expression of Bcl-2 by activating the PI3K/
Akt signaling pathway (Wang et al., 2019a). Moreover, vitexin and
triptolide inhibit cell apoptosis in MCAO rats by suppressing the
c-Jun N-terminal kinase (JNK)/MAPK signaling pathway, leading to
increased Bcl-2 expression and decreased Bax expression, ultimately
reducing neurological deficits and neuronal damage (Wang et al.,
2015a; Hao et al., 2015). Additionally, ginkgetin (Tian et al., 2019),
dihydrocapsaicin (Wu et al., 2017b), carbenoxolone (Wang et al.,
2015b), and genistein (Lu et al., 2019) activate the PI3K/Akt

TABLE 2 Effects and mechanisms of anti-inflammatory responses of different TCM monomers in cerebral ischemia-reperfusion injury.

TCM
monomers

CAS No. Molecular
formula

Method
of model

Mechanisms Effects References

Ginsenoside Rg1 22427-39-0 C42H72O14 MCAO/R TNF-α↓, IL-1β↓, IL-6↓, IL-10↑ Anti-inflammatory response Wang et al. (2018),
Zheng et al. (2019)

Berberine 633–65-8 C20H18ClNO4 MCAO/R TNF-α↓, IL-1β↓, IL-6↓, IL-10↑ Anti-inflammatory response Maleki et al. (2018)

Curcumin 458–37-7 C21H20O6 MCAO/R TLR4↓, IL-1↓,p-Akt↑ and
p-mTOR↑ LC3-II/LC3-I↓

Anti-inflammatory response
and Inhibit autophagy

Huang et al. (2018)

Icariin 489–32-7 C33H40O15 MCAO/R TNF-α↓, IL-1β↓, IL-6↓, IL-10↑ Anti-inflammatory response Zheng et al. (2022)

Ginkgolide B 15291-77-7 C20H24O10 MCAO/R,
OGD/R

TLR4/NF-κB↓, TNF-α↓,
IL-1β↓, IL-6↓, IL-10↑

Anti-inflammatory Liu et al. (2022)

Salvianolic acid B 121521-90-2 C36H30O16 MCAO/R
OGD/R

TLR4/NF-κB↓, TNF-α↓,
IL-1β↓, IL-6↓, VEGF↑

Anti-inflammatory and
promote angiogenesis

Wang et al. (2016)

Daphnetin 486–35-1 C9H6O4 MCAO/R TLR4/NF-κB↓, TNF-α↓ Anti-inflammatory Liu et al. (2016a)

IL-1β↓, IL-6↓

Casticin 479–91-4 C19H18O8 MCAO/R TLR4/NF-κB↓, TNF-α↓ Anti-inflammatory Huang et al. (2021a)

IL-1β↓, IL-6↓

Saikosap-oninA 20736-09-8 C42H68O13 MCAO/R TLR4/NF-κB↓, TNF-α↓ Anti-inflammatory Wang and Yang (2020)

IL-1β↓, IL-6↓

Salvianolic acid D 142998-47-8 C20H18O10 MCAO/R TLR4/NF-κB↓, TNF-α↓ Inhibits inflammation and
apoptosis

Zhang et al. (2020b)

IL-1β↓, IL-6↓, caspase-3↓

Schisandrin B 61281-37-6 C23H28O6 MCAO/R TLR4/NF-κB↓, TNF-α↓,
IL-1β↓, IL-6↓

Anti-inflammatory Fan et al. (2020)

Z-Guggulsterone 39025-23-5 C21H28O2 MCAO/R TLR4/NF-κB↓, TNF-α↓,
IL-1β↓, IL-6↓

Anti-inflammatory Liu et al. (2018)
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TABLE 3 Effects and mechanisms of different TCM monomers on programmed cell death in cerebral ischemia-reperfusion injury.

TCM
monomers

CAS No. Molecular
formula

Method of
model

Mechanisms Effects References

Baicalin 21967-41-9 C21H18O11 MCAO/R NLRP3↓, IL-1β↓, IL-18↓, ASC↓, Bax↓, Bcl-2↑,
caspase3↓

Anti-apoptosis and
pyroptosis

Yang et al. (2019b),
Zheng et al. (2021)

Ligustrazine 1124-11-4 C8H12N2 MCAO/R Bax↓, Bcl-2↑, caspase-3↓ Anti-apoptosis Gao et al. (2015), Li
et al. (2022b)

Polygalasaponin F 882664-74-6 C53H86O23 MCAO/R
OGD/R

PI3K/AKT↑, Bcl-2↑, Bax↓, caspase-3↓ Anti-apoptosis Xie et al. (2020)

Platycodin D 58479-68-8 C57H92O28 MCAO/R PI3K/AKT↑, Bcl-2↑, Bax↓ Anti-apoptosis Wang et al. (2019a)

Vitexin 3681-93-4 C21H20O10 MCAO/R JNK/MAPK↓, caspase-3↓ Bax↓, Bcl-2↑ Anti-apoptosis Wang et al. (2015a)

Triptolide 38748-32-2 C20H24O6 MCAO/R JNK/MAPK↓, Bcl-2↑, Bax↓ Anti-apoptosis Hao et al. (2015)

Ginkgetin 481-46-9 C32H22O10 MCAO/R PI3K/AKT↑, Bcl-2↑, Bax↓, caspase-3↓ Anti-apoptosis Tian et al. (2019)

Dihydrocapsaicin 19408-84-5 C18H29NO3 MCAO/R PI3K/AKT↑, Bcl-2↑, Bax↓, caspase-3↓ Anti-apoptosis Wu et al. (2017b)

Carbenoxolone 7421-40-1 C34H48Na2O7 MCAO/R PI3K/AKT↑, Bcl-2↑, Bax↓, caspase-3↓ Anti-apoptosis Wang et al. (2015b)

Genistein 446-72-0 C15H10O5 MCAO/R PI3K/AKT↑, Bcl-2↑, Bax↓, caspase-3↓ Anti-apoptosis Lu et al. (2019)

Curcumin 458-37-7 C21H20O6 MCAO/R p-Akt↑, p-mTOR↑, LC3-II/LC3-I↓ Inhibit autophagy Huang et al. (2018)

Ephedrine 579-07-7 C9H8O2 MCAO/R pNF-kB↓, Beclin-1↓, LC3 II ↓ Inhibit autophagy Shi et al. (2021)

Galuteolin 20344-46-1 C21H20 MCAO/R Beclin-1↓, LC3II/I↓, p62↑ Inhibit autophagy Zhu et al. (2020)

Vitexin 3681-93-4 C21H20O10 MCAO/R mTOR↑, Ulk1↓, PPAR-γ↑, Beclin1↓,
p62↑, LC3Ⅱ↓

Inhibit autophagy Jiang et al. (2018)

Puerarin 3681-99-0 C21H20O9 MCAO/R LC3-II↓, LC3-II/LC3-I↓ Inhibit autophagy Hongyun et al.
(2017)

Alphaasarone 2883-98-9 C12H16O3 MCAO/R
OGD/R

LC3-II/LC3-I↓, p62↑ Inhibit autophagy Zhang et al. (2021a)

Betulinic acid 472-15-1 C30H48O MCAO/R
OGD/R

SIRT1↑, acetylated FoxO1↓, Beclin1↓, p62↑, LC3-
II/LC3-I↓

Inhibit autophagy Zhao et al. (2021)

Phillyrin 487-41-2 C27H34O11 MCAO/R pAkt-1↑, pmTOR↑, Beclin1↓, LC3-II/LC3-I↓ Inhibit autophagy Chen et al. (2022a)

Astragaloside IV 84687-43-4 C41H68O14 MCAO/R
OGD/R

LC3-II/LC3-I↑, p62↓ Enhance autophagy Zhang et al. (2019a)

Berberine 633-66-9 C20H19NO8S MCAO/R
OGD/R

Beclin1↓, p62↓, LC3-II/LC3-I↑ Enhance autophagy Zhang et al. (2016c)

Nicotiflorin 17650-84-9 C27H30O15 MCAO/R
OGD/R

p-mTOR↓, Beclin1↓, p62↓, LC3-II/LC3-I↑ Enhance autophagy Wang et al. (2021b)

Deltonin 55659-75-1 C45H72O17 MCAO/R p-Akt↑ and p-mTOR↑ LC3-II/LC3-I↓, Beclin-1↓ Inhibit autophagy Qiu et al. (2016)

Eugenol 97-53-0 C10H12O2 MCAO/R,
OGD/R

p-AMPK/AMPKα↑, p-mTOR/mTOR↓,
pP70S6K/P70S6K↓,Beclin-1↑, LC3II/I↑, p62↓

Enhance autophagy Shi et al. (2022)

Ephedrine 579-07-7 C9H8O2 MCAO/R Akt/GSK3β/NRF2↑, IL-1β↓, NLRP4↓, IL-18↓ Inhibit pyroptosis Zheng et al. (2021)

Sinomenine 115-53-7 C19H23NO4 MCAO/R,
OGD/R

AMPK, NLRP4↓, IL-1β↓IL-18↓, IL-1β↓, caspase-
1↓, TNF-α↓

Anti-inflammatory
and inhibit
pyroptosis

Yao et al. (2022)

Diosmetin 520-34-3 C16H12O6 MCAO/R,
OGD/R

NLRP4↓, IL-18↓, IL-1β↓ Inhibit pyroptosis Qiu et al. (2016)

Oridonin 28957-04-2 C20H28O6 MCAO/R
OGD/R

NF-κB↓, NLRP4↓, IL-18↓, IL-1β↓ Inhibit pyroptosis Jia et al. (2021)

Astragaloside IV 84687-43-4 C41H68O14 MCAO/R Nrf2↓, NLRP4↓, IL-18↓, IL-1β↓, MMP4,9↓, TJs↑ Inhibit pyroptosis
and maintain BBB

Xiao et al. (2021)

Hispidulin 1447-88-7 C16H12O6 MCAO/R AMPK/GSK3β↓, NLRP4↓, IL-18↓, IL-1β↓ Inhibit pyroptosis An et al. (2019)

Tetrandrine 518-34-3 C38H42N2O6 MCAO/R Sirt-1↑, NLRP4↓, IL-18↓, IL-1β↓ Inhibit pyroptosis Wang et al. (2020a)

(Continued on following page)
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signaling pathway, inhibit apoptosis, and decrease the number of
apoptotic cells.

2.3.2 Regulation of autophagy
Autophagy is a cellular process whereby cells engulf cytoplasmic

proteins or organelles, enclosing them into vesicles that fuse with
lysosomes to form autophagosomes. These autophagosomes
degrade their contents and contribute to the maintenance of
organizational structure and function, promoting homeostasis
under developmental and stress conditions (Shi et al., 2018).
Appropriately regulated autophagy serves as a protective
mechanism, playing a crucial role in cell survival and
intracellular environment stability during stress states such as
ischemia and hypoxia.

The beneficial or detrimental effects of autophagy on cerebral
ischemia-reperfusion injury depend on the degree and timing of
autophagic activity. Previous research has demonstrated that TCM
monomers can modulate autophagy to ameliorate CIRI. For

instance, ephedrine and galuteolin have been found to inhibit
autophagy (Zhu et al., 2020; Shi et al., 2021). Vitexin, puerarin,
and alphaasarone have been reported to reduce neuronal autophagy
by decreasing Beclin1 expression and the LC3II/LC3I ratio, thus
mitigating autophagic activity, while astragaloside IV and
nicotiflorin could enhance autophagy and reduce neuronal
apoptosis by increasing LC3II/LC3I ratio (Hongyun et al., 2017;
Jiang et al., 2018; Zhang et al., 2019a; Zhang et al., 2021a;Wang et al.,
2021b). In addition, TCM monomers preconditioning could also
reduce autophagy in CIRI. Pre-administration of betulinic acid
(50 mg/kg in vivo) could increase the expression of SIRT1,
reduce the acetylation of FOXO1, and thus reduce the expression
of autophagy protein (Zhao et al., 2021). Phillyrin (100 mg/kg in
vivo, 80 μm in vitro) could reduce the expression of autophagy
protein in MCAO/R animal models and H2O2-induced cell models,
thereby reducing CIRI (Chen et al., 2022a). Autophagy has also been
enhanced through pre-administration of berberine (40 mg/kg in
vivo, 10−5 μg/L in vitro) (Zhang et al., 2016c).

TABLE 3 (Continued) Effects and mechanisms of different TCM monomers on programmed cell death in cerebral ischemia-reperfusion injury.

TCM
monomers

CAS No. Molecular
formula

Method of
model

Mechanisms Effects References

Carthamin yellow 1401-20-3 C21H22O11 MCAO/R NLRP3↓, NF-kB↓,ROS↓,
Fe2+↓,GPX4↑,ACSL4↓,FTH1↑,TFR1↓

Inhibit ferroptosis Guo et al. (2021)

β-Caryophyllene 87-44-5 C15H24 MCAO/R,
OGD/R

Nrf2↑, HO-1↑, GPX4↑, ACSL4↓,COX2↓ Inhibit ferroptosis Hu et al. (2022)

Rehmannioside A 81720-05-0 C21H32O15 MCAO/R,
OGD/R

pPI3K↑, pAkt-1↑,Nrf2↑,HO-1↑, ROS↓,
SLC7A11↓, GPX4↑

Inhibit ferroptosis Fu et al. (2022)

FIGURE 3
Inhibition of programmed cell death (apoptosis, pyroptosis and ferroptosis) by related TCM monomers in CIRI pathology.
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TCMmonomers modulate the process of autophagy by targeting
various cellular signaling pathways. Deltonin (100 mg/kg) from
Dioscorea zingiberensis C.H.Wright inhibited the expression of
autophagy proteins Beclin-1, LC3II/I and p62 by directly reducing
the expression of p-Akt and p-mTOR in MACO/R models (Zhang
et al., 2020c). In addition, curcumin at a dose of 200 mg/kg can also
reduce autophagy activity by inhibiting PI3K/Akt/mTOR signaling in
the MCAO/R model (Huang et al., 2018). In MCAO/R rat model and
OGD/R HT22 cell model, Eugenol derived from traditional Chinese
medicine Acorus gramineus Aiton significantly increased AMPK
phosphorylation, decreased phosphorylation of mTOR and
P70S6Ks, enhances the expression of autophagy related proteins
Beclin-1, LC3II/I and p62 (Sun et al., 2020). (Figure 4.)

2.3.3 Inhibition of pyroptosis
Pyroptosis is a pro-inflammatory programmed cell death pathway

that depends on the activation of inflammasomes and is driven by the
binding of cytoplasmic sensor proteins to pathogen-associated
molecular patterns (PAMPs) or DAMPs (Sapkota et al., 2017). The
inflammatory body complex is typically composed of Nod-like
receptors (NLRPs) containing the pyranoid domain, adaptor
apoptosis-associated speckle like proteins (ASC) containing CARD,
and caspase. The oligomerization of NLRP3 with ASC and procaspase
1 activates the NLRP3 inflammasome, leading to the cleavage of
procaspase 1. The activated caspase-1 then cleaves pre-IL-1β and pre-
IL-18, generating the mature forms of these proteins, namely, IL-1β
and IL-18, respectively (Sapkota et al., 2017). At present, the research
on the inhibition of pyroptosis by TCMmonomers mainly focused on
their role on the formation of NLRP3 inflammasomes.

TCM monomers have been found to reduce CIRI by inhibiting
the activity of the NLRP3 inflammasome. Studies have demonstrated
that baicalin could decrease infarct size in MCAO/R rats, suppress the
activation of the NLRP3 inflammasome, and inhibit pyroptosis by
reducing the expression of pyroptosis-associated proteins (ASC,
cleaved caspase-1, IL-1β, and IL-18) (Zheng et al., 2021). In
addition, ephedrine (40 mg/kg) inhibited the activation of
NLRP3 inflammasome and decreased the expression of Caspase-1
and IL-1β by activating Akt/glycogen synthase kinase 3β(GSK3β)/
Nrf2 pathway in MCAO/R mice, effectively inhibiting microglia
pyroptosis and thus playing a neuroprotective role in CIRI (Li
et al., 2021). In addition to baicalin and ephedrine, other TCM
monomers have also been proven to play an anti-pyroptosis role
by inhibiting the activation of NLRP3 inflammasome, such as
ginsenoside Rd (Yao et al., 2022), sinomenine (Qiu et al., 2016),
diosmetin (Shi et al., 2022). In addition, Chinese medicine monomers
could inhibit NLRP3 inflammasome in CIRI to play an anti-
pyroptotic role by regulating various signaling pathways, such as
NF-κB, Nrf2, AMPK, and JAK2/STAT3 Signal Transducer and
Activator of Transcription 3(STAT3) signaling pathway. The NF-
κB pathway plays a central role in the aggregation of
NLRP3 components and the formation of NLRP3 inflammasome
activation (Hasanzadeh et al., 2020). For instance, curcumin and
rubesin inhibited NF-κB signaling, thereby reducing
NLRP3 inflammasome activity and exerting an anti-pyroptotic
effect (Ran et al., 2021a; Jia et al., 2021). Nrf2 has been shown to
negatively regulate NLRP3 inflammasome activation and plays an
important role in CIRI. Astragaloside IV and ginsenoside Rd inhibit
NLRP3 inflammasome-induced pyroptosis through Nrf2 modulation

FIGURE 4
Inhibition of glutamate excitatory toxicity/Ca2+ overload, mitochondrial protection and regulation of autophagy by related TCMmonomers in CIRI
pathology.
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(Xiao et al., 2021; Yao et al., 2022). AMPK influences neuronal repair
and angiogenesis in ischemic tissue during CIRI (Chen et al., 2019).
Hispidulin and ephedrine exert their neuroprotective effects both in
vivo and in vitro bymodulating the AMPK/GSK-3β signaling pathway
to alleviate NLRP3-mediated pyroptosis (An et al., 2019; Li et al.,
2021). Sirtuin 1 (SIRT-1) activation is also important in
neuroprotective mechanisms (Wang et al., 2019b). Tetrandrine and
arctigenin have been found to inhibit the NLRP3 inflammasome by
activating SIRT-1, thereby reducing pyroptotic cell injury in in vivo
and in vitro experiments (Zhang et al., 2017; Wang et al., 2020b).

2.3.4 Inhibition of ferroptosis
Ferroptosis is a recently identified form of cell death

characterized by the iron-dependent accumulation of lipid-based
reactive oxygen species (ROS). This process is regulated by the
inactivation of glutathione peroxidase 4 (GPX4), which normally
reduces lipid peroxides at the expense of glutathione (GSH).
Ferroptosis exhibits three distinct features: 1) the accumulation of
iron, which leads to the fenton chemical reaction, resulting in the
release of large amounts of ROS; 2) Themetabolism of certain amino
acids was disordered, the expression of GPX4 and ferritin was
increased, and the expression of acyl-CoA synthetase member 4
(ACSL4) was increased; 3) unlike apoptosis and necrosis, ferroptosis
involves structural damage to mitochondria, including reduced
mitochondrial volume, increased bilayer membrane density, and
even the disappearance of mitochondrial cristae.

Guo et al. have shown that carthamin yellow could reduce the
accumulation of ROS and free iron in the brain tissue of MCAO/R
model animals, increased the levels of GPX4 and GSH, thus reducd
neuronal injury and improving CIRI (Guo et al., 2021). In addition, β-
Caryophyllene has similar effects to ferrostatin-1, an iron scavenger and
ferroptosis inhibitor. β-Caryophyllene could inhibit hypoxia-induced
iron overload, improve neuronal survival rate and upregulate GSH level,
decrease ROS level, downregulate ACSL4 protein expression, ferritin
and Gpx4 protein expression, and alleviate mitochondrial structure
damage after OGD/R injury. The mechanism may be to improve the
survival of astrocytes through Nrf2/HO-1 pathway, and thus reduced
neurological function defects (Hu et al., 2022). In addition, other studies
have found that rehmannioside A could reduce CIRI by activating
PI3K/AKT/Nrf2 and SLC7A11/GPX4 pathway of ferroptosis (Fu et al.,
2022). From the above studies, it is not difficult to find that TCM
monomers could play a role in programmed cell death in CIRI through
a variety of pathways (Table 3).

2.4 Repairing damaged blood-brain barrier

BBB forms a mechanical and functional barrier between the
systemic circulation and the central nervous system, and its integrity
is important for homeostasis and function of CNS (Chen et al., 2012;
Mirshekari Jahangiri et al., 2020). BBB disruption caused by CIRI
contributed to vasogenic brain edema, which ultimately aggravates
ischemic brain injury (Huang et al., 2018). Reperfusion after
ischemia leads to progressive deterioration in BBB permeability,
resulting in cytotoxic edema, ionic edema, vasogenic edema, and
hemorrhagic transformation (Abdullahi et al., 2018; Khoshnam
et al., 2018). Matrix metalloproteinases (MMPs) are regulators of
capillary permeability, and activation of MMPs can change the

integrity of BBB, thereby increasing the permeability of the BBB
(Rosenberg et al., 1998; Asahi et al., 2001). Tissue inhibitors of
metalloproteinases (TIMPs) are crucial regulators of BBB function,
as they can inhibit MMP activity and reduce BBB permeability
following CIRI (Fujimoto et al., 2008).

It has been reported that a variety of TCMmonomers could repair
BBB, such as various saponins (ginsenoside Rg1, astragaloside IV, etc.),
a variety of phenols (sparganin C, curcumin, etc.) and other TCM
monomers. Saponins could upregulate the expression of tight junctions
(TJs) and downregulate the expression of MMP-9 and AQP-4, thus
repaired CIRI-induced BBB disorder. In MCAO/R rats, ginsenoside-
Rg1 (20 mg/kg for 14 days) inhibited the expression of MMP-9 and
AQP-4, while promoted TJs to improve the permeability of BBB (Xie
et al., 2015). It is also found that astragaloside IV maintained the
integrity of BBB. Astragaloside IV (20 mg/kg) could reduced the
expression of MMP-9 and AQP4, and at the same time increased
TJs to improve the permeability of BBB, thus eased the damage in the
MCAO/R rat model (Li et al., 2013). It has been reported that phenols
are involved in the integrity of BBB by regulating the expression of
MMPs and TIMPs. Curcumin (300 mg/kg) was found to reduce
neurological scores, infarct volume, morphological changes, Evans
blue leakage, and immunoglobulin G extravasation, as well as BBB
injury and neutrophil infiltration. BBB could also be protected against
CIRI by up-regulating tight junction protein (TJP) and decreasing the
expression of AQP4 and brain water content (Wu et al., 2021b). In
addition, sparganin C (30 mg/kg) upregulates TIPM1/MMP protein
ratio by activating PI3K/AKT/mTOR pathway, promoting BBB
integrity after injury in MCAO/R rat models (Liang et al., 2022). In
addition to the above saponins and phenolic TCM, quercetin (Yang
et al., 2022b), methylophiopogonanone A (Lin et al., 2015), magnolol
(Liu et al., 2017), etc., could also repair CIRI induced blood-brain
barrier disorders by regulating the expression levels of MMPs, TIMP
and AQP4 (Table 4).

2.5 The role of promoting angiogenesis

A Angiogenesis is a physiological process that involves the
growth of new capillaries from existing blood vessels through
sprouting. It serves as a natural defense mechanism in humans
and animals against ischemic injury by restoring oxygen and
nutrient supply to affected tissues, ultimately promoting long-
term functional recovery (Slevin et al., 2006; Beck and Plate,
2009). Angiogenesis is regulated by a delicate balance between
angiogenic growth factors (such as vascular endothelial growth
factor (VEGF), transforming growth factor β (TGF-β), basic
fibroblast growth factor 2 (b-FGF2), platelet-derived growth
factor (PDGF), etc.) and angiogenic inhibitors, which govern
endothelial cell migration and proliferation. In response to CIRI,
hypoxia triggers the release of angiogenic factors within the existing
vascular system, resulting in elevated levels of angiogenic growth
factors in microvessels and facilitating neurovascularization (Fan
and Yang, 2007). Released VEGF binds to vascular endothelial
growth factor receptor (VEGFR) on vascular endothelial cells,
initiating capillary formation (Hayashi et al., 2003). Angiopoietin
1 (Ang1), an endogenous ligand of the endothelial-specific receptor
tyrosine kinase Tie-2, plays a role in promoting vascular endothelial
integrity, stability, and maintenance (Chen et al., 2009).
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Various TCMmonomers have been reported to alleviate CIRI by
promoting angiogenesis (Shen et al., 2022). Saponins in CIRI
promoted angiogenesis after CIRI by up-regulating expression of
vascular growth factors (VEGF, TGF-β, b-FGF2, PDGF). In vivo and
in vitro experiments, Notoginsenoside R1 restored cerebral blood
flow by improving the structure of cerebral microvascular
endothelial cells and up-regulating the expression of various
angiogenic factors (Zhu et al., 2021). Meanwhile, ginsenoside F1
(50 mg/Kg/day for 14 days) could improve focal cerebral blood
perfusion by promoting angiogenesis and increasing
microvascular density, thus alleviated CIRI in rats with MCAO
(Zhang et al., 2019b). The VEGF/vasohibin and Ang-1/Tie-
2 signaling pathway are involved in angiogenesis and maturation.
In MCAO/R rat model, engeletin upregulated the expression of
vascular endothelial growth factor VEGF and Ang-1, increased
capillary density and enhanced angiogenesis in the ischemic
boundry zones (Liu et al., 2021) (Figure 2). In addition to
saponins, other TCM monomers such as DI-3-n-butylphthalein
(Huang et al., 2021b), salvianolic acid B (Bi et al., 2022),
morroniside (Liu. et al., 2016b) and cardamonin (Ni et al., 2022)
can also promote angiogenesis in CIRI (Table 4).

2.6 Inhibition of glutamate excitatory
toxicity/Ca2+ overload

Elevated levels of glutamate can lead to the overstimulation of
glutaminergic receptors on postsynaptic neurons, resulting in
excitotoxicity. Glutamate binds to glutamate alpha-amino-3-

hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors and
kainate (KA) receptors, causing the opening of Na + channels and
an influx of Na+. This acute cell swelling and neuronal death can
occur. N-methyl-D-aspartate (NMDA) receptors, when bound by a
large amount of glutamate, open Ca2+ channels, leading to excessive
Ca2+ influx. Intracellular mechanisms responsible for reducing Ca2+

levels, such as the calcium pump (PMCA pump) and exchange body
(NCX exchange), become damaged due to calcium overload. In
addition to glutamate excitotoxicity, other factors, such as voltage-
gated calcium channels (mainly L-VGCCs) and ligand-gated calcium
channel overactivation during energy deficiency, can also cause
abnormal increases in intracellular Ca2+ concentration.

Some studies have confirmed that TCM monomer could inhibit
glutamate excitatory toxicity and Ca2+ overload to alleviate CIRI. In
both in vitro and in vivo studies, baicalin protected neurons from
glutamate toxicity by protecting glutamine synthetase of astrocytes
from ROS-induced carbylation and degradation of 20 S proteasome,
increased glutamate-processing capacity of astrocytes (Song et al.,
2020). In addition, ginsenoside Rd (50 mg/kg in vivo, 10 μmol in vitro)
also reduced the excitotoxic injury of neurons by reducing NMDA
receptor 2B subunit (NR2B) and its phosphorylation (Xie et al., 2016).
In TCM monomers effect of Ca2+ overload, astragaloside IV
(20 mg/kg in vivo, 100 μmol/L in vitro) alleviated CIRI by
inhibiting calcium sensitive receptors and reducing apoptosis (Du
et al., 2021a). In addition, another target of the regulation of calcium
concentration by TCMmonomers is Na + expression/Ca2+ exchanger
(NCXs) protein. In both vitro and in vivo experiments have shown
that intraventricular administration of cannabidiol (200 ng/rat)
significantly enhanced the expression of NCX2 and NCX3 in CIRI

TABLE 4 Effects and mechanisms of different TCM monomers on repairing blood-brain barrier and neovascularization in cerebral ischemia-reperfusion injury.

TCM monomers CAS No. Molecular
formula

Method
of model

Mechanisms •Effects References

Ginsenoside Rg1 22427-39-0 C42H72O MCAO/R Evans Blue (EB)↑, PAR-1↓,
AQP-4↓

Maintain BBB Xie et al. (2015)

Astragaloside IV 84867-43-4 C41H68O14 MCAO/R MMP-9↓, AQP-4↓, TJs↑ Maintain BBB Li et al. (2013)

Curcumin 458–37-7 C21H20O6 MCAO/R AQP-4↓, TJs↑ Maintain BBB Wu et al. (2021b)

Sparganin C 5147-17-1 C18H18N2O3 MACO/R PI3K/AKT↑, TIMP↑,
MMPs↓

Maintain BBB Liang et al. (2022)

Quercetin 117–39-5 C15H10O7 MACO/R MMPs↓, TIMP↑, AQP4 ↓ Maintain BBB Yang et al.
(2022b)

Methylophiopogonanone
A

74805-92-8 C19H18O6 MACO/R MMPs↓, TIMP↑, AQP4 ↓ Maintain BBB Lin et al. (2015)

Magnolol 528–43-8 C18H18O2 MACO/R TIMP↑, MMPs↓, AQP4↓ Maintain BBB and reduce
cerebral edema

Shen et al. (2022)

Ginsenoside F1 53963-43-2 C36H62O9 MACO/R Shh↑, VEGF↑, Ang-1↑ Promote angiogenesis Zhang et al.
(2019b)

Engeletin 572–31-6 C21H22O10 MACO/R VEGF↑, Ang-1↑, capillary
density↑

Promote angiogenesis Liu et al. (2021)

DI-3-n-butylphthalein 6066-49-5 C12H14O2 MACO/R Nrf2↑, VEGF↑, Ang-1↑ Promote angiogenesis Huang et al.
(2021b)

Salvianolic acid B 121521-90-2 C36H30O16 MACO/R VEGF↑, Ang-1↑ Promote angiogenesis Bi et al. (2022)

Morroniside 25406-64-8 C17H26O11 MACO/R VEGF↑, Ang-1↑ Promote angiogenesis Liu et al. (2016b)
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rats, regulated calcium activity and reduced excitatory toxicity
(Khaksar and Bigdeli, 2017). In addition, improving mitochondrial
function could also reduce Ca2+ overload, for example, ligustilide
mitigated Ca2+ overload by reducing mitochondrial division (Wu
et al., 2022) (Figure 4) (Table 5).

2.7 Mitochondrial protection

The excessive production of reactive oxygen species (ROS) and
Ca2+ during CIRI leads to the overopening of mitochondrial
permeability transition pores (MPTP), alterations in mitochondrial
permeability, and disruption of membrane structure. This results in a
decrease in mitochondrial membrane potential, the disappearance of
ion gradients across the inner mitochondrial membrane, and
ultimately mitochondrial dysfunction. In turn, mitochondrial
dysfunction exacerbates energy supply disturbances, oxidative
stress damage, and mitochondrial Ca2+ overload in brain cells.
Additionally, mitochondrial dysfunction can trigger mitochondrial
fission, fusion, and mitophagy, which help maintain cellular
homeostasis by eliminating damaged or depolarized mitochondria.

Many studies have shown that TCM monomers could improve
CIRI by improving mitochondrial function and structural integrity.
A variety of TCM monomers protected mitochondrial function by
improving mitochondrial membrane potential, such as polydatin
and curcumin. Polydatin (30 mg/kg) improved mitochondrial
membrane potential (MMP) and reduced neuronal apoptosis
(Gao et al., 2016). Curcumin (350 mg/kg) increased MMP,
mitochondrial complex I activity and mitochondrial cytochrome
enzyme C levels to alleviate mitochondrial dysfunction and thus
reduced cell apoptosis (Miao et al., 2016). Another study found that
low-dose curcumin (100 mg/kg in vivo, 5 µM in vitro) could
improve mitochondrial function, increase LC3 II, mitochondrial
marker VDAC1 colocalization, LC3-II/LC3-I ratio, and enhance
mitophagy (Wang and Xu, 2020). Chikusetsu saponin V (50 mg/kg
in vivo, 50 μM in vitro) reduced deacetylation of peroxisome
proliferator-activated receptor γ coactivator-1α (PGC-1α) through
AMPK/SIRT-1 pathway, downregulated ROS and maintained
mitochondrial respiration (Zhang et al., 2021b). In addition,
ligustilide (20 mg/kg in vivo, 20 μM in vitro) promoted DRP1-
mediated mitochondrial fission and induced mitophagy by
activating AMPK, thereby alleviating CIRI (Khaksar and Bigdeli,
2017). It is also found that ligustilide (20 mg/kg in vivo, 20 μM
in vitro) could improve CIRI by enhancing PINK1/Parkin-
dependent mitophagy. Different TCM monomers with the same
mechanism of action include Caryophyllene (Mao et al., 2022; Rao
et al., 2022). In addition, atractylenolide III (10 mg/kg in vivo, 1 μM
in vitro) from Atractylodes macrocephala Koidz could also alleviate
neuroinflammation by reducing microglial Drp1 translocation and
phosphorylated mitochondrial division via JAK2/STAT3 (Zhou
et al., 2019) (Figure 4) (Table 5).

2.8 Others

Apart from the aforementioned effects, TCM monomers also
play a significant role in neurotransmitter release, neurogenesis,
microglia polarization, neurovascular unit function, and related

complications such as cognitive impairment and depression in
the context of CIRI. In an MCAO model, salidroside (80 mg/kg)
could enhance the regulation of tyrosine hydroxylase (TH) in the
striatum and SNpc to increase the content of dopamine (DA),
homovanillic acid (HVA) and 3, 4-dihydroxyphenylacetic acid
(DOPAC) in the striatum. Thus, behavioral disorders caused by
CIRI improved (Zhong et al., 2019). Astragaloside IV (2 μg/kg)
promoted the differentiation of neural stem cells and increased
neurogenesis (Ni et al., 2020). In addition, the polarization of
microglia is another target of TCM monomers. Baicalein
(100 mg/kg) reduced the polarization of microglia to M1 type
and inhibited neuroinflammation (Ran et al., 2021b).
Neurovascular unit dysfunction is an important pathological
process during CIRI. In recent years, it has been found that
TCM monomers could improve neurovascular unit dysfunction.
It has been reported that 270 mg/kg dose of morroniside in MCAO
model significantly increased the recruitment of endothelial
progenitor cells (EPCs), the expression of angiogenic factors and
the formation of new blood vessels around infarction, thereby
protecting the integrity of neurovascular unit microvessels and
improving cerebral ischemia reperfusion injury (Sun et al., 2014).
In addition, studies have also found that TCMmonomers improved
CIRI complications such as cognitive impairment and depression
symptoms. Curcumin (300 mg/kg, 20 μmol/L) has been reported to
alleviate neuroinflammation, oxidative stress and neuronal
apoptosis by inhibiting the expression of miR-7-5p/RelA p65,
improving cognitive dysfunction after CIRI (Xu et al., 2019).
Hydroxysafflor Yellow A (16 mg/kg) improved cognitive
impairment by rescuing damaged long-term enhancement (LTP)
in the hippocampus of MCAO/R rats (Yu et al., 2018). In addition to
improving neurovascular unit dysfunction and cognitive
impairment, TCM monomers played an important role in
alleviating post-stroke depression. Astragaloside VI (2 μg/kg,
100 nM) miligated post-stroke depression by increasing DA and
5-HT release through upregulation of the MEK/ERK pathway
mediated by the neurotrophic factor neuregulin 1 (NRG-1)
(Chen et al., 2022b). Curcumin (100 mg/kg in vivo) inhibited the
activation of calcium channels by inhibiting P2X7 receptor (P2X7R)
to reduce the symptoms of post-stroke depression in rats (Wang
et al., 2020b). In addition, some scholars have found that the
ginsenoside Rb1 could improve lung and intestinal barrier
damage after cerebral ischemia-reperfusion (Su et al., 2022).
Butylphthalide a traditional Chinese medicine monomer that has
been used in clinical practice, could increase blood perfusion by
improving vasoconstriction and reduce thrombosis at the dose of
90 mg/Kg (Qin et al., 2019).

To conclude, TCM monomers can effectively prevent and treat
cerebral ischemia-reperfusion injury by employing various
mechanisms such as inhibiting oxidative stress, inflammation,
glutamate excitatory toxicity, Ca2+ overload and programmed cell
death. Additionally, they facilitate the repair of the blood-brain
barrier, promote angiogenesis, improve neurotransmitter release,
protect neurovascular unit integrity, and alleviate post-stroke
cognitive depression and systemic symptoms. Therefore, it is
considered that the effect of TCM monomers on ischemia-
reperfusion injury is multi-target, and the scope of research has
also expanded from the initial neurons to other cellular components
such as microglia, astrocytes and neurovascular units.
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3 Traditional Chinese medicine
monomers related to cerebral
ischemia-reperfusion injury

Due to the intricate pharmacology of TCM preparations,
pinpointing their exact mechanism of action can be challenging.
However, TCMmonomers offer distinct advantages in terms of their
well-defined mechanisms, predictable pharmacological actions, and
reduced potential for drug interactions. As a result, the use of TCM
monomers in the treatment of various diseases, including CNS
injury conditions like CIRI caused by diverse mechanisms, has
garnered significant attention in recent years.

3.1 Phenols

Salvianolic acid B Salvianolic acid B is a water-soluble product
of Salvia miltiorrhiza Bunge, which can be used to treat cardio-
cerebrovascular diseases due to its antioxidant and anti-
inflammatory properties (Zhou et al., 2005). In stroke, salvianolic
acid B could reduce brain injury by inhibiting cell apoptosis and
inflammation, reducing brain edema, and increasing neurological
function score (Lv et al., 2015).

Curcumin Curcumin is a plant component isolated from
Curcuma longa L with anti-inflammatory, antibacterial, anti-

fibrosis, and antioxidant effects, and has multiple effects on the
central nervous system (Priyadarsini, 2014). Curcumin attenuated
autophagy activity by mediating Phosphoinositide 3-Kinase (PI3K)/
Protein Kinase B (Akt)/the mammalian target of rapamycin
(mTOR) pathway, inhibited inflammation by regulating Toll-like
receptor 4 (TLR4)/p38/mitogen activated protein kinase (MAPK)
pathway (Huang et al., 2018), and protected BBB from destruction
by inducing oxidative stress response, leukocyte infiltration,
complement activation and mitochondrial biogenesis disorder. It
played a protective role in CIRI (Bavarsad et al., 2019).

3.2 Glycosides

Astragaloside IV Astragaloside IV is an effective component of
Astragalus mongholicus Bunge, which is widely used in the
prevention and treatment of cardiovascular and cerebrovascular
diseases in China (Zhang et al., 2020d). Many studies have
confirmed that astragaloside IV could improve neurological
deficits, reduce infarct volume and BBB permeability, and
provide neuroprotection during CIRI through its anti-
inflammatory, anti-apoptotic and anti-oxidative effects (Wang
et al., 2017; Zhang et al., 2019a; Xu et al., 2020).

Ginsenoside Rg1 Ginsenoside Rg1 is an active component
isolated from the total saponins of Panax quinquefolius L.

TABLE 5 Effects and mechanisms of different TCM monomers on Inhibition of glutamate excitatory toxicity/Ca2+ overload, Mitochondrial protection in cerebral
ischemia-reperfusion injury.

TCM
monomers

CAS No. Molecular
formula

Method of
model

Mechanisms Effects References

Baicalin 21967-41-9 C21H18O11 MCAO/R Mitochondrial ROS↓, SDH↓GS↑, GS
carbonylation↓, binding of 20S
proteasomal to GS↓

decreases glutamate
excitotoxicity

Song et al. (2020)
OGD/R

Ginsenoside Rd 52705-93-8 C48H82O18 MCAO/R NR2B subunit↓, NR2B subunit
phosphorylation ↓

decreases glutamate
excitotoxicity

Xie et al. (2015)
OGD/R

Astragaloside IV 84687-43-4 C41H68O14 MCAO/R CaSR↓, Ca2+↓, BCL2/BAX↓, AIF↑ Inhibit Ca2+ overload and
apotosis

Du et al. (2021a)
OGD/R

Cannabidiol 13956-29-1 C21H30O2 MCAO/R NCX23↑, NCX3↑ Anti-excitotoxicity and calcium
regulation

Khaksar and Bigdeli
(2017)

Polydatin 65914-17-2 C20H22O8 MCAO/R MMP↓Bcl-2↑Bax ↓ Maintain Mitochondrial
dysfuction and Anti-apoptosis

Gao et al. (2016)

Caspase3↓, caspase9↓

Curcumin 458–37-7 C21H20O6 MCAO/R SIRT1↑, Ac-p53↓, MMP↓, Bax↓,
Bcl-2↑, ATP↑LC3-II/LC3-I↑

Maintain Mitochondrial
dysfuction and Anti-apoptosis
Promote mitophagy

Miao et al. (2016)
OGD/R

Chikusetsu
saponin V

51415-02-2 C42H66O14 MCAO/R p-AMPK↑, SIRT-1↑, Ac- PGC-1α↑,
ROS↓, mitochondrial respiratory↑

Maintain Mitochondrial
dysfuction and anti-oxidative
stress

Wang and Xu
(2020)OGD/R

Ligustilide 81944-09-4 C12H14O2 MCAO/R AMPK↑, Fis1↑, LC3-II/LC3-I↑, p62↓ induce mitochondrial fission
and mitophagy

Zhang et al. (2021b)
OGD/R

PINK1↑, Parkin↑

β-Caryophyllene 87–44-5 C15H24 MCAO/R LC3-II/LC3-I↑, p62↓ induce mitophagy Mao et al. (2022),
Wu et al. (2022)OGD/R

PINK1↑, Parkin2↑

Atractylenolide
III

73030-71-4 C15H20O3 MCAO/R pJAK↓, 2pSTAT3↓, Drp1↓, pDrp1↓ inhibit mitochondrial fission
and anti-imflamation

Rao et al. (2022)
OGD/R
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Rg1 could significantly reduce the infarct volume and reduce the
neurological deficit caused by cerebral ischemia/reperfusion (Zeng
et al., 2014). The reasons may be related to anti-oxidative stress, anti-
inflammatory and anti-apoptotic effects as well as promotion of BBB
repair and prevention of calcium overload (Yang et al., 2020).

3.3 Terpenoids

Ginkgolide BGinkgolide B (GB) is a terpenolactone component
of Ginkgo biloba L Extract, which has neuroprotective and
antioxidant effects (Singh et al., 2019). GB has been shown to
inhibit I/R-induced nuclear factor NF-kappaB (NF-κB) and
microglia activation and pro-inflammatory cytokine production
in focal I/R models, and significantly reduce infarct volume,
brain edema, and neurological deficits (Gu et al., 2012).

Artemisinin Artemisinin is a sesquiterpene lactone peroxide
extracted from Artemisia annua L leaves (Mohammadi et al., 2020).
In ischemic stroke, artemisinin can significantly inhibit apoptosis,
oxidative stress and neuroinflammation (Peng et al., 2022).
Artesunate is a semi-synthetic antimalarial compound derived from
artemisinin (Morris et al., 2011). Artesunate may be a potential
therapeutic agent for ischemic cerebrovascular disease (Zhang et al.,
2020e). Studies have shown that artesunate ameliorated damage caused
by TBI via its anti-inflammatory activity and regulated neurotrophic
factors that play a key role in neuronal survival (Gugliandolo et al.,
2018). Artesunate also protected BBB by activating sphingosine-1-
phosphate receptor-1 (S1P1), enhancing PI3K activation and
stabilizing beta-catenin in SAH mice (Zuo et al., 2017).

3.4 Flavonoids

Icariin Icariin is the main component of flavonoids extracted
from Epimedium sagittatum, which has been proven to have
potential preventive and therapeutic effects on nervous system
diseases. Because of its biological activities related to anti-
apoptosis, anti-oxidation and anti-inflammatory effects, it could
reduce the expression of inflammatory factors and accelerate the
recovery of motor function after nerve injury (Jia et al., 2019).

Puerarin Puerarin is an isoflavone compound extracted from
Neorautanenia mitis, which can protect organs from I/R injury
through various mechanisms, such as reducing lactic acid
production, inhibiting inflammatory response, antioxidant,
promoting angiogenesis and inhibiting autophagic reaction, etc
(Gao et al., 2022). Puerarin improved the outcome of CIRI, reduce
infarct volume and improve nerve function. Puerarin could remove
free radicals, increase cerebral blood flow, play a neuroprotective and
anti-inflammatory role in CIRI, reduce infarct volume, and thus
improve the outcome of CIRI (Zhou et al., 2014).

Vitexin Vitexin is a bioactive flavonoid compound from Ficus
thonningii Blume with antioxidant, anti-inflammatory, antibacterial,
neuroprotective and cardioprotective biological activities (Hu et al.,
2023). In current studies on CIRI, vitexin has been found to have
protective properties on CIRI by regulatingMAPK and B-lymphocyte
tumor-2 (Bcl-2)/Bcl-2 related x protein (Bax) signaling pathway (Jiang
et al., 2018). MCAO-induced autophagy can also be inhibited by
activating mTOR/the mammalian autophagy-initiating kinase

Ulk1 pathway to reduce oxidative stress damage and inflammation
(Hongyun et al., 2017). In addition, it also played a protective role in
brain injury caused by CIRI through regulating brain endothelial
permeability (Cui et al., 2019).

Baicalin Baicalin is the main component isolated from the dried
root of Scutellaria baicalensis Georgi, which has antioxidant, anti-
inflammatory and many other bioactive properties and has been
used in the treatment of various diseases (Jiang et al., 2020; Nam
et al., 2020). Previous studies have confirmed that baicalin can
participate in multi-stage cascade reaction after ischemic stroke and
alleviate focal cerebral ischemia/reperfusion injury (Long et al.,
2022).

3.5 Others

Ligustrazine Ligustrazine is the main active ingredient of
Conioselinum anthriscoides ‘Chuanxiong’, which is widely used in
the treatment of ischemic cerebrovascular disease due to its function
of promoting blood circulation and migration, differentiation, and
proliferation of neural stem cells (Guo et al., 1983). Ligustrazine is
favored in the treatment of ischemic cerebrovascular diseases, which
could protect neurons in a variety of ways (Du et al., 2021b). In focal
ischemic stroke, ligustrazine has protective effects such as lowering the
blood-brain barrier, dilating cerebral vessels, preventing thrombosis,
anti-inflammatory, antioxidant, and activating microglia cells (Lin
et al., 2021).

Phillyrin Phillyrin is an important active ingredient extracted
from Forsythia suspensa (Thunb.) Vahl, which has anti-
inflammatory, antioxidant, and other physiological functions
(Han et al., 2018), and could reduce I/R damage by inhibiting
neuronal apoptosis and autophagy pathways (Chen et al., 2022a).

Berberine Berberine (BBR) is the major constitutes of Coptis
chinensis Franch. Because BBR can cross the blood-brain barrier,
BBR can play a neuroprotective role in ischemic brain injury (Liu
et al., 2019). In CIRI, BBR may reduce neuronal apoptosis by
reducing the expression of caspase-3 and caspase-9 and
increasing the proportion of Bcl-2/Bax (Sun et al., 2020). In
addition, BBR reduced ischemic brain injury by decreasing the
level of intracellular reactive oxygen species (ROS) and inhibiting
mitochondrial apoptosis pathway (Zhou et al., 2008).

Dl-3-N-butylphthalide (NBP):DI-3-N-Butylphthalide (NBP) is
a family of compounds initially isolated from the seeds of Apium
graveolens L. It has shown significant neuroprotective effects in
cerebral ischemic-reperfusion injury. NBP has peotective effects
such as inhibiting platelet aggregation, preventing vasoconstriction,
reducing mitochondrial damage, down-regulating cell apoptosis,
attenuating oxidative stress and promoting neurogenesis
(Abdoulaye and Guo, 2016).

4 Discussion and future perspectives

4.1 Limitations of current research on
traditional Chinese medicine monomers

The current research on TCM monomers and their protective
effects in CIRI is primarily based on preclinical experimental studies
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(Xie et al., 2018; Li et al., 2022c). However, there are certain
limitations in the epidemiological studies conducted on TCM
monomers and CIRI. These limitations include study design,
small sample sizes, variations in the dosage of TCM monomers,
and differences in the administration modes. Most of the studies in
the field of CIRI and TCM monomers are still at the cellular or
rodent stage. Although some TCM monomers have progressed to
the preclinical research stage, the route of administration plays a
significant role in determining the therapeutic efficacy and safety of
the drug (Fleischmann et al., 2019). Oral administration, for
instance, is subject to the first-pass effect, resulting in only a
small portion of the active ingredient crossing the blood-brain
barrier to reach the intended site. Moreover, oral administration
may also induce various adverse reactions, thereby limiting its
clinical utility (He et al., 2017). The specific mechanism and
optimal dosage of TCM monomers for treating CIRI remain
unclear. Additionally, The current research on TCM monomers
in the treatment of CIRI lacks large-scale, multi-center clinical trials,
making it challenging to determine the exact effective dose, optimal
dose, safety profile (including potential side effects), and feasibility
of these monomers.

4.2 Future research trends of traditional
Chinese medicine monomers

Future studies should focus on conducting large-scale clinical
trials and comprehensive pharmacological investigations to further
elucidate the specific mechanisms by which TCM monomers exert
their effects in CIRI. These studies should aim to provide robust
medical evidence that can guide the development of clinical
treatments for patients with CIRI. Furthermore, it is crucial to
explore more suitable drug delivery systems, such as nanoparticles
or hydrogels, to facilitate the passage of drugs across the blood-brain
barrier. This would enhance the retention time, bioavailability, and
concentration of drugs at the site of injury, while reducing the
frequency of administration, side effects, and toxicity. By doing so,
the therapeutic efficacy can be improved, and better biosafety can be
ensured in vivo (Li et al., 2014; Thakur et al., 2018).

5 Conclusion

Cerebral ischemia-reperfusion injury is an extremely destructive
process in the brain with devastating effects on patients. The rapid
emergence of various pathological processes makes functional
recovery of damaged brain tissue challenging and often leads to
severe functional deficits. The mechanisms underlying this
extensive damage involve increased oxidative stress, disruption of
the blood-brain barrier, inflammation, and programmed cell death.
Consequently, effective treatment options for rebuilding severely
damaged neurological function in CIRI patients are currently
lacking. In order to address this challenge, research efforts are
being directed towards tissue engineering, cell transplantation and
molecule-target therapies are being applied to the field of CIRI. This
review explicitly describes the molecular mechanism of TCM
monomers during CIRI in recent years. The intervention of TCM
monomers in CIRI is characterized by a multi-target approach, going

beyond the previous emphasis solely on neuronal neuroprotection.
The protective effect of TCM monomers on CIRI involves almost all
cellular components of the nervous system, in the protection of
neurovascular units, while taking into account supporting
structures such as astrocytes, microglia and blood-brain barrier.
Moreover, the influence of TCM monomers extends beyond the
injury itself and encompasses post-stroke depression and anxiety.
Furthermore, new mechanisms of action for TCM monomers have
been discovered, expanding beyond the previously recognized
pathways such as anti-inflammation via the NF-κB pathway and
antioxidation through the Nrf pathway to include emerging pathways
such as pyroptosis and ferroptosis. However, CIRI is a complex and
multifactorial process, and despite the successful clinical application of
certain TCM monomers such as butylphthalide and ligustrazine,
many traditional Chinese medicine monomers remain in the
preclinical trial stage. Before transitioning to clinical practice, it is
crucial to address several unresolved issues. Comprehensive
preclinical pharmacological and toxicological tests, as well as
clinical trials, are necessary to evaluate the effectiveness and safety
of TCMmonomers. Furthermore, the potential for unpredictable side
effects associated with certain Chinese medicine monomers
necessitates careful consideration of their use.

In conclusion, taking a holistic approach, it is important to
emphasize and extensively explore TCM monomers as a basis for
anti-CIRI treatment. This approach has the potential to reduce the
incidence and mortality of CIRI and prolong the survival of patients.
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