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Background: Glycosylated hemoglobin (HbA1c) is recommended for diagnosing
andmonitoring type 2 diabetes. However, the monitoring frequency in real-world
applications has not yet reached the recommended frequency in the guidelines.
Developing machine learning models to screen patients with poor glycemic
control in patients with T2D could optimize management and decrease
medical service costs.

Methods: This study was carried out on patients with T2D who were examined for
HbA1c at the Sichuan Provincial People’s Hospital from April 2018 to December
2019. Characteristics were extracted from interviews and electronic medical
records. The data (excluded FBG or included FBG) were randomly divided into
a training dataset and a test dataset with a radio of 8:2 after data pre-processing.
Four imputing methods, four screening methods, and six machine learning
algorithms were used to optimize data and develop models. Models were
compared on the basis of predictive performance metrics, especially on the
model benefit (MB, a confusion matrix combined with economic burden
associated with therapeutic inertia). The contributions of features were
interpreted using SHapley Additive exPlanation (SHAP). Finally, we validated the
sample size on the best model.

Results: The study included 980 patients with T2D, of whom 513 (52.3%) were
defined as positive (need to perform the HbA1c test). The results indicated that the
model trained in the data (included FBG) presented better forecast performance
than the models that excluded the FBG value. The best model used modified
random forest as the imputation method, ElasticNet as the feature screening
method, and the LightGBM algorithms and had the best performance. The MB,
AUC, and AUPRC of the best model, among a total of 192 trained models, were
43475.750 (¥), 0.972, 0.944, and 0.974, respectively. The FBG values, previous
HbA1c values, having a rational and reasonable diet, health status scores, type of
manufacturers of metformin, interval of measurement, EQ-5D scores,
occupational status, and age were the most significant contributors to the
prediction model.

Conclusion: We found that MB could be an indicator to evaluate the model
prediction performance. The proposed model performed well in identifying
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patients with T2D who need to undergo the HbA1c test and could help improve
individualized T2D management.

KEYWORDS

type 2 diabetes, glycosylated hemoglobin, prediction models, machine learning, model
benefit

1 Introduction

Diabetes mellitus (DM) is one of the most common and fastest-
growing endocrine diseases, with both types (type 1 and type 2)
contributing substantially to the healthcare costs of society.
According to the International Diabetes Federation (IDF), the
number of people with diabetes reached approximately
537 million worldwide by 2021 (1 in 10 adults live with
diabetes), and approximately 90%–95% of cases of diabetes suffer
from type 2 diabetes (T2D) (Sun et al., 2022). T2D has become a
global threat to public health in the 21st century (Wang et al., 2022).
Fasting blood glucose (FBG) and random blood glucose (RBG) have
been the traditional method for assessing the risk of T2D, but they
have obvious shortcomings—change over short periods of time due
to behavioral changes (Christine et al., 2017). Relatively, glycated
hemoglobin A1c (HbA1c), representing the average plasma glucose
levels for the past 2–3 months (Rohlfing et al., 2002), has been
recommended for diagnosing andmonitoring diabetes by theWorld
Health Organization (WHO) in 2011 and the American Diabetes
Association (ADA) in 2010 (Leong et al., 2018).

According to the latest criteria, the American Diabetes
Association (ADA) and the European Association for the Study
of Diabetes (EASD) have recommended that glycemic management
is evaluated primarily with the HbA1c test, and the therapeutic goal
is to reduce the HbA1c to<7.0% (Davies et al., 2022). The Chinese
guidelines are in line with international consensus—they stress the
importance of regular HbA1c measurements (twice a year or four
times a year) (Chinese Diabetes Society, 2021). Studies have shown
that glycemic control is required in order to reduce the risk of onset
and progression of complications (Williams et al., 2005; Yu et al.,
2022). Once the target HbA1c is exceeded by 0.5% (>5 mmol/mol)
after 3–6 months, further intensification should be administered.
However, in practice, this does not always happen. The delay in
intensifying therapy is referred to in clinical terms as therapeutic
inertia and is due to underestimation of the need for therapy or
failure to monitor the HbA1c level (Reach et al., 2017).

Machine learning (ML) is a branch of artificial intelligence and
has been widely applied in clinical research and practice to construct
high-performing prediction models, such as prediction of disease
progression and outcomes (Griffith et al., 2020; Lewin-Epstein et al.,
2020; Wang et al., 2020). Especially in the field of T2Dmanagement,
identifying patients with T2D and estimating the risk of
development of complications has become a hot topic during
recent years (Ahlqvist et al., 2019; Dennis et al., 2019; Heerspink,
2019). ML has been shown to provide a useful management tool and
has played a key role in the recognition of systems as routine
therapeutic aids for patients with T2D. Thus, we consider
whether it is possible to identify patients with a high risk of poor
glycemic control utilizing machine learning methods based on the
readily available daily data.

2 Methods

2.1 Data sources

The participants in the study were recruited from outpatients
attending the Endocrinology Section of the Sichuan Provincial
People’s Hospital. Participants were selected according to the
following criteria: (1) over 18 years of age; (2) diagnosed as a
T2D patient and received hypoglycemic treatment (the diagnostic
criteria for T2D were in line with China’s 2017 guidelines on
preventing and treating type 2 diabetes (Chinese Diabetes
Society, 2017)); and (3) HbA1c levels were measured on the day
of collection. (4) Researchers explained the purpose and scope of the
survey to the subjects, and those who agreed to take part were
retained in the study. Ethics approval was obtained through the
Ethics Committee of the Sichuan Provincial People’s Hospital
(approval # 2018-53).

Characteristics of participants were obtained from face-to-face
interviews and electronic medical records (EMRs). The adherence
status was defined according to the proportion of days covered
(PDC). PDC higher than 80% was regarded as good medication
compliance (Wu et al., 2020).

2.2 Outcome definition

HbA1c values on the day of visiting the clinic were measured at
the clinical laboratory of Sichuan Provincial People’s Hospital and
collected from EMRs. In this study, a value of HbA1c more than
7.0% was defined as positive and less than 7.0% was defined as
negative. Furthermore, parents who had a positive HbA1c were
considered to be needed for detection on the day of attending the
Endocrinology Section.

2.3 Data pre-processing

After data collection ended, the information was converted to an
Excel format. Each column represented a candidate variable, and
each row represented a sample. To acquire high-quality data for
modeling, a series of interventions were performed, including data
pre-screening, data imputing, and variable selection.

First, data pre-screening was carried out using the following
criteria: (1) the columns with missing values > 90% were removed,
(2) the columns with a single value occupying >90% were removed,
and (3) the columns with the coefficients of variation <0.1 were
removed.

Missing information was inevitable in clinical data, such as the
FBG value and PBG value. Missing data were filled using four
imputing methods, including simple imputing (marked as SI),
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random forest imputing (marked as RF), k-nearest neighbor
imputing (marked as KNN), and optimal deletion (marked as OD).

In order to eliminate irrelevant variables, reduce the number of
variables, and improve the accuracy of the model, variable selection
was performed. In this study, four algorithms—LASSO (Tibshirani,
1997), ridge regression (Marquardt and Snee, 1975), ElasticNet
(Simon et al., 2011), and Boruta (Kursa M B, 2010)—were used
to screen the key variables. The four aforementioned algorithms
were marked as LA, RD, EN, and BOR, respectively.

2.4 Data partition

80 % of the data were assigned as the training set and the rest as
the test set. The training set was used to train a classification model,
and the test set was used to evaluate the model performance.
Meanwhile, to assess whether the FGB value on the day was the
important variable, the original data with the FGB value were used to
train the models.

2.5 Model building

Sixteen datasets were generated in the training set by four data
imputation methods and four variable selection methods. Then, six
machine learning algorithms were employed on each dataset,

respectively, to develop a total of 112 models. Machine learning
algorithms in this study included random forest (RF), logistic
regression (LR), multilayer perceptron (MLP), extreme gradient
boosting (XGBoost), light gradient boosting machine (LGBM),
and categorical boosting (CB).

RF, an ensemble learning algorithm proposed by Breiman, is
very commonly used for classification (Breiman, 2001). Individual
decision trees are built using a random subset of the training dataset
in the training process. The final classification is then based on the
majority voting results of all decision trees (Singha et al., 2019).

LR is widely used to solve binary classification problems (Jaillard
et al., 2020). It predicts the probability of whether a dependent
variable belongs to a particular class. The principle of LR is to first fit
the decision boundary and then establish the probability
relationship between the boundary and the classification so as to
obtain the probability in the case of two classifications (Wang et al.,
2020).

MLP, also known as a feed-forward neural network, is one of the
most common deep learning approaches (Wan et al., 2018). It is
mainly used to address supervised learning problems by learning the
dependencies between the input layer (the variables) and output
layer (the classification decision) using a fully connected hidden
layer (Wang et al., 2020).

XGBoost (Chen and Guestrin, 2016), LightGBM (Guolin et al.,
2017), and CatBoost (Bentéjac et al., 2021) were the three most
popular implementations of gradient-boosting tree-based ensemble

FIGURE 1
Overview of the main modeling steps.
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TABLE 1 Characteristics of participants when grouped according to HbA1c.

Variable Identifier Parameter Total HbA1c ≤ 7.0 HbA1c > 7.0

HbA1c values 980 (100%) 467 (47.7%) 513 (52.3%)

Age X1 59.2 ± 11.9 58.3 ± 12.0 59.9 ± 11.8

Nationality X2

Han 945 (96.5%) 456 (97.6%) 489 (95.3%)

Tibetan 31 (3.2%) 9 (1.9%) 22 (4.3%)

Qiang 3 (0.3%) 1 (0.2%) 2 (0.4%)

Gender X3

Male 571 (58.3%) 267 (57.2%) 304 (59.2%)

Female 409 (41.7%) 200 (42.8%) 209 (40.7%)

Waistline (cm) X4 85.3 ± 9.5 85.0 ± 9.8 85.5 ± 9.3

BMI (kg/m2) X5 24.3 ± 3.3 24.4 ± 3.6 24.18 ± 3.1

Marital status X6

Unmarried 9 (0.9%) 7 (1.5%) 2 (0.4%)

Married 940 (96.3%) 447 (95.7%) 493 (96.1%)

Divorced 4 (0.4%) 1 (0.2%) 3 (0.6%)

Widowed 23 (2.4%) 9 (1.9%) 14 (2.7%)

Occupational status X7

Unemployed 133 (13.6%) 49 (10.5%) 84 (16.4%)

Employed 358 (36.6%) 181 (38.8%) 177 (34.5%)

Retirement 482 (49.3%) 234 (50.1%) 248 (48.3%)

Others 5 (0.5%) 1 (0.2%) 4 (0.8%)

Education level X8

Illiteracy 92 (9.4%) 31 (6.6%) 61 (11.9%)

Junior middle school 366 (37.4%) 175 (37.5%) 191 (37.2%)

High school or special secondary school 264 (27.0%) 125 (26.8%) 139 (27.1%)

College and above educational level 256 (26.2%) 136 (29.1%) 120 (23.4%)

Family history of diabetes mellitus X9

No 629 (64.8%) 304 (65.1%) 325 (63.4%)

Yes 341 (35.2%) 157 (33.6%) 184 (35.9%)

Medicare status X10

Non-reimbursement 233 (45.0%) 122 (26.1%) 111 (21.6%)

Reimbursement 285 (55.0%) 132 (28.3%) 153 (29.8%)

Previous HbA1c values (%) X11

≤7% 269 (39.8%) 216 (46.3%) 53 (10.3%)

7%–9% 328 (48.5%) 118 (25.3%) 210 (40.9%)

>9% 79 (11.7%) 16 (3.4%) 63 (12.3%)

Interval of measurement (in days) X12 212.5 ± 213.7 186.1 ± 168.9 243.5 ± 253.4

Course of diabetes (in months) X13 90.3 ± 76.5 71.9 ± 68.0 107.0 ± 80.0

(Continued on following page)
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TABLE 1 (Continued) Characteristics of participants when grouped according to HbA1c.

Variable Identifier Parameter Total HbA1c ≤ 7.0 HbA1c > 7.0

Frequency of FBG measurements X14

Irregular measurements 139 (14.2%) 59 (12.6%) 80 (15.6%)

Two to three times a week 323 (33.0%) 159 (34.0%) 164 (32.0%)

Three to four times a month 400 (40.8%) 197 (42.2%) 203 (39.6%)

Two to three times per 3 months 118 (12.0%) 52 (11.1%) 66 (12.87)

Duration of treatment regimen (in months) X15 24.8 ± 34.0 21.7 ± 29.3 27.6 ± 37.5

Number of oral drugs X16

0 71 (7.2%) 16 (3.4%) 55 (10.7%)

1 328 (33.5%) 173 (37.0%) 155 (30.2%)

2 419 (42.8%) 190 (40.7%) 229 (44.6%)

3 153 (15.6%) 81 (17.3%) 72 (14.0%)

4 8 (0.8%) 7 (1.5%) 1 (0.2%)

5 1 (0.1%) 0 1 (0.2%)

Type of insulin used X17

0 731 (74.6%) 383 (82.0%) 348 (67.8%)

1 228 (23.3%) 80 (17.1%) 148 (28.9%)

2 21 (2.1%) 4 (0.9%) 17 (3.3%)

Use of other types of drugs X18

None 804 (82.1%) 392 (83.9%) 412 (80.3%)

National medicine 11 (1.1%) 1 (0.2%) 10 (2.0%)

Chinese medicine 88 (9.0%) 41 (8.8%) 47 (9.2%)

Healthcare products 71 (7.3%) 31 (6.6%) 40 (7.8%)

Others 5 (0.5%) 2 (0.4%) 3 (0.6%)

Type of operation or other communicable diseases X19

No 775 (79.2%) 372 (80.0%) 403 (78.6%)

Abdominal surgery 114 (11.6%) 48 (10.3%) 66 (12.9%)

Thoracic surgery 31 (3.2%) 16 (3.4%) 15 (2.9%)

Others 59 (6.0%) 31 (6.6%) 28 (5.5%)

Number of comorbid diseases X20

0 500 (51.1%) 229 (49.0%) 271 (52.8%)

1 299 (30.5%) 145 (31.0%) 154 (30.0%)

2 143 (14.6%) 73 (15.6%) 70 (13.7%)

3 34 (3.5%) 19 (4.1%) 15 (2.9%)

4 3 (0.3%) 1 (0.2%) 2 (0.4%)

Hypertension X21

No 663 (67.7%) 311 (66.6%) 352 (68.6%)

Yes 317 (32.3%) 156 (33.4%) 161 (31.4%)

(Continued on following page)
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TABLE 1 (Continued) Characteristics of participants when grouped according to HbA1c.

Variable Identifier Parameter Total HbA1c ≤ 7.0 HbA1c > 7.0

Hyperlipidemia X22

No 768 (78.4%) 364 (77.9%) 404 (78.8%)

Yes 211 (21.6%) 103 (22.1%) 108 (21.0%)

With or without complications X23

No 884 (90.2%) 411 (88.0%) 473 (92.2%)

Yes 96 (9.8%) 56 (12.0%) 40 (7.8%)

Vascular complications X24

No 977 (99.7%) 465 (99.6%) 512 (99.8%)

Yes 3 (0.3%) 2 (0.4%) 1 (0.2%)

Neurological complications X25

No 926 (94.5%) 434 (92.9%) 492 (95.9%)

Yes 54 (5.5%) 33 (7.1%) 21 (4.1%)

Complications with lesions of the extremities X26

No 975 (99.5%) 466 (99.8%) 509 (99.2%)

Yes 5 (0.5%) 1 (0.2%) 4 (0.8%)

Ocular complications X27

No 973 (99.3%) 465 (99.6%) 508 (99.0%)

Yes 7 (0.7%) 2 (0.4%) 5 (1.0%)

Nephropathy complications X28

No 972 (99.2%) 461 (98.7%) 511 (99.6%)

Yes 8 (0.8%) 6 (1.3%) 2 (0.4%)

Complications (other diseases) X29

No 957 (97.7%) 453 (97.0%) 504 (98.3%)

Yes 23 (2.3%) 14 (3.0%) 9 (1.7%)

Intensity of exercise X30

None 153 (15.6%) 51 (10.9%) 102 (19.9%)

Low intensity 664 (67.8%) 321 (68.7%) 343 (66.9%)

Moderate intensity 124 (12.7%) 76 (16.3%) 48 (9.4%)

High intensity 39 (3.9%) 19 (4.1%) 20 (3.9%)

Exercise session (mins/day) X31 53.4 ± 55.4 53.5 ± 42.1 53.3 ± 65.3

Have a rational and reasonable diet X32

No 256 (26.1%) 70 (15.0%) 186 (36.3%)

Yes 724 (73.9%) 397 (85.0%) 327 (63.7%)

Sleep duration X33

Good 453 (46.2%) 223 (47.8%) 230 (44.8%)

Ordinary 333 (34.0%) 154 (33.0%) 179 (34.9%)

Lose sleep 194 (19.8%) 90 (19.3%) 104 (20.3%)

(Continued on following page)
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TABLE 1 (Continued) Characteristics of participants when grouped according to HbA1c.

Variable Identifier Parameter Total HbA1c ≤ 7.0 HbA1c > 7.0

Psychological status X34

Well 459 (46.8%) 230 (49.3%) 229 (44.6%)

General 493 (50.3%) 225 (48.2%) 268 (52.2%)

Depression 28 (2.9%) 12 (2.5%) 16 (3.1%)

Health status scores (%) X35 77.3 ± 10.8 78.3 ± 11.2 76.4 ± 10.3

EQ-5D scores X36 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1

Medication adherence X37

No 183 (18.6%) 47 (10.1%) 137 (26.7%)

Yes 797 (83.4%) 420 (89.9%) 376 (73.3%)

Use of metformin X38

None 313 (32.0%) 127 (27.2%) 186 (36.3%)

Once a day 175 (17.9%) 97 (20.8%) 78 (15.2%)

Twice a day 399 (40.8%) 198 (42.4%) 201 (39.2%)

Three times a day 92 (9.3%) 44 (9.4%) 48 (9.4%)

Dose of metformin X39

None 313 (32.1%) 127 (27.2%) 186 (36.3%)

0.25 g 50 (5.1%) 18 (3.9%) 32 (6.2%)

0.425 g 2 (0.2%) 2 (0.4%) 0

0.5 g 154 (15.8%) 60 (12.9%) 94 (18.3%)

0.75 g 1 (0.1%) 0 1 (0.2%)

0.85 g 447 (45.8%) 256 (54.8%) 191 (37.2%)

1.0 g 9 (0.9%) 2 (0.4%) 7 (1.4%)

Type of manufacturers of metformin X40

Unknown 313 (32.1%) 127 (27.2%) 186 (36.3%)

Generic drugs 205 (21.0%) 75 (16.1%) 130 (25.3%)

Guthentic drugs 458 (46.9%) 264 (56.5%) 194 (37.8%)

α-Glucosidase inhibitors X41

No 616 (62.9%) 290 (62.1%) 326 (63.5%)

Yes 364 (37.1%) 177 (37.9%) 187 (36.5%)

Sulfonylureas X42

No 637 (65.0%) 316 (67.7%) 321 (62.6%)

Yes 343 (35.0%) 151 (32.3%) 192 (37.4%)

Glinides X43

No 911 (93.0%) 439 (94.0%) 472 (92.0%)

Yes 69 (7.0%) 28 (6.0%) 41 (8.0%)

DPP-4 inhibitors X44

No 845 (86.2%) 379 (81.2%) 466 (90.8%)

Yes 135 (13.8%) 88 (18.8%) 47 (9.2%)

(Continued on following page)
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methods (Friedman, 2001). While built on structurally similar ideas,
these libraries differ slightly on how decision trees are grown or how
categorical variable data are handled, and only experimentation can
validate which performs the best.

2.6 Model evaluation

The test set was used for external validation. A confusion matrix
was used to evaluate the accuracy of classifier classification. In this
study, a confusion matrix combined with relevant economic
indicators, renamed as model benefit (MB), was used to redefine
model performance to evaluate the accuracy of classifier
classification. The test fee for HbA1c at our hospital was ¥73 per
test. The mean additional economic burden of therapeutic inertia

(Lindvig et al., 2021) was regarded as the cost of missed detection. In
accordance with the current exchange rate, the exchange rate of the
renminbi (RMB, ¥) against the Danish Krone is approximated to 1:1.
The cost of missed detection was ¥786.77. The calculation formula
was as follows:

MB ¥( ) � Total cost TC, ¥( ) −Model cost MC, ¥( ),
TC ¥( ) � Total participants × HbA1c test fee,

MC ¥( ) � TP*× HbA1c test fee + FP*× HbA1c test fee

+ FN*× cost of missed detection − TN*× HbA1c test fee,

*: TP � true positive, FP � false positive, FN � false negative,TN � true negative( ).

In addition, the area under the receiver operating characteristic
curve (AUC), area under the precision recall curve (AUPRC), and

TABLE 1 (Continued) Characteristics of participants when grouped according to HbA1c.

Variable Identifier Parameter Total HbA1c ≤ 7.0 HbA1c > 7.0

Thiazolidinediones X45

No 928 (94.7%) 438 (93.79%) 490 (95.52%)

Yes 52 (5.3%) 29 (6.21%) 23 (4.48%)

GLP-1 RAs X46

No 979 (99.9%) 466 (99.79%) 513 (100.00%)

Yes 1 (0.1%) 1 (0.21%) 0

SGLT2 inhibitors X47

No 976 (99.6%) 464 (99.36%) 512 (99.81%)

Yes 4 (0.4%) 3 (0.64%) 1 (0.19%)

Use of Chinese medicine X48

No 974 (99.4%) 467 (100.00%) 507 (98.83%)

Yes 6 (0.6%) 0 6 (1.17%)

Use of insulin X49

No 744 (75.9%) 385 (82.44%) 359 (69.98%)

Yes 236 (24.1%) 82 (17.56%) 154 (30.02%)

Dose of non-basal insulin in the morning (U) X50 2.2 ± 5.8 1.35 ± 4.76 2.95 ± 6.46

Dose of non-basal insulin in the noon (U) X51 0.4 ± 2.5 0.25 ± 2.19 0.55 ± 2.76

Dose of non-basal insulin in the afternoon (U) X52 2.2 ± 5.7 1.36 ± 4.67 2.93 ± 6.42

Dose of basal insulin (U) X53 2.0 ± 5.7 1.25 ± 4.13 2.68 ± 6.78

Times of insulin use X54

0 730 (74.5%) 381 (81.58%) 349 (68.03%)

1 104 (10.6%) 45 (9.64%) 59 (11.50%)

2 112 (11.4%) 33 (7.07%) 79 (15.40%)

3 15 (1.5%) 5 (1.07%) 10 (1.95%)

4 19 (2.0%) 3 (0.64%) 16 (3.12%)

Present FBG values (mmoL/L) X55 9.3 ± 3.56 7.12 ± 1.45 10.73 ± 3.81

BMI: body mass index. HbA1c: glycated hemoglobin. FBG: fasting blood glucose. RBG: random blood glucose. EQ-5D: EuroQol five-dimension questionnaire. DPP-4 inhibitors:

dipeptidylpeptidase-4 inhibitors. GLP-1 Ras: glucagon-like peptide-1 receptor agonists. SGLT2 inhibitors: sodium-dependent glucose transporters 2 inhibitors.
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decision curve analysis (DCA) were summarized to assess the
model performance. The contribution of each variable to the
predictive model was estimated with SHapley Additive
exPlanation (SHAP).

2.7 Sample size validation

The best model (assessed by MB) was employed to estimate
the impact of sample sizes on the predictive performance (Wu
et al., 2020). The total samples were randomly separated into the
training set and the test set at a ratio of 8:2. First, 10% of the
training set was extracted to train the model, and the AUC was
evaluated in the test set. The selected samples from the training
set increased from 10% to 100% with a stepwise increase of 10%.
These steps were repeated 10 times to generate 10 independent
repeated AUC values. The relationship of sample size with the

prediction performance of models was assessed according to the
inflection point change of the line graph. The steeper broken
line indicated that a larger sample size would improve the
prediction performance of the model, and the gentler slope
indicated that the performance of models was affected a little by
the sample size.

Above all, the concise workflow for the development and
validation of models is summarized in Figure 1.

2.8 Statistical analysis

The continuous variables were described by mean and
standard deviation, whereas categorical variables were
expressed in terms of frequencies and percentages.
Multivariate analyses were performed to identify the factors
associated with the model performance. Multivariate analysis

TABLE 2 Detailed information of 16 datasets.

Number Imputing methods Screening methods Number of variables Number of train samples

1 KNN BOR 14 784

2 KNN EN 33 784

3 KNN LA 33 784

4 KNN RD 16 784

5 OD BOR 12 767

6 OD EN 29 767

7 OD LA 29 767

8 OD RD 18 767

9 RF BOR 13 784

10 RF EN 33 784

11 RF LA 33 784

12 RF RD 17 784

13 SI BOR 14 784

14 SI EN 33 784

15 SI LA 33 784

16 SI RD 16 784

TABLE 3 Summary of the performance of the five best models (excluded the FBG value).

ID Algorithms No. of datasets Parameters MC(¥) AUC Accuracy AUPRC

Model 1 LGBM 12 Max depth = 1 3163.800 0.852 0.811 0.845

Subsample = 0.1

Model 2 CB 12 N estimators = 96 −13950.450 0.850 0.791 0.840

Model 3 RF 12 N estimators = 197 −14031.600 0.840 0.770 0.839

Model 4 MLP 12 Activation = tanh; hidden layer sizes= (100, 50, 1); solver = sgd −16221.600 0.816 0.755 0.824

Model 5 XGB 12 Gamma = 0.1; max depth = 3; subsample = 0.7 −18249.300 0.848 0.781 0.861
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was performed by multi-linear regression analysis. Model
development was performed using the sklearn package and
SHAP package in Python (Python Software Foundation,
Python Language Reference, version 3.6.8) on PyCharm
(developed by JetBrains.r.o., version 11.0.4). The grid search
technique was applied to calculate hyperparameter values
optimally.

3 Results

3.1 Participant characteristics

Overall, 980 patients completed the survey, among which
571 were male and 409 were female. The mean age was 59.2 ±
11.9 years. A total of 513 patients were defined as positive (52.3%).
Participants were grouped according to the HbA1c value, and
detailed characteristics of the participants are shown in Table 1.

After data pre-screening, 15 variables were removed
(nationality, marital status, with or without complications,
vascular complications, neurological complications,

complications with lesions of the extremities, ocular
complications, nephropathy complications, complications
(other diseases), glinides, thiazolidinediones, GLP-1 Ras,
SGLT2 inhibitors, SGLT2 inhibitors, and the use of Chinese
medicine).

3.2 Dataset building

A total of 60 datasets were set up by applying different imputing
methods and variable selection methods with 41 variables. The
different numbers of variables and samples in each dataset are
listed in Table 2.

3.3 Model validation

A total of 192 models (whether they included FBG or not)
were validated in the test set, considered as external validation,
and the performance metrics were output. As shown in Table 3;
Figure 2, the five best models (excluded FBG) were listed in

FIGURE 2
Performance of the five best models (excluded FBG). (A) ROC curves. (B) Precision–recall curves. (C) Calibration plots. (D) DCA plots.
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sequence according to the MB value. The five best models were
trained in the No. 12 dataset (applied modified random forest as
the imputing method and Ridge as the selection method). The
MB, AUC, accuracy, and AUPRC values of the best model
(model 1) were 3163.800 (¥), 0.852, 0.811, and 0.845,
respectively.

As listed in Table 4; Figure 3, the five best models (included FBG)
were trained in No. 11 and No. 10 datasets (applied modified random
forest as the imputing method and ElasticNet or LASSO as the selection
method). TheMB, AUC, accuracy, and AUPRC values of the best model
(model 1) were 43475.750 (¥), 0.972, 0.944, and 0.974, respectively. The
calibration and DCA curves also displayed excellent predictive

FIGURE 3
Performance of the five best models (included FBG). (A) ROC curves. (B) Precision–recall curves. (C) Calibration plots. (D) DCA plots.

TABLE 4 Summary of the performance of the five best models (included the FBG value).

ID Algorithms No. of datasets Parameters MC(¥) AUC Accuracy AUPRC

Model 1 LGBM 10 Max depth = 5 43475.750 0.972 0.944 0.974

Subsample = 0.1

Model 2 CB 10 N estimators = 67 43475.750 0.971 0.944 0.978

Model 3 LGBM 11 Max depth = 5 43475.750 0.972 0.944 0.974

Subsample = 0.1

Model 4 CB 11 N estimators = 67 43475.750 0.971 0.944 0.978

Model 5 RF 10 N estimators = 147 42745.750 0.974 0.939 0.980
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performances (Figures 2C, D; Figures 3C, D). The model that included
FBG produced superior forecast performance compared to the model
that excluded the FBG value.

3.4 SHapley Additive exPlanation evaluation

SHAP was used to interpret the results from the best model.
The result of SHAP in the best model (excluded FBG) is shown
in Figure 4. As shown in Figure 4A, SHAP evaluation quantifies
the contribution of a feature in a single sample. As results in
Figure 4B, previous HbA1c values, having a rational and
reasonable diet, course of diabetes, BMI, interval of
measurement, duration of treatment regimen, type of
manufacturers of metformin, age, waistline, and marital
status were the 10 most important variables.

The results of the contribution of variables in the best model
(included FBG) are shown in Figure 5. As illustrated in
Figure 5A, waistline, previous HbA1c values, interval of
measurement, number of oral drugs, psychological status,
EQ-5D scores, type of manufacturers of metformin, and FBG
values provided a positive contribution to the SHAP value,
while exercise session and course of diabetes provided a
negative contribution. As presented in Figure 5B, the
10 most important variables were FBG values, previous

HbA1c values, having a rational and reasonable diet, health
status scores, type of manufacturers of metformin, interval of
measurement, EQ-5D scores, occupational status, and age.

3.5 Sample size assessment

The adequacy of the sample size was verified using the
resampling bootstrapping method, and the results are plotted
in Figure 6. The AUC gradually increased and the dispersion of
the AUC value decreased as the percentage of the sample size
increased. When the sample size reached 60%, the curve
flattened. The results indicated that the performance of the
model might be slightly affected when expanding the
sample size.

3.6 Multivariate analysis

As shown in Table 5, the number of samples could
significantly affect the model prediction performance,
including MB, AUC, accuracy, precision, and recall (p <
0.01). We found that the number of variables could affect the
MB and recall of the prediction model significantly (p < 0.01).

FIGURE 4
Results of SHAP in the best model (excluded FBG). (A) SHAP value contribution graph of each indicator of a single sample. (B) Complete distribution
of the SHAP values for the top 10 variables.
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MB and AUC were influenced by screening methods (p < 0.05).
Precision was affected by imputing methods (p < 0.01).

4 Discussion

In this research, we developed a total of 192 models (whether
they included FBG or not) for the prediction of patients with poor

glycemic control in patients with T2D. The MB, AUC, and AUPRC
values of the best model were 43475.750 (¥), 0.972, 0.944, and 0.974,
respectively. FBG values, previous HbA1c values, having a rational
and reasonable diet, health status scores, type of manufacturers of
metformin, interval of measurement, EQ-5D scores, occupational
status, and age were the most important contributors to the
prediction model.

In recent years, with the continuous development of artificial
intelligence techniques, machine learning algorithms have been
applied increasingly in clinical prediction models, and disease
prediction models have begun to become a hot spot in clinical
research. According to the TRIPOD checklist (Collins et al., 2015),
the performance measures (with CI) for the prediction model should
be reported. The AUC on validation data has represented the
prediction abilities of models in most studies (Chan et al., 2021;
Gibbons et al., 2021; de Souza et al., 2022; Yu et al., 2022). In
addition, some prediction models have been internally validated by
Harrell’s concordance index, the Brier score, and a satisfactory
calibration curve (Qu et al., 2021; Lo-Ciganic et al., 2022). These
aforementioned performance metrics pay more attention to the
accuracy of the model and result in less clinical cost caused by wrong
prediction or negative predictive value. In this study, we explored a
novel measure that could overcome the limitation. Referring to the
principles of pharmacoeconomic analysis, parameters for a
cost–benefit analysis are costs for drugs and benefits for
treatments. The worst outcomes of the absence of the HbA1c test
were considered to lead to treatment inertia in this study. The
economic burden associated with therapeutic inertia was regarded as

FIGURE 5
Results of SHAP in the best model (included FBG). (A) SHAP value contribution graph of each indicator of a single sample. (B) Complete distribution
of the SHAP values for the top 10 variables.

FIGURE 6
Results of sample size validation.
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the cost of negative predictive value, and these data were obtained
from the study in patients with type 2 diabetes in Denmark (Lindvig
et al., 2021). The fee for the HbA1c test was considered as the cost of
treatment. Therefore, the MB of the best model in the study was
43475.750 (¥), suggesting that significant gains may result from the
prediction model.

The primary goals in the treatment of patients with T2D are to
maintain blood glucose levels as close to normal as possible and to
achieve a relatively normal quality of life. Scientists early realized
that both of these goals are influenced by a multitude of somatic and
psychological factors (Rose et al., 2002; Williams et al., 2005). In
addition, studies reported that educational level, age, duration of
diabetes, BMI, and HbA1c at baseline were associated with HbA1c
(Hu et al., 2020). One research reminded that occupational
categories were relational to T2D (Baek et al., 2019). According
to the results of SHAP in our study, the 10 most important variables
were FBG values, previous HbA1c values, having a rational and
reasonable diet, health status scores, type of manufacturers of
metformin, interval of measurement, EQ-5D scores, occupational
status, and age. The relationship between HbA1c and average
glucose levels has been explored in many studies (Law et al.,
2017). Meanwhile, this study developed prediction models on the
different data (excluded FGB vs. included FGB). The results
suggested that incorporating FGB into the models can allow for
further improvements in predictive performance (3163.800 (¥) vs.
43475.750 (¥)).

In this study, multiple methods and algorithms were applied
to build models. Because of their different principles, the
methods and algorithms have different strengths and
weaknesses. Specifically, four imputing methods were used to
fill in missing values. The SI method fills with fixed values (Löw
et al., 2019): the missing value of a continuous variable is
replaced by the mean of the variable, and the missing value
of a categorical variable is filled with the median. KNN (Beretta
and Santaniello, 2016) and RF (Liao et al., 2022) are ensemble
prediction methods and put out the predictive value to fill in the
missing value of variables based on the variables without missing
value. Compared to the fixed value, the predicted value should
theoretically be similar to the true value. Meanwhile, this will
also artificially increase the connection between variables. OD is
a normal method to exclude variables with missing values, which
we recently proposed. The principle of the algorithm was to keep

the maximum sample size with no missing value by deleting
variables (columns of the table) or samples (rows of the table).
According to the results of the multivariate analysis (shown in
Table 5), methods and algorithms could significantly affect the
prediction performance. So, it is necessary to try which method
is the most suitable for data preprocessing or modeling. On the
same lines, XGBoost, LGBM, and CatBoost were
implementations of gradient-boosting tree-based ensemble
methods. The MB of LGBM was higher than that of others
both in data that excluded the FGB value or data that included
the FGB value (Table 3; Table 4), which was similar to a previous
research (Zhang et al., 2022).

5 Limitation

First, the data were collected prospectively, but our study has
the inherent limitations of a single-center retrospective analysis.
Although the sample size in our study has been demonstrated to
be suitable for modeling, more samples need to be collected in
order to verify this prediction model, or a large multicenter
sample study is desired that can substantiate the applicability
of the model. Second, due to the retrospective research, for some
variables, recall bias still exists, such as the intensity of exercise
and exercise sessions.

6 Conclusion

In summary, the present research introduced 192 machine
learning models to predict poor glycemic control in patients
with T2D and proposed a new indicator to evaluate the
performance of the prediction model. In fact, we developed a
prediction model with better classifier performance. This work
also reconfirmed that variables such as FBG values, previous
HbA1c values, having a rational and reasonable diet, health
status scores, interval of measurement, EQ-5D scores,
occupational status, and age were risk factors for glycemic
control. We are in the process of developing a mobile app or
a Web server for caregivers and patients in an effort to integrate
the glycemic control enhancement intervention into daily T2D
management.

TABLE 5 Results of multivariate analysis.

Factors MB(¥) AUC Accuracy Precision Recall

Number of samples 3149.651 −0.119 −0.02 −0.098 −0.015

p < 0.001 p = 0.002 p < 0.001 p < 0.001 p < 0.001

Number of variables −58.292 −0.001 - - −0.001

p = 0.001 p = 0.817 - - p = 0.005

Imputing methods −167.705 0.008 - 0.057 0.002

p = 0.17 p = 0.610 - p < 0.001 p = 0.196

Screening methods −36.986 0.006 0.002 -

p = 0.044 p = 0.011 - p = 0.215 -
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