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Over 50% cancer bears TP53 mutation, the highly stabilized mutant p53 protein
drives the tumorigenesis and progression. Mutation of p53 not only cause loss-of-
function and dominant-negative effects (DNE), but also results in the abnormal
stability by the regulation of the ubiquitin-proteasome system and molecular
chaperones that promote tumorigenesis through gain-of-function effects. The
accumulation of mutant p53 is mainly regulated by molecular chaperones,
including Hsp40, Hsp70, Hsp90 and other biomolecules such as TRIM21,
BAG2 and Stat3. In addition, mutant p53 forms prion-like aggregates or
complexes with other protein molecules and result in the accumulation of
mutant p53 in tumor cells. Depleting mutant p53 has become one of the
strategies to target mutant p53. This review will focus on the mechanism of
mutant p53 stabilization and discuss how the strategies to manipulate these
interconnected processes for cancer therapy.
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1 Introduction

The tumor suppressor p53 plays a central role in tumor prevention and therapeutic
response. A variety of biological process is regulated by p53 such as cell cycle arrest,
senescence and apoptosis (Molchadsky et al., 2010; Bieging et al., 2014). However, p53 is
mutated in more than 50% of tumor tissues, and most p53 mutations are missense mutations
that occur within the DNA binding structural domain (DBD) of p53 (Olivier et al., 2010;
Hainaut and Pfeifer, 2016; Vaddavalli and Schumacher, 2022). The p53 mutations not only
lose their original tumor suppressor function, but also profoundly remodel the tumor cell
transcriptome in a gain-of-function (GOF) effect which participates in tumorigenesis,
proliferation, migration and drug resistance (Muller and Vousden, 2014; Aschauer and
Muller, 2016; Stein et al., 2019). The aberrant accumulation of mutant p53 in tumors is an
important molecular basis for GOF (Jethwa et al., 2018). On the one hand, mutated p53 is
disabled from its negative feedback regulatory loop with E3 ubiquitin ligase and preventing
the degradation through the ubiquitin-proteasome pathway in a timely and effective manner,
thus accumulating abnormally in tumor cells (Haupt et al., 1997; Midgley and Lane, 1997).
Meanwhile, other biomolecules such as a member of the anti-apoptotic factor Bcl-2 family
(BGA2/BAG5), or the heat shock protein family (Hsp40, Hsp70 and Hsp90), are involved to
regulate mutant p53 stability, for example, E3 ubiquitin ligase MDM2 and Hsp70 induce
conformational changes in mutant p53 cells, and Hsp90 is recruited by BGA2 to assemble in
the mutant p53 status (Wiech et al., 2012; Yue et al., 2016). In addition, the mutant p53 on its
own structural stability hinders degradation, and p53 mutation exacerbates its own
temperature-sensitive protein de-folding, and the adhesion sequences buried in the
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hydrophobic core of p53 are exposed to the protein surface
(Ishimaru et al., 2003; Walerych et al., 2012; Soragni et al., 2016).
In this process, mutant p53 forms a complex with wild-type p53 and
its homologous family members p63 and p73, which hinders
degradation while promoting tumor development with dominant-
negative effects (DNE) and GOF effects (Xu et al., 2011; Aubrey
et al., 2018). Stabilization of mutant p53 is an important driver for
abnormal metabolic reprogramming in tumor cells, therefore,
understanding the molecular mechanism of mutant
p53 stabilization and depleting the mutant p53 in cancer is an
important therapeutic strategy.

2 Abnormal accumulation and gain of
oncogenic function of mutant p53

Mutant p53 protein undergoes extensive constitutive
stabilization in tumors and is closely related to the malignancy,

poor prognosis and recurrence of cancer (Brosh and Rotter, 2009;
Suh et al., 2011; Alexandrova et al., 2015). The accumulation of
mutant p53 in tumors contributes to its functional oncogenic
properties. A study provides strong evidence that elimination of
stable mutant p53 in the absence of wild-type p53 induces strong
cytotoxicity and suppresses tumorigenesis in vivo and in vitro
while boosting survival time in mice by 37% (Alexandrova et al.,
2015). Abnormal accumulation of p53 protein is the main feature
that distinguishes most tumor cells carrying mutant p53 from
normal cells. In addition to losing its own tumor suppressor
function (LOF), highly accumulated mutant p53 in tumor cells
is able to form a complex with wild-type p53 and inhibit the
function of wild-type p53 and MDM2-mediated ubiquitination in
a dominant-negative effect (DNE) manner. In addition, mutant
p53 gains oncogenic activity in a gain-of-function (GOF) effect,
promoting malignant tumor progression, invasion, metastasis and
chemoresistance (Figure 1) (Zhou et al., 2019; Dolma and Muller,
2022).

FIGURE 1
Gain-of-function effect of mutant p53.
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Mutant p53 has a longer half-life than wild-type p53, allowing it
to accumulate at high levels in the nucleus, which lead to genomic
and transcriptomic alterations in tumor cells. Mutant p53 is
incapable to bind to wild-type p53 DNA response element (RE)
and disabled the downstream gene expressions and functions,
however, p53 mutants trans-activates the expression of other
target genes to regulate their GOF properties, such as MYC,
CXCL1, PCNA, MAP2K3, CCNA, CCNB, CDK1, CDC25C,
ASNS, E2F5, MCM6, IGF1R, STMN1, and EGFR and tumor cell
proliferation and migration (Freed-Pastor and Prives, 2012).

At the same time, mutant p53 can also reshape the life activities
within tumor cells by binding to other interacting proteins,
involving cell proliferation and migration, metabolic
reprogramming, tumor microenvironment and immune escape,
and cell stemness maintenance (Cordani et al., 2016b). Mutant
p53 promotes epidermal growth factor receptor (EGFR) and
integrin cell surface translocation by interaction with rab-
coupled proteins, activating EGFR-related signaling and
promoting cell growth, while mutant p53 activates PI3K/AKT
signaling pathway and PD-L1 overexpression through
transcriptional inhibition of PHLPP2 expression and binding to
DAB2IP, promoting tumor growth and immune escape (Muller
et al., 2009; Valentino et al., 2017; Vokes et al., 2022). The mutant
p53 activates the RhoA/ROCK signaling axis in tumor cells to
promote translocation of GLUT1 (glucose transporter protein 1) to
the plasma membrane, thereby enhancing the Warburg effect
(Zhang et al., 2013). In addition, mutant p53 activates the NF-
κB signaling pathway to induce the expression of intracellular pro-
inflammatory factors and the recruitment of chemokines, thereby
maintaining the inflammatory state of the tumor
microenvironment and regulating tumor-stromal cell crosstalk
to promote tumor invasion and migration (Alvarado-Ortiz
et al., 2020; Garancher et al., 2020). It has been further reported
that mutated p53 abrogates the immunopreventive effect of PD-1
by upregulating IL17 signaling and depleting CD8 cells in the
tumor microenvironment, resulting in immune escape of tumor
cells (Wang et al., 2021). Meanwhile, the expression of stemness
factors such as Klf4, Oct4, Sox2, and c-Myc induced by mutant
p53 contributes to the maintenance of the phenotype of tumor
stem cells (CSCs). In addition, mutant p53 promotes suppression
of chromatin state by increasing the expression level of
H3K27me3, which triggers self-renewal of hematopoietic stem
cells (Sarig et al., 2010; Chen et al., 2019; Murakami et al.,
2019). In tumor samples expressing mutant p53, high
expression of CD44 and ALDH correlated with tumor invasion,
further emphasizing the role of mutant p53 in promoting the
expansion and self-renewal of subpopulations of CSCs(Solomon
et al., 2018).

3 Mutant p53 stabilization and
strategies to destabilize

The abnormal accumulation of mutant p53 is closely related to
the drug resistance and poor prognosis. Understanding the
mechanisms of mutant p53 stabilization and targeted strategies
are of great positive significance for tumor treatment and
prevention. The main mechanisms of mutant p53 stabilization

include three aspects: the properties of mutant p53’s own protein
structure, the regulation of E3 ubiquitin ligase, and the mediation of
molecular chaperones (Figure 2 and Figure 3).

3.1 The properties of mutant p53’s own
protein structure

The properties of the p53 protein’s own structure contribute to
the formation and stabilization of p53 higher-order polymers.
Under physiological conditions, wild-type p53 binds to DNA as a
homotetramer in the presence of a tetrameric structural domain,
during which the state of p53 shifts from folding-defolding-
refolding. Since the majority of mutant p53 is a missense
mutation that occurs in its DNA-binding structural domain. The
most mutant p53 retains the same tetrameric structural domain as
wild-type p53, mutant p53 is able to form heterotetramers with wild-
type p53. In addition to inhibiting the function of wild-type p53 in a
dominant-negative manner, the formation of heterotetramers also
forms stable complexes present in cells in a highly interactive state
(folding and defolding) with p53 mutantion. Compared to wild-type
p53, mutant p53 has a lower solubilization temperature and stronger
interaction between the folded and unfolded states, resulting in
mutant p53 being highly susceptible to protein misfolding and
accumulation in cells at 37°C. The specific property of the
temperature sensitive p53 protein confers an abnormal stability
of mutant p53, which is fundamentally tends to aggregate. In
previous knowledge, it has been assumed that the stability is not
caused by intrinsic features of mutant p53, but rather driven by
external tumor-specific events (Schulz-Heddergott and Moll, 2018).
However, mutant p53 aggregates give a new definition of mutant
p53 stabilization by its intrinsic features. Folded p53 proteins have
more flexible conformational shifts and de-folding properties after
mutation, inducing mutant p53 aggregation and stabilization in
tumor cells. In addition to its own nucleation assembly, the easily
aggregated mutant p53 mediates the bioisolation of various tumor
suppressors (including wild-type p53, p63, and p73) in the cells,
forming a relatively large complex (Xu et al., 2011). This complex is
unable to enter the gated channels of the proteasome, preventing to
be degraded and therefore stable within the cells (Rodriguez et al.,
2012).

The increased propensity for mutant p53 aggregation is mainly
achieved by exposing the aggregation nucleation sequence of the
hydrophobic core of the p53 DNA binding structural domain.
Using the ZipperDB algorithm, Goldschmidt et al. deduced that
the DBD of p53 contains several adhesion fragments known as
stereospecific zippers, which are also known as high fibrillation
propensity fragments, with residues 252–258 identified as the most
aggregation-prone fragments, called LTIITLE structures (Soragni
et al., 2016). Subsequently, Xu et al. (2011) demonstrated the
importance of LTIITLE for p53 aggregation and that the
introduction of the aggregation inhibitory mutation
I254 effectively suppressed the degree of aggregation of
p53 structural mutants in cells (Wang and Fersht, 2017). It is
undeniable that the property of temperature-sensitive protein
confers flexibility and versatility in the physiological function of
p53 protein structure, and the structural instability caused by
missense mutations greatly enhances this property of p53. The
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p53 core structural domain melts at temperatures slightly above
body temperature, allowing it to achieve a delicate balance between
correct and incorrect folding. However, this balance is very easily
disrupted by mutations that promote the formation of aggregates
(de Oliveira and Silva, 2017). The Fersht team used differential
scanning calorimetry (DSC) and spectroscopic analysis to show
that most mutants of the p53 core structural domain are denatured
by at least 50% at physiological temperatures (Wang and Fersht,
2015).

Compared with wild-type p53, the increased solvent accessible
surface area (SASA) (Li et al., 2020), increased loop flexibility
(Langenberg et al., 2020; Li et al., 2020) and exposed backbone
hydrogen bonds (BHBs) (Fernández and Scheraga, 2003; Cino et al.,
2016) of mutant p53 increase the frequency of protein unfolding and

folding transitions, raising the possibility of protein misfolding.
Notably, p53 interacts with Hsp70 and MDM2 to produce a
“pseudo-aggregation” structure with β-amyloid characteristics,
thus maintaining the stability of the p53 mutant (Wiech et al.,
2012). Similarly, structurally unstable p53 mutants exert GOF
properties by inducing co-aggregation of wild-type p53 and its
homologous family members p63 and p73, and inhibition of
aggregation therefore restores the activity of p53 wild-type
function and homologous family members by eliminating GOF
(Li and Prives, 2007; Costa et al., 2016).

Mutation of p53 exacerbates its interaction between protein
folding and de-folding, resulting in protein misfolding. Misfolded
mutant p53 is highly susceptible to nucleation and assembly,
forming amyloid aggregates. Therefore, inhibition of mutant

FIGURE 2
Mechanism of stabilization of mutant p53.
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p53 aggregation induces an active conformational shift of mutant
p53 and promotes the degradation of mutant p53. Currently,
various designer peptides or small molecules are used to
destabilize mutant p53. Designer peptides aim to inhibit mutant
p53 aggregation, direct changes in p53 protein homeostasis, and
promote protein refolding to degradation induction. Small
molecules reactivate mutant p53 and restore its wild-type
function to some extent also exhibiting a reduction in
p53 expression levels.

3.1.1 Peptide inhibitors
ReACp53 is a cell membrane-penetrating peptide, that is, the

most prominent therapeutic approach for targeting mutant
p53 aggregation, which is designed based on the p53 adhesion
sequence (LTIITLE structure). The researchers designed the
LTRITLE sequence (ReACp53) with an arginine substitution
at the position based on the side chain arrangement in the
LTIITLE structure (Soragni et al., 2016). ReACp53 can inhibit
aggregation by covering the adhesion sequence of mutant
p53 exposed to the protein surface through the structural
complementary property. ReACp53 functions in the
aggregation phase of p53 dynamic equilibrium to rescue
mutant p53 function, and ReACp53 possesses good targeting
to mutant p53 and exhibits good anti-tumor activity in vivo and
in vitro. In primary prostate cancer (PCa), ReACp53 inhibits
mutant p53 aggregation and degrades mutant p53 in a manner
that increases protein ubiquitination, while increasing the
sensitivity of tumor cells to chemotherapeutic agents (Zhang
et al., 2020; Neal et al., 2021).

3.1.2 p53 reactivators
Maintaining the mutant p53 native state is an important way to

inhibit aggregation (Pedrote et al., 2018). In the last two decades of
research, several mutant p53 reactivators have been developed for
the targeted treatment of mutant p53. The compounds such as
PRIMA-1, PK083, and COTI-2 have entered preclinical studies.
PRIMA-1 (2,2-dihydroxymethyl-1-azabicyclo [2.2.2]octan-3-one)
is a mild alkylating agent, which can be converted to active Michael
receptor methylene quinuclidinone (MQ) in vivo to covalently
bind to cysteine residues in the p53 core region, mainly Cys124 and
Cys277, thereby promoting the refolding of p53 protein into an
active conformation and exert anti-tumor function (Zhang et al.,
2018). PRIMA-1-mediated refolding of mutant p53 causes the
adhesion sequences exposed on the protein surface to be greatly
reburied in the hydrophobic core of p53 protein, thus reducing the
nucleation propensity of mutant p53 and inhibiting the formation
of mutant p53 aggregates. While effectively inhibiting the
formation of mutant p53 aggregates, PRIMA-1 further restores
the ubiquitination of mutant p53 and promotes the degradation of
mutant p53. Further data suggest that the cytotoxicity caused by
PRIMA-1/APR-246 is related to the degradation of p53 after
p53 refolding (Russo et al., 2010; Jaskova et al., 2020). (Table 1).

3.2 E3 ubiquitin ligase inactivation with
mutant p53 stabilization

The ubiquitination modifications are one of the major
influences on the accumulation of mutant p53 in tumor cells,

FIGURE 3
Therapeutic strategy for targeted degradation of mutant p53.
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which is determined by both the altered ubiquitination efficiency
and the dysregulation of the p53-MDM2 negative feedback
regulatory loop. In normal cells, wild-type p53 undergoes a
series of post-translational modifications such as
phosphorylation, acetylation, methylation and glycosylation to
regulate p53 activity under the stimulation of stress conditions.
The acetylation of Lys residues in p53 protein to stabilize p53 and
promote its accumulation in the nucleus and enhance
p53 transcription, and methylation modifications to enhance
p53 stability and promote its occurrence and accumulation.
Post-translational modifications inhibit MDM2-mediated
p53 ubiquitination and enhance p53 stability and activity,
allowing p53 to be highly expressed and exert tumor
suppressive functions (Kruse and Gu, 2009; Levine and Oren,
2009). Persistent high expression of p53 is detrimental to cell
survival. A highly ordered intracellular regulatory mechanism
facilitates the resolution of one of the problems, namely,
ubiquitination of p53 promotes deacetylation of p53. Since
MDM2 is a classical p53 downstream target gene and its
expression is regulated by p53, high expression of
MDM2 occurs after p53-activated transcription. High
expression of MDM2 leads to p53 deacetylation and
destabilization and promotes p53 degradation via the ubiquitin-
proteasome pathway. The negative feedback regulatory loop
formed between p53 and MDM2 ensures the dynamic
equilibrium of p53 under stress conditions, maintaining it in a
low expression state (Hock and Vousden, 2010). However,

compared with wild-type p53, the ubiquitination modification
of mutant p53 is far from sufficient to effectively induce its
degradation. On the one hand, the distortion of the
conformation of the DBD region of mutant p53 alters the
binding mode of p53 to MDM2 with temperature-sensitive
factors. The mutant p53 DBD provides a secondary binding site
for MDM2 and facilitates the interaction between MDM2 and
mutant p53 with the involvement of the MDM2 nomenclature
domain, resulting in a much lower ubiquitination efficiency of
mutant p53 by MDM2 than wild-type p53 (Lukashchuk and
Vousden, 2007). On the other hand, it is associated with the
malfunction of the p53-MDM2 negative feedback regulatory
loop. In the p53-MDM2 negative feedback regulatory loop,
mutant p53 cannot effectively activate MDM2 transcription due
to loss-of-function effect (Muller et al., 2008). Moreover,
p53 proteins with structural mutations have high affinity to the
central acidic structural domain of MDM2 and can interfere with
RING-mediated ubiquitination to inhibit the E3 ubiquitin ligase
activity of MDM2 (Yang et al., 2019). Although mutant p53 is
observed to be regulated by post-translational modifications
similar to wild-type p53 in tumor cells, the fact that mutant
p53 interferes with the self-activation of MDM2 molecules
contributes to reduced mutant p53 ubiquitination, resulting in
increased stabilization and decreased destabilization of mutant
p53 in tumor cells, ultimately leading to aberrant accumulation of
mutant p53 in tumor cells and promoting tumor development
(Ahn et al., 2014).

TABLE 1 Clinical trials targeting degradation of P53 in cancer therapy, sourced from the ClinicalTrials.gov database (https://clinicaltrials.gov/ct2/home).

Role Compound Disease Phase NCT
number

Mechanism of actin

Self-structure
characteristics

PRIMA-1 Oesophageal carcinoma Phase
Ib/II

NCT02999893 Reactivation of mutant p53 and inhibition of
aggregation

High-grade serous ovarian cancer Phase
Ib/II

NCT02098343

AML or MDS Phase II NCT03931291

MDS Phase III NCT03745716

COTI-2 Advanced or recurrent malignancies Phase I NCT02433626 Reactivation of mutant p53

ATO Refractory cancer Phase II NCT04695223 Metamorphic agents, Promotion of mutant
p53 ubiquitination

Refractory solid tumors Phase II NCT04869475

Molecular chaperones Geldanamycin Epithelial ovarian cancer, fallopian tube cancer,
primary peritoneal cancer

Phase I/II NCT02012192 Hsp90 inhibitor

IPI-504 Non-Small Cell Lung Cancer Phase II NCT01362400 Hsp90 inhibitor

Prostate Cancer Phase II NCT00564928

Atorvastatin Colorectal carcinoma Phase II NCT04767984 Disruption of DNAJA1 interaction with
mutant p53

Lovastatin Ovarian Cancer Phase II NCT00585052 Disruption of DNAJA1 interaction with
mutant p53

SAHA Advanced cancers Phase I NCT02042989 HDAC6 inhibitor

Other degradation
strategies

Zn(II) Metastatic colorectal cancer Phase II NCT03898102 Autophagy agonists
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The chaperone-associated E3 ubiquitin ligase CHIP (the
C-terminus of Hsc70-interacting protein) is a key component of
the molecular chaperone complex and usually marks abnormal and
misfolded polypeptides for degradation (Ahmed et al., 2012).
Consistently, CHIP induces proteasomal degradation of wild-type
p53 and mutant p53 associated with Hsc70 and Hsp90 chaperones
(Esser et al., 2005). However, this was extended in a study in which
refolded mutant p53 was ubiquitinated and degraded through a
different pathway, distinguishing fromMDM2, and CHIP-mediated
ubiquitination was specific to mutant p53 (Lukashchuk and
Vousden, 2007). Moreover, the abnormal mutant
p53 ubiquitination was related to other factors. It was found that
the BAG structural domains contained in the anti-apoptotic factors
Bcl-2 family members BAG2 and BAG5 are able to interact with
mutant p53, and this BAG-mutant p53 interaction blocks the
binding of MDM2 and CHIP to mutant p53, which in turn
promotes the accumulation and GOF of mutant p53 in
tumorigenesis, as is indicated that co-expression of BAG5 in
H1299 cells in a dose-dependent manner significantly reduced
the interactions of mutant p53-MDM2 and mutant p53-CHIP
(Arakawa et al., 2010; Yue et al., 2015; Yue et al., 2016).

In addition, other ubiquitin ligases play important roles in
regulating mutant p53 stability, such as TRIM21, Pirh2, bTrCP1,
WWP1, and RNF128. The E3 ubiquitin ligase TRIM21
(Tripartite motif containing-21) as a critical E3 ubiquitin
ligase of mutant p53 was found to bind specifically to
p53 R175H (Liu et al., 2023), resulting in ubiquitination and
degradation of mutant p53 to suppress mutant p53 GOF in
tumorigenesis. TRIM21 shows low expression in a variety of
tumors and is closely associated with poor prognosis of tumor
patients (Zhou et al., 2018; Zhou et al., 2021). However, the low
expression of TRIM21 was found to be significantly correlated
with the high expression of mutant p53 in the correlation analysis
(Liu et al., 2023). This result suggests that although
TRIM21 degrades mutant p53 in a R175H mutant-specific
binding manner, its low expression level in tumor tissues
carrying mutant p53 leads to the accumulation of p53 R175H
mutants and promotes the GOF effect of mutant p53. Pirh2
(RING-H2 protein), WWP1(WW domain-containing ubiquitin
E3 ligase 1), RNF128(RING finger protein 128) all have
E3 ubiquitin ligase protein members that regulate wild-type
p53 homeostasis through ubiquitination modifications, but
they also exhibit E3 ubiquitin ligase activity against mutant
p53 and are involved in regulating mutant p53 stabilization
(Laine and Ronai, 2007; Chen et al., 2013; Yan et al., 2014).

Since E3 ubiquitin ligase regulates the homeostasis of mutant
p53 by the ubiquitin-proteasome pathway, therefore, alterations of
the E3 ubiquitin ligase can be the strategy to manipulate mutant
p53 levels.

3.2.1 Arsenic trioxide (ATO)
ATO induces the expression of the E3 ubiquitin ligase Pirh2,

which promotes the physical interaction of Pirh2 with mutant
p53 protein to form polyubiquitination and induces mutant
p53 degradation. Ectopic expression of Pirh2 or ATO treatment
significantly reduced the level of mutant p53. Ectopic expression of
Pirh2 in combination with ATO treatment further reduced the level
of mutant p53. The ability of Pirh2 E3 ligase to degrade mutant

p53 was confirmed to be enhanced by ATO treatment (Yan et al.,
2014). In addition, ATO restoration of mutant p53 elucidates the
mechanism of mutant p53 degradation from a novel perspective,
arsenic in ATO binds to a cryptocysteine triplet to rescue structural
p53 mutants, and arsenic binding stabilizes the DNA-binding loop-
sheet-helix motif and the entire β-sandwich fold, conferring thermal
stability and transcriptional activity to the p53 mutant. Promoting
mutant p53 degradation from a refolding perspective (Chen et al.,
2021). (Table 1).

3.2.2 Novel nanomaterials
Zeolite imidazolate framework-8 (ZIF-8), a non-toxic and

biocompatible nanomaterial consisting of zinc ions as metal
nodes and 2-methylimidazolate as a junction molecule,
exhibited extensive mutant p53 degradation. This performance
was attributed to the material characteristics of ZIF-8, where ZIF-
8 catabolism in acidic endosomes sustained elevated intracellular
Zn and decreased intracellular GSH:GSSG ratio which in turn led
to enhanced mutant p53 glutathionization and ultimately
polyubiquitination and mutant p53 degradation (Zhang et al.,
2021); Cerium oxide nanoparticles induce a K48 ubiquitination-
dependent degradation of broad-spectrum mutant p53 protein,
that is, dependent on dissociation of mutant p53 protein from
heat shock protein Hsp90/70 and an increase in reactive oxygen
species (ROS) (Zhang et al., 2023).

3.3 Molecular chaperones and mutant
p53 stabilization

Molecular chaperones are involved in important intracellular
life events chaperone proteins of the Hsp70 and Hsp90 families are
key players in cellular events and protect aberrant proteins from
degradation. The key premise for mutant p53 to have the GOF effect
is to stabilize protein through Hsp90/Hsp70/Hsp40 chaperone
mechanism, thus protecting mutant p53 from being degraded by
ubiquitination of MDM2 and other E3 ligands (Muller et al., 2008;
Wiech et al., 2012). The activity of Hsp70 and Hsp90 is regulated by
the co-chaperone Hip protein, which enhances the interaction of
Hsp70 with the guest protein by stabilizing the ADP-bound form
(Dahiya et al., 2019).

Hsp40 isoform DNAJA1 was identified as a structurally mutated
p53 binding protein that promotes stabilization of misfolded
conformational mutant p53 proteins through physical
interactions and protects mutant p53 from CHIP-mediated
degradation. DNAJA1 contains three other conserved regions,
including a glycine/phenylalanine-rich structural domain, a zinc
finger structural domain, and the C-terminus. The C-terminus of the
DNAJA1 CAAX motif is critical for its ability to stabilize mutant
p53, which regulates the farnesylation and inhibition of
DNAJA1 farnesylation promotes mutant p53 degradation and
inhibits mutant p53-driven oncogenesis. DNAJA1 controls the
fate of misfolded mutant p53 via the mevalonate pathway
(Parrales et al., 2016), which blocks E3 ubiquitin ligase CHIP-
mediated degradation of mutant p53 in a competitive binding
manner and enhances mutant p53 stability (Xu et al., 2019).
Molecular docking data showed that Glu198 and Ala138 of
mutant p53 and Pro84 and Lys125 of DNAJA1 were essential for
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the binding. Therefore, DNAJA1 can be used as an important drug
target for targeted degradation of mutant p53 (Tong et al., 2021).

Hsp90 plays a key role in the conformational stabilization and
maturation of mutant oncogenic signaling proteins. These include
steroid hormone receptors, receptor tyrosine kinases (HER-2),
signaling kinases (Bcr-Abl, Akt, and Raf-1) and mutant p53
(Neckers and Workman, 2012). Many mutant p53 proteins are
impaired in their conformationally sensitive core structural domains
and form abundant stable complexes with Hsp90 in tumor cells.
This stable mutant p53-specific interaction with Hsp90 chaperones
in cancer cells is hypothesized to be related to the aberrant
stabilization of mutant p53. On the one hand, Hsp90 binding in
the mutant p53-MDM2-Hsp90 ternary complex hides the Arf
binding site on MDM2 and blocks the function of MDM2; On
the other hand, the presence of the Hsp90 complex also inhibits
CHIP activity (Li et al., 2011b). Histone deacetylases (HDAC) are
enzymes that regulate the deacetylation of many histone and non-
histone proteins, thereby affecting a wide range of cellular processes.
Histone deacetylase 6 (HDAC6) is a unique histone deacetylase with
two functional catalytic structural domains (DD1 and DD2) and a
ZnF-UBP structural domain (ubiquitin binding structural domain,
BUZ) that regulates many biological processes including gene
expression, cell motility, immune response and degradation of
misfolded proteins (Liu et al., 2021). Hsp90 is one of lysine
deacetylase substrates of HDAC6, the Hsp90/HDAC6 chaperone
mechanism protects mutant p53 from degradation by CHIP and
MDM2. In conclusion, the stable interaction of mutant p53 high
expression and activated Hsp90 effectively inhibits MDM2 and
CHIP activity, leading to their abnormal stabilization. Disrupting
the Hsp90 system by depleting the Hsp90 core protein or
pharmacologically inhibiting Hsp90 ATPase activity with a
competitive ATP pocket inhibitor releases mutant p53 from the
complex and reactivates endogenous MDM2 and CHIP for mutant
p53 degradation. However, interestingly, a recent study has
uncovered a new mechanism by which Hsp90 stabilizes mutant
p53, again providing new ideas for targeting molecular chaperones
to degrade mutant p53. Members of the BGA family of proteins are
able to induce mutant p53 stabilization by binding preferentially to
p53 structural mutants in tumor cells carrying mutant p53. Further
Hsp90 is involved in the formation of higher-order polymers of the
BAG2-mutant p53 complex under the recruitment of BAG2,
facilitating the propagation and maintenance of the aggregates.
Silencing of BAG2 and inhibition of Hsp90 activity effectively
suppressed proliferation and metastasis under mutant
p53 aggregation reinforcing the role of Hsp90 in regulating
mutant p53 stability (Huang et al., 2023).

3.3.1 Hsp90 inhibitors
Pharmacological reduction of mutant p53 stability has

extensively investigated. In particular, inhibition of the heat shock
protein 90 (Hsp90) and histone deacetylase 6 (HDAC6) chaperone
complexes to stabilize mutant p53 remains the most studied
approach to mutant p53 destabilization. The Hsp90 inhibitor
geldanamycin reduced mutant p53 expression in cancer cell lines
and simultaneously refolded mutant p53 into a more wild-type like
conformation. The same 17-AAG (17-allylamino-17-
demethoxygeldanamycin) inhibited the ATPase activity of
Hsp90 disrupting the complex of mutant p53 and Hsp90, and

released mutant p53 and reactivated endogenous MDM2 and
CHIP to degrade mutant p53 (Roh et al., 2013). IPI-504 (a novel
Hsp90 inhibitor) inhibited the recruitment of BAG2 to Hsp90 and
reduced \mutant p53 aggregates (Huang et al., 2023). Notably, the
mutant p53 protein, which is stabilized and mediates cellular
oncogenic addiction through interaction with the chaperone
Hsp90, becomes unstable after D-Prop treatment. The
phosphorylation of Hsp90 by PKA and its interaction with
mutant p53 is reduced by D-Prop, releasing mutant p53 for
proteasomal degradation (Barra et al., 2021). KBA01 is a natural
compound of alkaloid origin from boxwood that releases mutant
p53 from the protein complex by inhibiting Hsp90 activity while
destabilizing the HSF1-mutant p53-Hsp90 complex. This process
results in enhanced interaction of mutant p53 with MDM2 and
CHIP, promoting ubiquitination and proteasomal degradation of
mutant p53 (Wang et al., 2020).

Stable complex formation between Hsp90 and its mutant
p53 client inhibits E3 ligases MDM2 and CHIP. SAHA shows
preferential cytotoxicity in mutant p53 cancer cells by destabilizing
mutant p53 through inhibition of the HDAC6-Hsp90 chaperone
axis, this releases mutant p53 and enables its MDM2 and CHIP
mediated degradation (Li et al., 2011a). HDAC6-selective
inhibitor, A452, increased wild-type p53 levels by destabilizing
MDM2, but decreased mutant p53 by inducing MDM2 and
inhibiting Hsp90-mutant p53 complex formation. Interestingly,
HDAC6 levels inversely correlated with p53 acetylation at lysines
381/382 associated with p53 functional activation (Ryu et al.,
2017). Resveratrol, an HDAC6 inhibitor, increases the
acetylation level of Hsp90 and decreases Hsp90 activity, and
disrupts mutant p53 binding to Hsp90, leading to mutant
p53 destabilization. In fact, inhibitors such as FR901228 (Shetty
et al., 2021), Trigonelline A (Tanveer et al., 2023), and
Colletofragarone A2 (CF) (Sadahiro et al., 2022) all cause
Hsp90-dependent mutant p53 depletion.

3.3.2 DNAJA1 antagonists
The mevalonate pathway contributes to mutant

p53 stabilization. Specific reduction of mevalonate 5-phosphate
by statins or mevalonate kinase knockdown induces CHIP
ubiquitin ligase-mediated nuclear export, ubiquitination, and
mutant p53 degradation by impairing the interaction of mutant
p53 with the DNAJA1. Knockdown of DNAJA1 also induced CHIP-
mediated mutant p53 degradation, and its overexpression
antagonized statin-induced mutant p53 degradation (Parrales
et al., 2016).

Some compounds provide unique solutions for the interaction of
DNAJA1 with mutant p53, which bind to DNAJA1 via tyrosine 7
(Y7), lysine 44 (K44) and glutamine 47 (Q47), and creat a
competitive relationship with mutant p53, allowing mutant
p53 to free itself from the stabilizing mechanism of DNAJA1,
enhancing the E3 ubiquitin ligase for ubiquitination of mutant
p53 for degradation (Nishikawa et al., 2022).

GY122 screening from a drug library specifically disrupted the
binding between mutant p53 and DNAJA1. GY1-22 significantly
reduced p53 R172H protein levels and activated gene
p21 expression, GY1-22 not only eliminated mutant p53 but also
restored the tumor suppressive function of wild-type p53 by
eliminating the dominant negative effect of mutant p53, further
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combination of atorvastatin significantly reduced mutant
p53 protein levels (Tong et al., 2021). (Table 1).

3.4 Regulation of redox homeostasis and
autophagic degradation of mutant p53

In normal cells, p53 plays an important role in ROS
detoxification, maintaining low levels of oxidants; whereas tumor
cells exhibit elevated levels of ROS (Cordani et al., 2020). Mutant
p53 proteins can sustain ROS production, thereby promoting
chemoresistance and proliferation in cancer cells. Cells expressing
mutant p53 show reduced expression of ALDH4A1 and decreased
NRF2 activity, leading to defects in ROS detoxification and cell
survival (Dolgacheva et al., 2019). Mutant p53 can further stabilize
its own expression by regulating redox homeostasis to obtain pro-
cancer functions such as drug resistance. Further, mutant
p53 isoforms have been shown to regulate various antioxidant
cellular systems or enzymes in different ways compared to wild-
type p53 functions. The NOX4 protein is the catalytic subunit of the
NADPH oxidase complex that catalyzes the reduction of molecular
oxygen to various ROS (Neckers and Workman, 2012), mutant
p53 enhances NOX4 expression with a modest increase in ROS to
promote cancer cell proliferation and survival. Where NADPH
stabilizes mutant p53 in a physically binding manner (Asher
et al., 2002).

Inhibition of AMPK phosphorylation leads to stimulation of
the mTOR pathway. Expression of mutant p53 inhibits BECN1,
DRAM1, ATG12, SESN1/2, suppresses AMPK phosphorylation
and reduces autophagy. Mutant p53 proteins have been shown to
promote defective autophagy in cancer cells, which in turn may
lead to the accumulation of aberrant mitochondria, resulting in
ROS induction, genomic instability, and cancer development and
progression (Agarwal et al., 2016; Cordani et al., 2016a; Cordani
et al., 2018). The inhibition of autophagy by mutant p53 is
likewise responsible for its prolonged half-life and abnormal
accumulation.

Many small molecules which regulate redox levels in tumor cells
and autophagy induce mutant p53 degradation. Mn-ZnO2

nanoparticles deliver zinc-manganese double ions and ROS into
tumors to regulate the expression and function of p53 protein for
precise treatment of p53 mutant tumors. The Mn-ZnO2

nanoparticles are able to break down in the weak acidic
environment of the tumor and release Zn2+ and H2O2 by
Fenton-like reaction, which induce ubiquitination and
proteasomal degradation of mutant p53, while releasing Mn2+

and increasing ROS levels, thereby activating the ATM-p53-Bax
pathway and increasing wild-type p53 levels, thereby inhibiting
tumor cell survival and proliferation (Wang et al., 2023).

NSC59984 induced ROS induction and its associated signaling
promoted degradation of mutant p53. NSC59984 induced
restoration of p53 pathway signaling and degraded mutant
p53 protein in colorectal cancer cells expressing mutant p53).
NSC59984 induced sustained phosphorylation of ERK1/2 in
cancer cells in the ROS-Ras-MEK-ERK2 axis and subsequent
degradation of mutant p53 protein via ERK2, at higher ROS
levels, phosphorylation of MDM2 induced by NSC59984 bound
to mutant p53 (Zhang et al., 2022).

A novel Zn (II) compound induces mutant p53 (R175H)
protein degradation via autophagy, Zn(II) restores the ability of
wild-type p53 to induce the expression of the p53 target gene
DRAM, a key regulator of autophagy (Garufi et al., 2013).
Similarly, Gamgobic acid (GA) stimulates mutant
p53 degradation and increases the sensitivity of cancer cells to
chemotherapeutic agents. GA may induce p53-R280K (MDA-MB-
231) and p53-S241F (DLD1) protein degradation via the
autophagic pathway (Foggetti et al., 2017). Bicoumarol and
curcumin are able to induce p53 degradation by inhibition of
NAD(P)H:quinone oxidoreductase 1 (NQO1) activity (Asher
et al., 2002; Tsvetkov et al., 2005). (Table 1).

3.5 PROTAC

Targeted protein degradation (TPD) is a new therapeutic
modality through direct depletion of target proteins, which
mainly utilizes two proteostasis mechanisms, the intracellular
ubiquitin-proteasome system (USP) and the lysosomal system,
to achieve target protein degradation (Xue et al., 2023).
PROteolysis Targeting Chimera (PROTAC) is currently the
dominant degradation strategy. PROTAC consists of two
binding units and a linker unit, one of which recognizes the
target protein and the other recruits the ubiquitin ligase
(E3 ligase), thereby ubiquitinating and degradation. However,
PROTACs targeting p53 mutants have been rarely reported
because of the difficulty in finding suitable binders for
p53 mutations due to the relatively smooth surface of
p53 protein. Recently, a nucleic acid aptamer-based PROTAC
has emerged to overcome this dilemma. The PROTAC is
composed of a short single-stranded oligonucleotide that binds
specifically to the p53 structural mutant R175H as the head to
recognize the target protein and a tail that recruits the ubiquitin
ligase with thalidomide-O-amido-propynyl group, and is named
dp53m-RA. dp53m-RA degrades p53-R175H in a ubiquitin
proteasome-dependent manner, but not wild-type p53 or other
p53 mutants. Importantly, dp53m-RA inhibited the proliferation
and migration of cancer cells specifically harboring the p53-R175H
mutation (Chen et al., 2015; Kong et al., 2023).

4 Summary and outlook

The p53 missense mutations are present in more than 50% of
human tumors and 75% of human tumors with altered transitions,
acting as pro-oncogenic factors. The p53mutations and their aberrant
stabilization and accumulation in tumor cells are key factors in the
malignant transformation of tumors. The GOF effect caused by
mutant p53 stabilization induces tumor-specific dependence and
resistance to chemotherapy. Degradation of mutant p53 is effective
in attenuating the oncogenic effects induced by the GOF effect of
mutant p53 in malignant tumors, especially in cancers carrying
heterozygous mutant/wild-type p53 alleles. Therefore, targeted
degradation of mutant p53 protein has great potential for
improving prognosis, prolonging survival of cancer patients and
cancer therapy. The high frequency of p53 mutations in tumors
and its intrinsic tumor suppressor function make it a potential
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promising target for cancer therapy. However, the mutant p53 protein
bears relatively smooth surface whithout a ideal drug binding pockets,
which stalled the drug development in p53. Currently, strategies for
targeted degradation of mutant p53 focus on enhancing mutant
p53 ubiquitination, inhibiting aggregate formation and disrupting
mutant p53 with other protein complexes. With the technology
development, targeted degradation of mutant p53 may be a better
strategy to remove their oncogenic effects, such as PROteolysis
Targeting Chimera (PROTAC), and Lysosome-targeting chimaeras
(LYTAC) and Autophagy-targeting chimera (AUTAC).
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