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Alzheimer’s disease (AD) is the most prevalent form of dementia affecting millions of
people worldwide. It is a progressive, irreversible, and incurable neurodegenerative
disorder that disrupts the synaptic communication between millions of neurons,
resulting in neuronal death and functional loss due to the abnormal accumulation of
two naturally occurring proteins, amyloid β (Aβ) and tau. According to the 2018World
Alzheimer’s Report, there is no single case of an Alzheimer’s survivor; even 1 in
3 people die from Alzheimer’s disease, and it is a growing epidemic across the globe
fruits and vegetables rich in glucosinolates (GLCs), the precursors of isothiocyanates
(ITCs), have long been known for their pharmacological properties and recently
attracted increased interest for the possible prevention and treatment of
neurodegenerative diseases. Epidemiological evidence from systematic research
findings and clinical trials suggests that nutritional and functional dietary
isothiocyanates interfere with the molecular cascades of Alzheimer’s disease
pathogenesis and prevent neurons from functional loss. The aim of this review is
to explore the role of glucosinolates derived isothiocyanates in various molecular
mechanisms involved in the progression of Alzheimer’s disease and their potential in
the prevention and treatment of Alzheimer’s disease. It also covers the chemical
diversity of isothiocyanates and their detailed mechanisms of action as reported by
various in vitro and in vivo studies. Further clinical studies are necessary to evaluate
their pharmacokinetic parameters and effectiveness in humans.

KEYWORDS

Alzheimer’s disease, isothiocyanates, amyloid β, phosphorylated tau, glucosinolates

OPEN ACCESS

EDITED BY

Rajesh Chandra Misra,
John Innes Centre, United Kingdom

REVIEWED BY

Ahmad Faizal Abdull Razis,
University Putra Malaysia, Malaysia
Valentina Citi,
University of Pisa, Italy

*CORRESPONDENCE

Jaya Arora,
jaya890@gmail.com,
jayaarora@mlsu.ac.in

Vinoth Kumarasamy,
vinoth@ukm.edu.my

†PRESENT ADDRESS

Vetriselvan Subramaniyan,
Jeffrey Cheah School of Medicine and
Health Sciences, Monash University,
Petaling Jaya, Selangor, Malaysia

RECEIVED 14 May 2023
ACCEPTED 04 July 2023
PUBLISHED 17 July 2023

CITATION

Khan F, Joshi A, Devkota HP,
Subramaniyan V, Kumarasamy V and
Arora J (2023), Dietary glucosinolates
derived isothiocyanates: chemical
properties, metabolism and their
potential in prevention of
Alzheimer’s disease.
Front. Pharmacol. 14:1214881.
doi: 10.3389/fphar.2023.1214881

COPYRIGHT

© 2023 Khan, Joshi, Devkota,
Subramaniyan, Kumarasamy and Arora.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations: AD, Alzheimer’s disease; AITC, allylisothiocyanate; APP, amyloid precursor protein; Aβ,
amyloid beta; BBB, blood brain barrier; ER, erucin; GLCs, glucosinolates; I3C, indole 3 carbinol; IL-1β,
interleukin-1β; iNOS, inducible nitric oxide synthase; ITCs, isothiocyanates; MAPK, mitogen activated
protein kinase; MO, Moringa oleifera; NF-kβ, nuclear factor kappa B; NFT, neurofibrillary tangles; PEITC,
phenethylisothiocyanate; p-tau, phosphorylated tau; ROS, reactive oxygen species; SFN, sulforaphan;
TNF-α, tumor necrosis factor- α.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 17 July 2023
DOI 10.3389/fphar.2023.1214881

https://www.frontiersin.org/articles/10.3389/fphar.2023.1214881/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1214881/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1214881/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1214881/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1214881/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1214881&domain=pdf&date_stamp=2023-07-17
mailto:jaya890@gmail.com
mailto:jaya890@gmail.com
mailto:jayaarora@mlsu.ac.in
mailto:jayaarora@mlsu.ac.in
mailto:vinoth@ukm.edu.my
mailto:vinoth@ukm.edu.my
https://doi.org/10.3389/fphar.2023.1214881
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1214881


1 Introduction

In the past few decades, owing to healthy habits and general
improvements in lifestyle and medication, life expectancy has
substantially increased; however, the prominent upward shift in age
distribution has increased the prevalence of chronic diseases, including
Alzheimer’s disease (AD). AD slowly affects the brain and exhibits clear
pathological changes in the hippocampus, the centre of memory and
learning (Zhang et al., 2020). In AD, the propensity of neurotoxic
proteins to form template or oligomers is higher and accelerates the
conversion and aggregation of endogenous proteins, which eventually
convert into fibrils (Schaffert and Carter, 2020). It can be sporadic or
familial and AD cases are sporadic in most instances (Dorszewska et al.,
2016). Disease modifying treatments primarily focused on reducing
amyloid beta (senile plaques, Aβ) and tau (neurofibrillary tangles) load
in the brain (Cammisuli et al., 2022). Despite many costly clinical trials
ranging from pharmacological to hormonal treatments and
immunotherapy, not even a single drug produced clinically
significant results due to suboptimal dosing of drugs, unavailability
of reliable biomarkers for early diagnosis and more specifically lack of
detailed mechanistic approaches (Lashley et al., 2018; Loewenstein,
2022). The existing medication exert only moderate reduction of
symptoms; therefore, AD remains symptomatic and can be
controlled and prevented but uncured (Fernández and Ribeiro, 2018).

According to the World Alzheimer Report (2018), there are
50 million people living with dementia worldwide, of which
70–80 percent are AD patients, and by 2050 these numbers will
be more than triple to 152 million (Patterson, 2018). From the data
provided by the World Health Organization (WHO), it is an
epidemic worldwide and has become a global burden (Cao et al.,
2020). Death from AD has increased 123 percent between
2000–2005 and more than 60 percent cases are from low to
middle income countries (Patterson, 2018). At the beginning of
21st century, AD remains a major biomedical challenge.
Pharmaceutical companies and neurobiologists around the world
are doing their efforts to develop novel FDA approved drugs such as
acetyl cholinesterase (AChE) inhibitors (Donepezil, Rivastigmine
and Galantamine) and NMDA (n-methyl D aspartate) receptor
antagonist (Memantine) but they showed several side effects in
phase II and III clinical trials. Common adverse effects of AChE
inhibitors are diarrhea, nausea, vomiting, bradycardia, muscle
twitching nightmares, etc., and memantine includes dizziness,
headache, and lethargy (Ettcheto et al., 2018; Schneider, 2022).

The discovery of new natural pharmacologically active compounds
is a widely growing field, as the synthesis of most the biomolecules is
tough task (Ramawat and Arora, 2021). Consumption of antioxidant
rich food and vegetables might improve brain function, minimize the
possibilities of cognitive impairment, retard the process of aging,
subsequent oxidation, and disease progression (Andrade et al.,
2019). It is clinically proven that they enhance cellular metabolism
and nourish brain cells; this safeguarding impact is more potent when
isothiocyanates (ITCs) rich fruits and vegetables are specifically
consumed (Esteve, 2020; Kamal et al., 2022). The propitious
attributes of fruits and vegetables are related to their nutritional and
functional components like minerals, vitamins, antioxidants and
polyphenols. All of these molecules are found in cruciferous
vegetables, however, the sulfurous compound GLCs that give them
their distinctive pungent aroma and flavour set them apart. GLCs are

stable chemically but biologically inactive and remain sequestered
within plant compartment (Verkerk et al., 2009; Alexandre et al.,
2020). Tissue damage and chewing are the main causes that lead to
the formation of biologically active derivatives of GLCs such as ITCs by
enzyme hydrolysis, which directly and indirectly regulate their activity
and have been demonstrated to exert neuroprotective properties
through multiple mechanisms (Tian et al., 2018).

Generally, there are three major hypothesis, i.e., AChE, amyloid,
and tau, which are primarily implicated in Alzheimer’s disease
management and prevention. Beside them, neuroinflammation is
another important response target involving biochemical events
activating resident cells of the central nervous system (CNS), which
may induce the entire process of AD. It is initiated by aberrant
astrocytes and microglial activation, which leads to the release of
different inflammatory mediators such as nitric oxide (NO),
prostaglandin E2 (PGE-2), reactive oxygen species (ROS), cytokines
and chemokines (Kraft and Harry, 2011). Furthermore, it elevates the
level of proinflammatory cytokines such as tumor necrosis factor (TNF-
α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), which are
responsible for neuronal death (Xia et al., 2015). Controlling
microglia and astrocytes activation can therefore be a therapeutic
approach in the prevention and management of AD. Recently, it has
been shown that ITCs possess neuroprotective effects through the
modulation of different signalling pathways (Latronico et al., 2021).
In oxidative stress and inflammation control, nuclear factor-kβ (NF-kβ)
and nuclear erythroid related factor 2 (Nrf2) are two main regulators
(Fão et al., 2019). They may primarily be attributed to their peculiar
ability to activate the Nrf2/ARE pathway (Giacoppo et al., 2015). ITCs
significantly decrease NF-kβ translocation with the inhibition of
proinflammatory cytokines (Latronico et al., 2021). Hydrogen
sulphide (H2S) is another important signal molecule in CNS; it
could represent an intriguing strategy for the treatment of
neurodegenerative diseases (Tabassum and Jeong, 2019; Sharif et al.,
2023). Beside this, it also play a key role in many aspects of human
health like in antiproliferation, cardioprotection, chemoprevention, etc.
(Martelli et al., 2020). It also interacts with redox system regulating
cellular oxidative stress and ROS (Kabil and Banerjee, 2010). There is a
strong relationship between H2S and aging, as consistent significant
decline of H2S levels has been observed in AD patients (Disbrow et al.,
2021). H2S is a relevant player accounting for different biophysiological
effects of Brassicaceae plants, for example, Allyl isothiocyanate (AITC)
from blackmustard (B. nigra), benzyl-ITC from garden cress (Lepidium
sativum), erucin form Eruca sp., B. oleirecia, etc. and 4-hydorxybenzyl-
ITC from white mustard (B. alba) are some important naturally
occurring ITCs. Among these selected ITCs, benzyl ITC is the most
effective H2S donor, exhibiting remarkable H2S release followed by
AITC (Citi et al., 2014). Recently, available literature clearly
demonstrated that the role of natural ITCs as H2S donor (Martelli
et al., 2020). It is a pleiotropic mediator that affects different element in
inflammatory cascade specially NF-kβ and Nrf2 signalling (Zhao et al.,
2023).

Another important effect of ITCs is apoptotic suppression as
they can intervene and arrest the mitochondrial apoptotic pathway
(Dinkova-Kostova and Kostov, 2012). Deposition of Aβ and
hyperphosphorylated tau proteins is a crucial event in AD as
pathology several studies demonstrated the pharmacological
potencies of ITCs against these two hallmarks and their toxicity
by intervene in its cascade such as APP cleavage, BACE1 expression,
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oligomerization of seeded proteins, phosphorylation and
dephosphorylation assembly, etc. (Morroni et al., 2018; Asif
et al., 2022). ITCs could therefore be considered as a promising
source of medicine and for the treatment and management of AD.
This review focuses on the knowledge regarding the direct and
indirect mechanisms by which GLCs-derived ITCs intervene in
inhibition of AChE, neurotoxic proteins (Aβ and tau) and
neuroinflammation cascade.

2 Glucosinolates (GLCs) and
isothiocyanates (ITCs)

2.1 Sources from foods

Glucosinolates (GLCs), a group of sulphur containing
glycosides and their hydrolysis products, i.e., isothiocyanates
(ITCs) are abundantly found in the family Brassicaceae which
encompasses our daily vegetables including cabbage, broccoli,
mustard, white radish, radish, kale, turnip, oilseed rape, collard
greens, daikon, kohlrabi, wasabi, cauliflower, Brussels, etc.
(Cancer et al., 2004; Shree et al., 2022). These metabolites
distinguish them from other plant families and are
responsible for pungent smell and bitter taste (Verkerk et al.,
1998; Barba et al., 2016). Besides this, they are also found in
Moringa oleifera (drumstick tree), a plant from the family
Moringaceae; in contrast with other Brassicaceae plants, only
aromatic GLCs have been identified in M. oleifera (Lopez-
Rodriguez et al., 2020). More than 200 GLCs have already
been characterized so far, although a small number of these
compounds are present in closely related taxonomic groups and
not all are present in plants that people consume (Fahey et al.,
2001; Agerbirk and Olsen, 2012). Its content varies between

different cultivars and plant species even in plant parts such as
seeds, stems, roots, and leaves, while the highest amount is
present in young tissues (Blažević and Mastelić, 2009). These
variations arise from several factors (genetic, nutrient and
environmental) and growth conditions (temperature, nutrient
availability and water content).

2.2 Chemical properties

GLCs are structurally thiohydroximates containing S-linked
β-glucopyranosyl and O-linked sulfate residues with different
side chains derived from amino acids (Agerbirk and Olsen, 2012).
They are synthesized by different amino acid precursors such as
phenylalanine, tryptophan, and methionine, which give rise to
molecules with side chain R (Table 1; Figure 1). All known GLCs
display structural homogeneity with different R groups in
producing their corresponding ITCs responsible for various
biological activities (Agerbirk and Olsen, 2012). On the basis
of their side chain they are characteristically subdivided into
three groups (Ali et al., 2018; Huke et al., 2021) as shown in
Table 1: i) long chain length aliphatic; ii) short to medium chain
length aliphatic (only C3 and C3 or C4 with C5) and iii) simple
aryl aliphatic such as benzyl, phenyl, hydroxybenzyl GLCs; highly
substituted aryl aliphatic such as dihydroxy, dimethoxy and
trimethoxy benzyl GLCs. C3-C5 aliphatic GLCs are commonly
found in Brassica species (Bennett et al., 2004).

ITCs are a specific type of compound derived from the
hydrolysis of GLCs along with nitriles and thiocyanates. The
entire conversion is catalyzed by endogenous myrosinase
(thioglucoside glucohydrolase) enzyme released after
chopping and chewing of raw vegetables or physical damage
such as insect attack (Oliviero et al., 2018). Myrosinase reacts

TABLE 1 Trivial name, side chain structure and dietary plant source of Glucosinolates and Isothiocyanates.

GLCs trivial name ITCs trivial
name

Side chain name and structure of R
group

Main dietary source

Aliphatic group

Sinigrin (Glucobrassicin) Allyl ITC CH2 = CH-CH2
-2-Propenyl Cabbage, horseradish, wasabi, mustard Cartea and Velasco.

(2008)

Glucoerucin Erucin CH3-S-CH2-CH2-CH2-CH2-4-Methyl thiobutyl Turnip, kohlrabi, arugula, broccoli seeds Avato and Argentieri.
(2015)

Glucoraphanin Sulforaphane CH3-SO-CH2-CH2-CH2-CH2-4-
Methylsulphinylbutyl

Broccoli, cauliflower, kale, brussels sprout, cabbage Fahey et al.
(2001)

Glucoraphenin Sulforaphane CH3-SO-CH = CH-CH2-CH2
-4-Methylsulfinyl-3-

butenyl
Radish, brussels sprout Fahey et al. (2001); Avato and
Argentieri. (2015)

Glucoraphasatin Raphasatin CH3-S-CH = CH-CH2-CH2-4- methylsulfanyl 3-
butenyl

Japanese Daikon Jaafaru et al. (2019b)

Glucoiberin Iberin CH3-SO-CH2-CH2-CH2
-3-Methylsulfinylpropyl Broccoli, cabbage Fahey et al. (2001); Cancer et al. (2004)

Aromatic group

Glucotropaeolin Benzyl ITC C6H5-CH2
-Benzyl Wasabi and mustard Mithen et al. (2000); Verkerk et al. (2009)

Gluconasturtiin Phenylethyl ITC C6H5-(CH2)2
-2-Phenylethyl Watercress, radish, turnips, broccoli, kale Cartea and Velasco.

(2008)

Glucomoringin Moringin C13H15O5
− Drumstick tree Lopez-Rodriguez et al. (2020)

Indolyl ITC

Indol-3-yl-
methylglucosinolate

Indole 3-carbinol C8H6N-CH2OH 1H-Indol-3-yl-methanol All vegetables Amarakoon et al. (2023)
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with GLCs by hydrolytically cleaving thio-linked glucose and
forms active ITCs by an unstable intermediate
thiohydroximate-O-sulfonate after immediate rearrangement
depending on the corresponding substrate (GLCs), pH,
temperature, epithiospecifier proteins (ESP), ferrous ions and
thiocyanate forming proteins (TFP) (Sikorska-Zimny and
Beneduce, 2021) as shown in Figure 2. Extraction and
isolation of GLCs and their hydrolysis product ITCs are still
challenging due to their sensitive nature. In recent years, different
methods have been developed for the detection and
quantification of GLCs and ITCs, mainly UHPLC-DAD-ESI-
MS and HPLC-DAD-ESI-MS for GLCs (Devkota, 2020) and
HPLC-DAD and UHPLC-HRMS/MS for ITCs
(Karanikolopoulou et al., 2021). If myrosinase is denatured
during ingestion, GLCs metabolism can also be triggered by
gut microbiota (Luang-In et al., 2014). In such conditions,
GLCs are absorbed in the stomach and then transit to the
small intestine and colon where they hydrolyzed by
microbiota (Barba et al., 2016). Long cooking time and high
cooking temperature (>80°C) triggered myrosinase denaturation
and significant GLCs and ITCs loss (more than 90%), but after
ingestion, gut bacteria promote the conversion of GLCs into
ITCs, which are then absorbed; therefore, a preferable method is
steaming over boiling the raw food to minimize metabolite loss
(Barba et al., 2016; Shakour et al., 2022).

2.3 Bioavailability of GLCs and ITCs

Bioavailability is an essential parameter that determines the action
of metabolites. It represents absorption, distribution, metabolism, and
excretion unlike drugs, where the oral concentration is predetermined.
It depends on the number of food products, which is highly variable
(Gupta and Robinson, 2017). It is evidently proved that ITCs are
absorbed in higher amounts by passive diffusion from the
gastrointestinal tract after ingestion into blood capillaries where they
bind with free plasma proteins (thiocarbomylation) and pass into
tissues cells where they affect their biophysiological mechanism
(Kołodziejski et al., 2019). In a recent investigation, it was observed
that broccoli converts gut microbiota to healthier profile, which
coincides with myrosinase activity (Sikorska-Zimny and Beneduce,
2021). Most studies conducted among humans revealed that
mercapturic acid pathway is involved in ITCs metabolism. One
study using human urine explained that the ITCs can be absorbed
indirectly through cylcocondensation determined by measuring plasma
ITCs level after oral dose through high performance liquid
chromatography with tandem mass spectrometry (HPLC-MS/MS)
(Zhang and Zhang, 2017). Another study conducted on a rat model
using radiolabel ITCs (14C) as an oral dose revealed the rapid
absorption of ITCs, but the structure of individuals affects
liposolubility (Chang et al., 2012). Both investigations observed that
ITCs entered into enterocytes and glutathione S-transferase (GST)

FIGURE 1
Chemical structures of glucosinolates and isothiocyanates.
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conjugated with glutathione favors internal accumulation and
concentration gradient. Kidney and liver are involved in entire
conversion because the liver contains high levels of glutathione and
highest GST activity and plays a crucial role in xenobiotic detoxification
by supporting accumulation of conjugated ITCs (Esteve, 2020). These
conjugated ITCs are converted to mercapturic acid derivatives, which
are implicated by the kidney due to the presence of γ-
glutamyltranspeptidase (γ-GT), N-acetyltransferase (AT), and
cysteinylglycinase (CGase), after they are excreted in urine (Shakour
et al., 2022).

3 Role in neuroprotection, AChE
inhibition, and neuroinflammatory
mechanism

Neurons are the building blocks of the CNS, incapable of
reproducing and replacing themselves. Several pathological
disorders including AD are caused by the accumulation of
reactive oxygen species (ROS) in cells (Deshmukh et al., 2017).
The ability of a compound to possess anti-inflammatory,
antioxidative, and/or antiapoptotic properties is currently used
to establish neuroprotective and neuroinflammatory functions
(Dinkova-Kostova and Kostov, 2012). ITCs were reported to play
a protective effect in acute and chronic AD (Kamal et al., 2022). A
variety of ITCs have been experimentally proven (Table 2) to
reduce oxidative stress, inflammation, excitotoxicity, misfolded
proteins, and mitochondrial dysfunction, and prevent
programmed cell death (Connolly et al., 2021). Through the
activation of ARE (antioxidant response element) driven

genes, ITCs are strong Nrf-2 (nuclear factor erythroid factor
2) activators. They strongly suppress inflammation via NF-kβ
(nuclear factor kappa light chain enhancer of activated β cells)
pathway (Sita et al., 2016).

A deficient and non-equilibrium cholinergic neurotransmission
is responsible for the pathophysiology of learning and memory
resulting behavioral disturbance, progressive loss of cognition and
daily routine function (Hoyer, 2004; Craig et al., 2011). In context
with the cholinergic hypothesis, decreasing the amount of
acetylcholine in the hippocampus and cerebral cortex leads to the
dysregulation of ChAT and premature loss of basal forbidden
cholinergic neurons (Burčul et al., 2018; Hampel et al., 2019).
One of the most significant properties of ITCs is AChE inhibition
implicated in acetylcholine neurotransmission (Figure 3). In one
study, 11 different ITCs were evaluated for their AChE inhibitory and
anti - inflammation properties; the most promising inhibitory
activity among 11 ITCs was demonstrated by phenyl
isothiocyanate and its derivatives. The most potent AChE
inhibitory activity was shown by 2-methoxyphenyl ITC with IC50

value of 0.57 mM. Human COX-2 enzyme was also used to evaluate
the anti-inflammatory activity, ranking phenyl ITC and 2-methoxy
phenylITC as the most potent with 99% inhibition at 50 μM (Burčul
et al., 2018). Moringine-specific benzyl ITC from Moringa Oleifera
modulated the Nrf2/AER pathway, proinflammatory biomarkers,
and apoptotic pathway in different mouse and rat models (Galuppo
et al., 2014, (Galuppo et al., 2015). In another mouse model (LPS
induced), it was found that ITCs effectively decreased TNF-α, IL-1β,
IL-6 and inhibited NF-kβ (Sailaja et al., 2022). It also downregulated
senescence as it promoted neuronal repair in in vitro Aβ induce
SH5Y5Y cells (Silvestro et al., 2021).

FIGURE 2
Enzymatic hydrolysis reaction of GLCs and their corresponding breakdown products (ESP; epithiospecifier protein).
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TABLE 2 The beneficial effects and mechanism of action of ITCs on various models of Alzheimer’s disease.

Compound or
extract

Experimental model Pharmacological effects Mechanism of action References

6-(Methylsulfinyl) hexyl
ITC (6-MSITC)

in vitro, cell line Slow down the progression of
inflammation

Slow down pro inflammatory
cytokines expression and
increased Nrf2

Chen et al. (2010)

in vitro, LPS activated murine
macrophage RAW 264 cell line

Reduced neuroinflammation Strongly suppressed COX-2,
iNOS and cytokines and
attenuated the expression of
these factors

Uto et al. (2005)

in vivo, murin AD model Decreased apoptosis and
neuroinflammation

Inhibited phosphorylation of
ERK, GSK3, decreased
inflammatory cytokines and
activate of caspase

Morroni et al. (2018)

in vitro, IMR-32 neuronal cell lines Exerted neuroprotective effect by
reducing oxidative stress

Targeted Nrf-2 mediated
oxidative stress through changes
in gene expression (DNA
microarray)

Trio et al. (2016)

Phenethyl ITC(PEITC) in vitro, cell line Decreased inflammation Initiated Nrf2, modulate Nrf2/
AER signalling pathway

Qin et al. (2015)

in vivo, transgenic mice model Reduced inflammation, activated
cytoprotective pathway

Restored Nrf2 expression Boyanapalli et al. (2014),
Dayalan Naidu et al. (2018)

in vitro LPS-activated rat astrocytes Anti-inflammatory Downregulated MAPK/ERK
signalling

Dayalan Naidu et al. (2018);
Latronico et al. (2021)

Moringin in vivo, rat model Enhanced cognition Modulated Nrf2/AER pathway
and pro inflammatory
biomarkers

Galuppo et al. (2015)

in vivo, mouse model Abolished inflammation Modulated apoptotic pathway
and downregulate pro
inflammatory cytokines

Galuppo et al. (2014)

in vitro, Aβinduced- SHSY5Y cells Promoted neuronal repair and
slowdown Alzheimer’s disease
progression

Downregulated senescence,
autophagy and mitophagy
pathway

Silvestro et al. (2021)

in vivo, lipopolysaccharide induced
C57BL/6 mice model

Immunomodulatory and anti-
inflammatory

Decreased pro inflammatory
biomarkers (TNF-α, IL-1β, IL-6)
in C2C12 myoblast, inhibited
NF-kβ

Sailaja et al. (2022)

Erucin in vitro, cell line Stopped inflammation Counteracted pro inflammatory
markers expression, inhibited
NF-kβ signalling pathway

Yehuda et al. (2012); Qin et al.
(2015)

in vitro, cell lines and in vivo, animal
model

Decreased inflammation Balanced Erk1/2, P38 and JNK
signalling by Nrf2 pathway

Wagner et al. (2015)

in vitro, LPS induced microglial cell
line

Decreased inflammation Decreased NO production,
increased H2S levels

Sestito et al. (2019)

Moringa oleifera extract in vivo, colchicine and ethyl Choline
induced rat model

Reduced neuronal cell death,
ameliorated memory impairment
and improved spatial memory

Upregulated phase II
antioxidant enzymes, SOD and
catalase

Ganguly and Guha. (2008);
Sutalangka et al. (2013)

in vivo, cadmium and alcoholic
beverage induced Wistar rats

Neuroprotection Reduced the activated astrocytes
in frontal cortex

Omotoso et al. (2019)

in vitro primary hippocampal
neurons culture

Promoted neurite outgrowth and
promoted neuronal survival

Increased NSE, decreased GFAP Hannan et al. (2014)

in vivo, NDD/Al induced temporo-
cortical degenerated mice model

Reduced neurodegeneration AChE inhibitory activity Ekong et al. (2017)

in vivo, NDD/hippocampal neuro-
degenerated rat model

Enhanced memory and cognition Maintained neuron integrity
and cholinergic transmission

Adebayo et al. (2021)

(Continued on following page)
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TABLE 2 (Continued) The beneficial effects and mechanism of action of ITCs on various models of Alzheimer’s disease.

Compound or
extract

Experimental model Pharmacological effects Mechanism of action References

in vivo, scopolamine induced mice
model with spatial memory deficit

Improved spatial memory function Altered the endogenous
antioxidants, pro inflammatory
mediators, elevatedAChE
activity and promoted
chromatolysis of cortical
hippocample neurons

Onasanwo et al. (2021)

in vivo lead acetate induced Wistar
rat model

Ameliorated oxidative stress,
inflammation and apoptosis

Protected neuronal cells via
attenuation of NF-kβ signalling

Alqahtani and Albasher
(2021)

in vivo, CCl4 induced mice model Modulated neuroinflammation and
oxidative stress

Modulated TLR4/2MyD88/NF-
kβ signalling

Mahmoud et al. (2022)

Sulforaphane in vitro, human neuroblastoma cell
line (SH-SY5Y)

Inhibited apoptosis Modulated Bax/Bcl2 Lee et al. (2013)

in vitro, murine neuroblastoma cell
line (Neuro 2A and N1E-115)

Increased proteasome activity Enhanced Nrf2 pathway Park et al. (2009)

in vivo, AlCl3 and D-galactose
induced mice model

Ameliorated cognitive impairment Modulated Nrf2/ARE pathway Zhang et al. (2014)

in vivo mice model Reduced inflammatory markers in
glial and hippocampal cells,
protected neurons

ITH12674 (melatonin
sulforaphan hybrid) induced
Nrf2 and scavenged free radicals

Michalska et al. (2020)

in vivo, scopolamine induced mice
model (C57BL/6) and in vitro
scopolamine treated primary cortical
neurons

Improved memory, cognition and
cholinergic neurotransmission

Inhibited Acetyl cholinesterase
(AChE)

Lee et al. (2014)

in vitro, Swedish mutant mouse
model (N2a/APPswe cells)

Inhibited Aβ generated
neuroinflammation and oxidation

Epigenetic modification of Nrf2 Zhao et al. (2018)

in vitro, human THP-1 macrophages
(induced by Aβ1-42)

Suppressed neuroinflammation Downregulated NF-kβ pathway
and preserved MERTK

Jhang et al. (2018)

in vitro, amyloid induced microglial
cells

Induced neuroinflammation Increased microglial phagocytic
activity

Chilakala et al. (2020)

in vitro, dopaminergic SH-SY5Y
human cells and LPS stimulated
microglial BV2 cells

Prevented mitochondrial
impairment and suppress
neuroinflammation

InhibitedHO-1 enzyme Brasil et al. (2023)

in vivo, LPS induced rat model Reduced inflammation Suppressed LPS induced NF-kβ
pathway, modulated TRAF6 and
RIPI ubiquitination by cezanne

Wang et al. (2020)

Allyl isothiocyanate
(AITC)

in vitro, neuroinflammatory model
(NDD/LPS induced N2a
neuroblastoma, BV2 murine
microglia and C6 glioma cells)

Improved outgrowth of neurite and
dysregulated apoptotic pathway

Suppressed NF-kβ/TNF-α/JNK
signalling

Subedi et al. (2017)

in vitro, cultured Schwann cells Reduced neurogenic inflammation Activated ROS dependent
TRPA1

De Logu et al. (2022a)

in vitro, murine
RAW264.7 macrophages cell line, in
vivo C57BL/6 mice

Suppressed inflammation Decreased NF-kβ,
downregulated pro
inflammatory cytokine (IL-1β)
and nitric oxide synthase,
increased Nrf-2 and heme-
oxygenase-1

Wagner et al. (2012)

in vivo, cryogenic injury mice model Increased plasticity markers level,
regulate antioxidant genes

Decreased NF-kβ, GFAP, IL1β,
IL-6, BBB permeability,
increasing GAP43 and neural
cell adhesion molecule

Caglayan et al. (2019)

Indole-3-carbinol (I3C) in vitro, NDD/LPS induced BV-2
microglia (hyper activated)

Anti-apoptotic and anti-n
-euroinflammatory activity,
reduced microglial activation in
hippocampus

Inhibited NF-kβ Lee et al. (2014)

(Continued on following page)
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Through different mechanisms (explained in Table 2), SFN
prevented cognitive impairment, reduced the Aβ and tau
biomarkers, oxidative stress, inflammation and neurodegeneration
in experimental models (Kim, 2021). SFN was able to improve
spatial and contextual memory through the Y-maze test and
counteract the Aβ aggregate induced memory deficits induced by
intracerebroventricular (ICV) injection in a mouse model (Kim,
2021). In the hippocampus and frontal cortex, SFN increased
cholinacetyltransferase (ChAT) expression, decreased
acetylcholine esterase (AChE) activity, and raised the level of
acetylcholine (AChE) (Lee et al., 2014). In another study on a
transgenic AD mouse model, it was observed that SFN not only
reduced the production and deposition of Aβ plaques in the
hippocampus and cerebral cortex but also it is associated with
neurobehavioral deficit (Zhang et al., 2015; 2017). The
neuroinflammatory inhibition is through the activation of Nrf2/
HO-1 pathway and inhibition of JNK/AP-1/NF-Kβ by SFN. SFN
significantly increased proteasome activity and enhance Nrf-2
pathway in murine neuroblastoma cell lines (Park et al., 2009). It

also modulated the Nrf2/ARE pathway in an AlCl3-and D-galactose
induced mice (Zhang et al., 2014).

Neurogenesis has been shown to be enhanced by AITC and PEITC.
AChE inhibitory activity in AD revealed that PEITC inhibited the
enzyme more effectively than benzyl ITC and AITC (Burčul et al.,
2018). In another study, PEITC inhibited Akt activation, suppressed
NO production through INF induction, and had an anti-inflammatory
effect (Okubo et al., 2010). PEITC showed a protective effect by
modulating the MAPK pathway (Ma et al., 2017). Experimental
findings revealed that in LPS-induced inflammation model, AITC
showed a neuroprotective effect mediated through downregulation
of JNK/NF-kβ/TNF-α signaling (Subedi et al., 2017). It also activated
ROS-dependent TRPA1 signaling, resulting in neurogenic
inflammation reduction in cultured Schwann cells in vitro (De Logu
et al., 2022a; De Logu et al., 2022b). PEITC decreased inflammation and
activated the cytoprotective pathway in transgenic mice model by
modulating Nrf2/AER pathway and restoring Nrf-2 expression
(Boyanapalli et al., 2014; Dayalan Naidu et al., 2018). In another
study using LPS-activated rat astrocyte culture, PEITC significantly

TABLE 2 (Continued) The beneficial effects and mechanism of action of ITCs on various models of Alzheimer’s disease.

Compound or
extract

Experimental model Pharmacological effects Mechanism of action References

in vitro, PC12 neuronal cells (NDD/
glutamate excitotoxicity)

Inhibited apoptotic pathway Inhibited caspase 8 and 3,
scavenged ROS

Jeong et al. (2015)

in vivo, mice model Suppressed neuroinflammation and
oxido-nitrosoactive stress in brain

Decreased BDNF, GSH,
increased levels of nitrites,
malondialdihyde IL-1β, TNF-α

Huang et al. (2022)

FIGURE 3
The role of GLCs derived ITCs in AChE inhibition characterized by impaired acetylcholine neurotransmission.
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downregulatedMAPK/ERK signaling and influenced the inflammatory
pathway (Latronico et al., 2021). Increasing evidences suggests that
cytochrome p450 is fundamental for brain homeostasis and function
while phase II enzyme such as glutathione S-transferase play a key role
in redox homeostasis. Modulation of these enzymes can be achieved by
ITCs, in the recent studies glucuronosyltranseferase expression increase
by sulforaphane in HepG2 cells, in another study erucin and phenethyl
ITC elevated glucuronosyltranseferase activity in rat liver slices (Abdull
Razis and Mohd Noor, 2013).

Moringa oleifera extract (MOE) decreased the neuritis
resulting from naturally occurring cellular injury, with the
development of multipolar primary process (Hannan et al.,
2014). It also suppressed oxidative stress, MDA, nitrite and
TNF-α, increased SOD and inflammation and improved
spatial memory and cholinergic neurotransmission by
reducing AChE activity and loss of cortico-hippocampus
neurons in rat model fed with M. oleifera seeds in dose
dependent manner (Onasanwo et al., 2021). Moringa oleifera
extract also scavenged free radicals produced by NO, iNOS and
nitrotyrosine increase Nrf2 in LPS-activated macrophages and
downregulated antioxidative genes; HO-1, GST-P1 and NQO-
(Jaja-Chimedza et al., 2017). In another study, it
significantly inhibited AChE and reduced neurodegeneration
in an NDD/Al - induced temporocortical degenerated mice
model (Ekong et al., 2017). Moringa oleifera - supplemented
male Wistar rats showed improved memory when evaluated by
the Morris water Maze test and significantly reduced AChE levels
in brain tissues in a dose-dependent manner (Adebayo et al.,
2021). In another observation, GMC-ITC treated neuronal cells
(SH-SY5Y) significantly alleviate oxidative stress condition by
reducing ROS level ((Jaafaru et al., 2019a). Glucomoringin ITC
(GMC-ITC) isolated from M. oleifera seeds abrogated oxidative
stress and showed neuroprotective activity against cytotoxic
neuroblastoma cells (SH-SY5Y) induced by H2O2, gene
expression study of detoxifying markers (phase II) by GMC-
ITC revealed that all involved genes significantly express
themselves. It also decreased the expression of NF-kβ and
increased the expression of Ikβ, Nrf2, SOD-1, NQO1 and Nf-
kβ respectively (Jaafaru et al., 2019b). Eruca sativa extract (ESE)
with a high amount of erucin (ER) prevented cell death and
degeneration induced by LPS in NSC-34 motor neurons exposed
to LPS-stimulated macrophage cell culture medium by inhibiting
FasL (tumor necrosis factor ligand superfamily number
6 expression) and suppressing pro-inflammatory mediators
(attenuates TLR4, COX-2 expression of TNF-α level)
(Gugliandolo et al., 2018). Erucin decreased inflammation in
different cell line models, counteracted proinflammatory marker
expression, and balanced Erk1/2, P38, and JNK signaling
(Yehuda et al., 2012; Wagner et al., 2015). Indol 3 carbinol
(I3C) is another promising candidate found in vegetables; it
reduces the free radical production in neuronal cells
(Mammana et al., 2019). It also showed the potent radical
scavenging activity by chelating already produced free radical
species (Giacoppo et al., 2015). In another study, it suppressed
the expression of NO, COX-2, and iNOS in the brain, which
prevented apoptosis and inflammation by inhibiting NF-kβ and
IB phosphorylation (Kim et al., 2014). Furthermore, it decreased
BDNF, GHS and increased TNF-α, IL1-β in mice model, it also

helped in suppression of neurodegeneration (Huang et al., 2022).
In another experiment, researchers explored the antioxidant and
anti-inflammatory activity of SFN and ERN as H2S donor
through the combination with rivastigmine in microglia and
neuronal cell line (SH-SY5Y). Result revealed that both
derivatives show significant antioxidant and anti inflammatory
activities in microglial cell line, expression of antioxidant defense
protein (GSH) was also induced in neuronal cell line. It
significantly decreased the ROS production and NO release in
microglial BV-2 cells. Further Erucin exerted a time dependent
Nrf2 activation in SH-SY5Y cells (Sestito et al., 2019). When anti-
inflammatory effect of erucin was evaluated in LPS-challenged
umbilical vein endothelial cells (HUVECs), it significantly
prevented the increase of ROS, TNF-α levels and decreased
COX-2. It also induced NF-kβ (Ciccone et al., 2022).

4 Potential role of GLCs and ITCs
against pathological hallmarks and
their neurotoxicity

The brain of people suffering from Alzheimer’s disease shows
remarkable accumulations of two neurotoxic proteins Aβ and tau
(Cao et al., 2020). So far, several Alzheimer’s plaque and tau
inhibitors from different sources are available they can target
different mechanistic steps of fibril formation. One of the
inhibitors that are widely used to stop protein aggregation is
GLCs derivatives ITCs as they are consumed as a part of our
daily diet (Lopez-Rodriguez et al., 2020). In Table 3, we have
discussed some of the GLCs derived ITCs, proposed as the
potential inhibitor of misfolded Aβ and tau aggregation and their
induced toxicity by different mechanisms and modulation of
multiple pathways (Figures 4, 5) as described earlier (Grande
et al., 2020). Recent investigations suggested that they may
directly interact with misfolded proteins during very early stages
of the aggregation cascade by binding and stabilizing unfolded
proteins and redirecting the aggregation pathways to form
amorphous nontoxic fibrils, blocking seeding and further
conformational changes that result in neurotoxicity and cell death.

6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC) from Wasabia
japonica was evaluated against amyloidosis in a murine mice model in
which 6-MSITC was induced by intra cerebroventricular injection of
Aβ1-42 oligomers. Behavioral analysis revealed that it reduced Aβ1-42
induced memory impairment in hippocampus tissues, increased ROS,
and decreased glutathione levels following Aβ1-42 injection (Morroni
et al., 2018). In another study, the authors observed that Aβ25-35 induced
mitochondrial dependent cell death was blocked by SFN through Nrf2-
associated manner (Brasil et al., 2023). Clinically, it inhibited Aβ,
reduced its burden, and increased the expression of p75NTR in an
intransgenicmousemodel (Zhang et al., 2015). In another investigation,
SFN was found to suppress Aβ deposition, improve cognition, and
locomotor function in aluminum and D-galactose-induced mouse
model (Zhang et al., 2017). It modulated the Aβ expression related
markers followed CDK5 overexpression inhibition in primary neurons,
further it reduced Aβ1-42 induced neurotoxicity and its deposition in
TgCRND8-transgenic mice brains. It also suppressed tau
phosphorylation at specific sites (Yang et al., 2023). It reduced and
altered hyperphosphorylated tau proteins in embryonic hippocampal
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TABLE 3 Beneficial effects of ITCs against pathological hallmarks and their neurotoxicity.

Plant/Compound Mechanism of action Pharmacological
effectiveness

Test scale References

Against amyloid beta oligomerization and toxicity

Wasabia japonica (6-
methylsulfinyl hexyl ITC)

Increased glutathione levels and ROS
in hippocampus by Aβ1-42 injection
were reduced

Neuroprotection against Aβ1-42 and
ameliorates Aβ1-42 induced memory
impairments

in-vivo, murine model, induced by
intra cerebrovascular injection of
Aβ1-42

Morroni et al.
(2018)

Indole-3 carbinol (I3C) High affinity molecular recognition
and reduced Aβ fragments by
heteromeric interaction

Reduced amyloid production in-vitro, biochemical method Cohen et al.
(2006)

Moringa oleifera extract Downregulated BACE1 Decreased Aβ production, rescued
cognitive impairment and enhanced
the reduced synaptic proteins synapsin,
synapsophysin, PSD93 and PSD95

in-vivo, hyperhomocysteinemia
(HHcY) induced AD model

Mahaman et al.
(2018)

Deactivated calpain by ↓ intracellular
Ca 2+, reduced ca2+ signaling and
prevent cell death

Decreased cytosolic cysteine protease
caplain activity

in-vivo, hyperhomocysteinemia
(HHcy) induced rat model (AD like
pathology)

Mahaman et al.
(2018)

Increased Aβ immunoexpression was
significantly abolished, sustained the
brain-Zn content

Decreased the aggregation and
accumulation of Aβ

in-vivo, ACR induced forty male
Sprague Dawley rat treated with MO-
ZnONP

Dahran et al.
(2023)

Sulforaphane Increased levels of HSP-70 co-
chaperons and CHIP (Aβ metabolism
influencers)

Reduced monomeric and polymeric
forms of Aβ, but do not affect m-RNA
expression, ameliorated memory
deficits

in-vivo, triple transgenic mouse model
(3×Tg-AD)

Li et al. (2018)

Decreased oxidative stress and
neuroinflammation (generator of Aβ)

Significantly inhibited Aβ aggregation,
ameliorated neurobehavioral deficits
peroxidation in brain

in-vivo, 6-month-old PS1V97L
transgenic (Tg) mice

Zhang et al.
(2015)

Modulated the amyloid expression
related markers, inhibited the
overexpression of CDK5 in primary
neurons

Reduced the Aβ1-42 deposition and
related neurotoxicity

in-vivo, TgCRND8 transgenic mice
model

Yang et al. (2023)

Inhibited cathepsin-B and caspase-1
dependent NLRP3 inflammasome
activation induced by Aβ
monomers (1–42)

Reduced Aβ induced neurotoxicity in-vitro, human THP-1 macrophages
like cells

An et al. (2016)

Alleviated several downstream
pathological changes including
oxidative stress and
neuroinflammation

Significantly inhibited the generation
of Aβ aggregates promotes spatial
learning and memory

in-vivo, PS1V97L transgenic mice
model

Hou et al. (2018)

Against tau hyperphosphorylation and toxicity

Moringa oleifera extract Not known Decreased hyperphosphorylated tau at
different sites (S-199, S-404, S-396 and
T-231)

in-vivo, hyperhomocysteinemia
(HHcy) induced rat model (AD like
pathology)

Mahaman et al.
(2018)

Reduced sensory dysfunction and
motor deficits, abolished
immunoexpression of phosphorylated
tau proteins

Reduced ACR induced neurotoxicity
and tau proteins

in-vivo, ACR induced forty male
Sprague Dawley rat treated with MO-
ZnONP

Dahran et al.
(2023)

Sulforaphane Increased levels of HSP-70 co-
chaperons and CHIP (Aβ metabolism
influencers)

Reduced protein levels of tau and
hyperphosphorylated tau, ameliorated
memory deficits

in-vivo, triple transgenic mouse model
(3×Tg-AD)

Lee et al. (2014)

Suppressed phosphorylation of tau at
specific sites, markedly suppressed the
CDK5/p25

Reduced tau protein
hyperphosphorylation in the brain and
improved synaptic plasticity

in-vivo, TgCRND8 transgenic mice
model

Yang et al. (2023)

Altered phosphorylated tau at
threonine 181 and serine991/
202 distribution within astrocytes

Reduced hyperphosphorylated tau
proteins in astrocytes under
hypoglycaemic condition

in vitro, embryonic hippocampal rat
astrocytes

Komiskey et al.
(2022)

(Continued on following page)
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rat astrocytes under hypoglycaemic condition at Th 181 and Sr 991/
202 within astrocytes (Komiskey et al., 2022). It induced NDP52 by
Nrf2 and cleared the phosphorylated tauproteins in mice model (Jo
et al., 2014).Through high affinitymolecular recognition by heteromeric
interaction of Aβ plaques, I3C were found to strongly reduce Aβ fibril
formation as observed in microscopic examination by TEM analysis
(Cohen et al., 2006).

M.oleifera is profoundly used against chronic diseases
including AD. Mitochondrial apoptotic genes profile through
GMC-ITC pre-treated SH-SY5Y neuronal cells revealed that it
protect the cells against oxidative stress via apoptotic pathway, it
significantly downregulate the expression of Bax, CASP3, CASP8,
CASP9, Apaf-1, cyt-c, p-53 genes and upregulate Bcl2 gene in

mitochondrial apoptotic signalling pathway (Jaafaru et al., 2019a).
In another study GMC-ITC from the seeds of M. oleifera
significantly decreased the expression of BACE1, APP and
increased the expression of MAPT tau genes in H2O2 induced
cytotoxic neuroblastoma cell (SH-SY5Y) (Jaafaru et al., 2019b). It
decreases Aβ production and enhance the synaptic proteins in
HHcY induced AD model bydown regulating BACE1. It also
played crucial role in Ca2+ homeostasis, as it deactivated calpain
by decreasing intracellular Ca2+ resulting cytosolic protease calpain
activity reduction in HHcY induced rat model (Mahaman et al.,
2018). In another study conducted on MO-ZnONP treated
Sprague Dawley rat model it reduced the Aβ accumulation and
helped in sustained brain-Zn content (Dahran et al., 2023).

FIGURE 4
The potential role of ITCs in Aβmetabolism and related toxicity: sAPPα and C83 (membrane associated fragment) are formed by nonamyloidogenic
pathway in which APP is cleaved by α-secretase, while in amyloidogenic pathway APP is cleaved by β-secretase producing S APPβ and C99 fragment, γ-
secretase then processed the C99 and release Aβ. ITCs prevent from amyloidogenic cleavage by inhibiting β-secretase, further it inhibits nucleation,
polymerization and plaques formation. It directly intervenes in Aβ induced neurotoxicity by altering Ca2+ homeostasis, downregulating cascade of
caspase and in reducing inflammation.

TABLE 3 (Continued) Beneficial effects of ITCs against pathological hallmarks and their neurotoxicity.

Plant/Compound Mechanism of action Pharmacological
effectiveness

Test scale References

Significantly inhibited
hyperphosphorylated tau proteins at
Ser396, Ser404 and Thr 205 site,
enhanced the ration of p-GSK-
3β(Ser9)/GSK-3β and p-Akt (Ser473)/
Akt in hippocampus

Reduced the accumulation of
phosphorylated tau in hippocampus
and related toxicity

in-vivo,streptozotocin induced rat
model

Yang et al. (2020)

Significantly expressed the
NDP52 induced by Nrf2 and facilitated
clearance of p-tau proteins

Reduced the phosphorylated tau
proteins

in-vivo, C57BL/6J mice model Jo et al. (2014)
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5 Conclusion

GLCs derived ICTs are important bioactive natural products that
are found in many Brassicaceae plants and few plants from other
families. In vitro and animal studies have reported their beneficial effects
in neuroprotection and they are reported to enhance cellular
metabolism, nourish brain cells, and reduce risk factors associated
with neurodegeneration. ITCs inhibit inflammatory mediators,
oxidative stress, cellular stress signaling, and improve behavioural
measures. They also easily cross the blood brain barrier to interact
with particular targets implicated in ADpathogenesis. However, there is
no sufficient clinical evidence to prove these effects in humans. Future
studies should focus to evaluate their pharmacokinetic parameters and
effectiveness in humans.
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