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Bile acids (BAs) are synthesized in liver tissue from cholesterol and are an
important endocrine regulator and signaling molecule in the liver and intestine.
It maintains BAs homeostasis, and the integrity of intestinal barrier function, and
regulates enterohepatic circulation in vivo by modulating farnesoid X receptors
(FXR) and membrane receptors. Cirrhosis and its associated complications can
lead to changes in the composition of intestinal micro-ecosystem, resulting in
dysbiosis of the intestinal microbiota. These changes may be related to the altered
composition of BAs. The BAs transported to the intestinal cavity through the
enterohepatic circulation are hydrolyzed and oxidized by intestinal
microorganisms, resulting in changes in their physicochemical properties,
which can also lead to dysbiosis of intestinal microbiota and overgrowth of
pathogenic bacteria, induction of inflammation, and damage to the intestinal
barrier, thus aggravating the progression of cirrhosis. In this paper, we review the
discussion of BAs synthesis pathway and signal transduction, the bidirectional
regulation of bile acids and intestinal microbiota, and further explore the role of
reduced total bile acid concentration and dysregulated intestinal microbiota ratio
in the development of cirrhosis, in order to provide a new theoretical basis for the
clinical treatment of cirrhosis and its complications.
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1 Introduction

The liver is a key hub for the crosstalk between host metabolism and gut microbiota, and
the homeostasis of BAs and the micro-ecosystem plays an important role in maintaining
human health (Shao et al., 2021). The host synthesizes primary BAs in the liver, which are
subsequently converted to secondary BAs in the gut by the gut microbiota. BAs are a
signaling molecule that mediates the liver-microecological axis and affects lipid homeostasis,
inflammatory response, fibrosis, intestinal barrier function, and ultimately affects the
severity of disease in patients with cirrhosis (Simbrunner et al., 2021). The complex
relationship between bile acids and intestinal microbiota has been identified in several
clinical trials, and elevated serum bile acid levels are strongly associated with reduced
neurological function in cirrhosis and chronic liver disease (McMillin et al., 2016). Cirrhosis
and chronic liver disease are associated with the ability of the intestinal microbiota to
interfere with the composition of BAs and the size of the BAs pool, which gradually decreases
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with the severity of the loss of compensation. In addition, BAs are
the main factor regulating intestinal microbiome, and if the
concentration of BAs in the intestinal lumen decreases, it will
lead to a decrease in beneficial flora and an increase in
pathogenic bacteria in patients with cirrhosis, and dysbiosis of
the intestinal microbiota may occur with the progression of
cirrhosis and hepatic encephalopathy (HE). Therefore, regulation
of BAs and intestinal flora has become a new strategy for the
treatment of cirrhosis as well as its complications.

2 Bile acids and hepatic-intestinal
circulation

2.1 Bile acids synthesis pathway

BAs are amphiphilic detergents, signaling molecules synthesized
in the liver from cholesterol, and are synthesized mainly through
two pathways: the classical pathway and the alternative pathway
(Figure 1) (Chiang, 2009). The classical pathway mainly synthesizes
Cholic acid (CA) and Chenodeoxycholic acid (CDCA), which
account for more than 90% of the total bile acid pool in humans;
therefore, the classical pathway is considered to be themain pathway
for bile acid synthesis (Li and Chiang, 2014). BAs are first modified
to form CA and CDCA by a microsomal cytochrome P450 7A1
(CYP7A1), cholesterol 7α hydroxylase, which is expressed only in
the liver (Hofmann, 1984). CYP7A1 acts as the rate-limiting enzyme
in the classical synthesis pathway of bile acids (Jelinek et al., 1990), a
specific enzyme that converts cholesterol to 7α-hydroxycholesterol,
which is then converted to 7α-hydroxy-4- cholesten-3-one (C4).
C4 is a serum marker that reflects the rate of BAs synthesis in the
liver, formed CA under the further action of cytochrome P450 8B1
(CYP8B1), or converted to CDCA by mitochondrial sterol 27-
hydroxylase (CYP27A1) modification (Axelson et al., 1988;

Russell and Setchell, 1992; Chiang, 2004; Chiang and Ferrell,
2020). In addition, the overall rate of bile acid synthesis is
regulated by CYP7A1, and CYP8B1 regulates the CA/CDCA
ratio in the bile acid pool (Li and Chiang, 2014).

In the alternative pathway, 27-hydroxycholesterol is oxidized
from cholesterol via mitochondrial steroid 27-hydroxylase
(CYP27A1) and then further hydroxylated by oxysterol 7α-
hydroxylase (CYP7B1) to form CDCA, most of which is
converted to α-muricholic acid (α-MCA) and β-MCA in rodents
(Fakheri and Javitt, 2012). These BAs are conjugated to the glycine
and taurine in hepatocytes tissues and are now referred to as primary
BAs or conjugated BAs; glycine is the major BAs conjugate in
humans, while BAs in rodents are mainly conjugated with
taurine (Li and Apte, 2015; Gruner and Mattner, 2021). Primary
BAs are synthesized in the hepatocytes, and stored in the gallbladder
with bile through the tubular membrane. After eating, the
duodenum secretes cholecystokinin to stimulate gallbladder
contraction, which then releases bile acids into the intestinal tract
(Li and Chiang, 2014). In the intestine, bacterial bile salt hydrolase
(BSH) catalyzes the deconjugation, oxidation, and 7α-
dehydroxylation of conjugated bile acids, modifying CA and
CDCA in humans to secondary BAs, deoxycholic acid (DCA),
and lithocholic acid (LCA), and ursodeoxycholic acid (UDCA),
respectively (Figure 2) (Begley et al., 2005; Fu et al., 2012). In
rodents, β-MCA forms ω-MCA via 6β-epimerase by the gut
bacteria, LCA can also form hyodeoxycholic acid (HDCA) and
murideoxycholic acid (MDCA) (Eyssen et al., 1983; Fu et al., 2012).
In rodents, β-MCA forms ω-MCA via 6β-differential isomerization,
and LCA can also be metabolized via dehydroxylation to form
murideoxycholic acid (MDCA) and porcine deoxycholic acid
(HDCA).

In the brains of rodents and humans, cholesterol 24 hydroxylase,
a cytochrome P450 (CYP46A1), catalyzes the synthesis of 24S-
hydroxycholesterol, androxylate which is converted to CDCA

FIGURE 1
The bile acid synthesis pathway.
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through the formation of intermediates by several enzymes.
moreover, (25R)-26-hydoxycholesterol enters the brain in large
quantities through the circulation and is likewise converted to
3β-hydroxy-5-cholenoic acid (Lund et al., 2003; Heverin et al.,
2005; Kiriyama and Nochi, 2019).

2.2 Nuclear receptor of bile acids–FXR

FXR is a nuclear hormone receptor involved in glucose, energy
and lipid metabolism and plays a central role in regulating BAS
homeostasis, FXR is mainly expressed in the liver, ileum and kidneys
(Stofan and Guo, 2020). BAs were recognized to be the endogenous
ligands of FXR, CDCA is the most effective, followed by LCA, DCA,
and CA. Activation of FXR can reduce the uptake of BAs in the
intestine and the synthesis of BAs in the liver, and enhances
biotransformation of BAs for export to bile to maintain low BAs
levels in hepatocytes and prevent liver injury and cholestasis
(Sauerbruch et al., 2021).

The effect of FXR on BAs has been demonstrated in FXR
knockout (KO) mice, where both BAs synthesis and BAs pool size
were increased in KOmice (Kok et al., 2003). FXR regulates many
downstream signals, such as peroxisome proliferator-activated
receptor (PPAR), Activation of FXR inhibits the progression of
liver fibrosis, FXR ligands induce PPARγ gene expression in
human hepatic stellate cells (HSCs), upregulates PPARγ
mRNA in HSC and murine liver fibrosis models, and prevents
downregulation of PPARγ caused by liver disease, PPARγ ligands

inhibit HSC activation and enhanced antifibrotic activity (Pineda
Torra et al., 2003; Fiorucci et al., 2005). It is worth mentioning
that in the study of cirrhotic rats, folic acid can reverse the
reduction of FXR signals in the ileum, improve the state of the
mucus layer, and stabilize the intestinal vascular barrier. This
conclusion supports the involvement of nuclear receptor FXR in
regulating the intestinal vascular and mucosal barrier in cirrhosis
(Sorribas et al., 2019).

2.3 Bile acid transporters with enterohepatic
circulation

2.3.1 BAs transporters in the intestinal and hepatic
circulation

Most BAs absorption in the liver, as well as reabsorption in the
intestine, relies on active transport across cell membranes, and the
circulation of BAs in the gut-liver axis is mainly dependent on four
transport proteins (Figure 2) (Tranah et al., 2021). The first
transporter mediates BAs to be reabsorbed by the apical sodium-
dependent bile acid transporter (ASBT) on the apical brush border
membrane of ileocytes, the second is organic solute transporter-α
and -β (OSTα/β) which export BAs to the portal vein circulation
through the basolateral membrane, and the third, sodium/
taurocholate cotransporting polypeptide (NTCP) takes up BAs
from the portal vein circulation into the hepatocytes, while the
bile salt export pump (BSEP) secretes BAs from the hepatocytes into
the bile duct (Kunst et al., 2021).

FIGURE 2
Bile acid signals enterohepatic-brain circulation.
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2.3.2 Enterohepatic circulation of BAs
The enterohepatic circulation is a very important BAs recycling

system, most of the BAs molecules (about 95%) are reabsorbed daily
into the circulating BAs pool, this reabsorption occurs mainly in the
ileum and only a small fraction (about 5%) is excreted into the feces
(Figure 2) (Chiang, 2013).

In the distal ileum, BAs are reabsorbed by ASBT into enterocytes,
where BAs can activate FXR and induce the expression of fibroblast
growth factor 15/19 (FGF15/19). Mouse FGF15 and human
FGF19 have been considered as BAs induced intestinal factors,
which are released to the portal vein and then circulated to
hepatocytes to activate the FGF receptor 4 (FGFR4)/b-Klotho
complex. By activating the activation of c-Jun N-terminal kinase
dependent pathway of mitogen activated protein kinase (MAPK)
pathway, they inhibit the expression of CYP7A1, reduce the
synthesis of BAs in the liver and affect the size of BAs pool (Inagaki
et al., 2005; Inagaki et al., 2006). The decrease of intraluminal BAs in
patients with cholestatic liver disease can lead to the upregulation of
ASBT; when negative feedback regulation occurs, it will cause the
gradual increase of BAs in hepatocytes, leading to hepatocyte necrosis or
apoptosis (Hofmann, 1999). Results of a study in chronic cholestasis
(Mdr2 knockout) mice showed that inhibition of ASBT improved liver
injury and reduced the expression of pro-inflammatory and pro-fibrotic
genes associated with BAs toxicity (Baghdasaryan et al., 2016).
Although BA inhibits ASBT, upregulation of ileal bile acid binding
protein (IBABP) in the intestine more readily causes BAs to bind to this
protein and protects hepatocytes from BAs toxicity, thereby enabling
BA transcellular membrane transport to the basolateral membrane.
FXR acting on the basement membrane can act as a bile acid sensor to
induce OSTα/β secretion of BAs into the portal circulation and can
regulate BAs reabsorption and secretion in portal blood (Chiang and
Ferrell, 2020). Research shows thatOST α/β not only plays an important
role in maintaining bile acid homeostasis, but also prevents cholestasis
in intestinal cells and protects the integrity of intestinal barrier function
(Ferrebee et al., 2018). In addition, on the basement membrane of
hepatocytes, NTCP is the main BAs transporter. BAs inhibit the
expression of NTCP and reduces the reabsorption of BAs outside
the base. This regulatory mechanism can protect hepatocytes from
cholestasis (Kunst et al., 2021).

There are two main pathways of feedback inhibition of BAs
synthesis by FXR, one is that BAs activate intestinal FXR-FGF15/
19 signal and inhibits CYP7A1 in hepatocytes. Another way is that
in hepatocytes, FXR activation induces the expression of a small
heterodimer partner (SHP) and inhibits the transcription of
CYP8B1 and CYP7A1 genes in hepatocytes. The intestinal FXR-
FGF15/19 signal of SHP mainly inhibits CYP7A1, while the hepatic
FXR-SHP signal mainly inhibits CYP8B1 (Kong et al., 2012). FXR
activates and induces BSEP in hepatocytes, so that BAs flow from
hepatocytes to the bile duct. If bile secretion is damaged, it will lead
to cholestasis, bile salt and other toxic components accumulate in
hepatocytes and blood, lead to hepatotoxicity, cause inflammation
and oxidative stress in hepatocytes, and significantly affect biliary
fibrosis and liver cirrhosis (Trauner and Boyer, 2003; Yang et al.,
2019). For example, progressive familial intrahepatic cholestasis
(PFIC) is an inherited liver disease from infancy. It is
characterized by cholestasis and jaundice, and gradually develops
into cirrhosis, liver failure, hepatocellular carcinoma, and death. In
patients with progressive familial intrahepatic cholestasis type 2

(PFIC2), BSEP gene mutation impaired bile salt secretion in the bile
duct, resulting in cholestasis (Jansen et al., 1999; Imagawa et al.,
2017). Released from the intestine, BAs in the portal vein circulation
are reabsorbed back to the liver, and BAs is recycled and secreted
into bile, and then reaches the intestine again. Therefore, the whole
process of BAs secretion from the liver to the intestine and recycling
is called “enterohepatic circulation”.

3 Bidirectional regulation of bile acids
and intestinal microbiota

The human gut acts like an anaerobic bioreactor and serves as a
habitat for most of the microorganisms in our intestinal tract. These
microorganisms include various types of bacteria, archaea, and
eukaryotes (Bäckhed et al., 2005), they have symbiotic or
antagonistic effect the body. Human intestinal flora is composed of
trillions ofmicroorganisms. They belong to fourmain phyla: Firmicutes
(60%), Bacteroides (22%), Actinobacteria (17%) and Proteobacteria
(1%) (Ikegami and Honda, 2018). Environmental factors such as
diet, alcohol and will disturb the structure of intestinal microbiota.
The homeostasis of intestinal microbiota is affected by BAs, diet, some
drugs (such as probiotics and antibiotics) and diseases. The imbalance
of Microecology will have a negative impact on host metabolism and
lead to alcoholic or non-alcoholic fatty liver, primary biliary cirrhosis,
hepatocellular carcinoma, inflammatory bowel disease, and other
diseases. The degree of imbalance will also strengthen and continue
with liver disease (Vassallo et al., 2015).

3.1 Regulation of gut microbiota on bile
acids

Intestinal microbiota participates in the synthesis of BAs and the
cycle of its biological signals. On the contrary, BAs also
fundamentally shape the intestinal microbiota. Bacteria BSH and
7α-dehydroxylase is very important to regulate the metabolism and
balance of BAs. Almost all primary BAs process 7α-dehydroxylation
are converted to secondary BAs, BSH and bile acid 7α-
dehydroxylation reactionappearsr to be restricted to a limited
number of intestinal anaerobes, accounting for a small part of
the total flora of the colon. BSH is produced in humans by many
Gram-positive and Gram-negative symbiotic bacteria in the
intestinal microflora, including Bacteroides, Clostridium,
Lactobacillus, Bifidobacterium and Listeria (Ridlon et al., 2016;
Staley et al., 2017). In addition, BSH is considered to protect
symbiotic bacteria from bile salt toxicity, contribute to bacterial
survival and intestinal colonization, protect the intestine, and
provide nutritional sources of sulfur, nitrogen and carbon for
bacteria (Van Eldere et al., 1996; De Boever et al., 2000).

3.2 Regulation of bile acids on gut
microbiota

In addition to its digestive function and direct antibacterial
effect, BAs can also affect the intestinal environment, with secondary
BAs causing bacterial membrane instability and increased intestinal
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permeability (Islam et al., 2011; Lachar and Bajaj, 2016). When the
composition of secondary BAs secreted into the intestinal cavity
changes, it will affect the structure andmetabolism of intestinal flora,
which is conducive to the growth of pathogenic bacteria (Bajaj,
2014). On the contrary, intestinal microbiota can not only
deconjugates and modify primary bile acids to secondary BAs,
but also inhibit the synthesis of BAs in liver by regulating FXR-
FGF19 signal in ileum (Sayin et al., 2013; Chiang and Ferrell, 2020).
Therefore, in liver cirrhosis, CYP7A1 is inhibited, the synthesis of
classic pathway of BAs is reduced, and alternative pathway has
become the main pathway of BAs synthesis (Ridlon et al., 2013).

Through the comparative analysis between germ-free (GF) and
conventionally fed FXR −/− mice, the results showed that the
increase of MCA level in GF mice explained the decrease of FXR
dependent gene signal in ileum and BAs excretion in feces of GF
mice. In the presence of intestinal flora, the decrease of BAs pool in
mice may also reflect the decrease of bile acid reabsorption in the
distal ileum and the increase of BAs excretion in feces (Claus et al.,
2008). In the analysis of probiotic LGG in the treatment of mice with
hepatic fibrosis induced by bile duct ligation and multidrug
resistance protein 2 gene knockout, it is concluded that the
therapeutic effect of LGG is to suppression of BAs de novo
synthesis by upregulating intestinal FXR-FGF19 signal
transduction, enhance the levels of Firmicutes and Actinomycetes
with BSH activity, increase the excretion of BAs from feces, to
prevent excessive liver injury and fibrosis caused by excessive toxic
hepatic bile acids (Liu et al., 2020). Intestinal microorganisms are
affected by the size and composition of BAs pool, and BAs can be
used as an indicator of the severity of liver disease (Shao et al., 2021).
In conclusion, the homeostasis of bile acid-intestinal microecology
axis plays an important role in liver inflammation, fibrosis and liver
cirrhosis.

4 Triangular relationship among liver
cirrhosis, bile acids and intestinal
microorganisms

Liver cirrhosis is the end stage of chronic liver disease.
“Decompensated cirrhosis” is the more advanced stage of chronic
liver disease, which is characterized by variceal bleeding, ascites, HE
spontaneous bacterial peritonitis (SBP) or jaundice. Patients without
these complications are called “compensated” cirrhosis (D’Amico
et al., 2006). There is a direct relationship between the frequency and
severity of complications in decompensated cirrhosis, such as
bacterial infections and encephalopathy, as well as ecological
imbalances and intestinal barrier dysfunction.

4.1 Changes in bile acid levels and impaired
intestinal barrier during liver cirrhosis

Studies have shown that with the progress of chronic liver
disease or liver cirrhosis, the concentration of total bile acids and
the proportion of secondary BAs/primary BAs decrease
significantly, and the concentration of serum BAs is significantly
lower than that of feces. The levels of conjugation BAs and
deconjugation primary BAs in serum were higher. Alcohol

consumption is one of the causes of cirrhosis. In severe alcoholic
liver cirrhosis with alcoholic hepatitis, serum CDCA increases
relatively and overflows into the systemic circulation, while DCA
decreases relatively (Kakiyama et al., 2013; Ciocan et al., 2018).
Genta Kakiyama et al. (Kakiyama et al., 2014) Proposed that the total
fecal and secondary fecal BAs concentrations of patients with
cirrhosis with long-term alcohol consumption were significantly
increased compared with the healthy control group of abstinence
cirrhosis and other chronic liver diseases and non alcohol
consumption. An analysis of BAs in patients with alcoholic
hepatitis found that serum total BAs, conjugation BAs and serum
FGF19 levels increased, but de novo BAs synthesis was inhibited.
Importantly, this was positively correlated with alcohol-related
Model for End-stage Liver Disease (Brandl et al., 2018).

Intestinal disorders lay the foundation for the disruption of the
intestinal barrier in liver cirrhosis. Changes in gut microbiota and
bacterial overgrowth have been recognized in clinical and animal
models of liver cirrhosis (Shah et al., 2017). The severity of intestinal
barrier dysfunction and intestinal bacterial translocation is related to
the severity of liver cirrhosis, and is more severe in patients with
ascites. Portal hypertension, changes in gut microbiota, as well as
inflammation and oxidative stress, can affect gut barrier function
and may lead to the occurrence of complications in liver cirrhosis
(Albillos et al., 2022). Due to changes in the function and anatomy of
intestinal permeability in patients with cirrhosis, bacterial
overgrowth and imbalance lead to more and more bacterial
species and microbial derived PAMPs migrating from the
intestinal cavity to the systemic circulation or liver along the
lymphatic and portal vein pathways, and gradually develop into a
systemic inflammatory state (Albillos et al., 2020). The destruction
of the intestinal barrier in cirrhosis includes the reduction of the
secretion of antibacterial peptides by intestinal Paneth cell, such as
α- Defensin, especially α- Defensin 5 and 7, which have been proved
in human small intestinal tissues and experimental models of
decompensated cirrhosis (Kaliannan, 2018). Interestingly, under
the action of signals derived from intestinal microbiota, such as
Lipopolysaccharides (LPS) and mural dipeptide, Paneth cell also
secrete angiogenic molecules, promote intestinal and mesenteric
angiogenesis, and promote the development of portal hypertension
(Hassan et al., 2020).

4.2 During liver cirrhosis, the microecology
gradually tends to be unbalanced, the
pathogenic bacteria are enriched, and the
local flora is reduced

BAs, as an important factor regulating intestinal microecology,
elevated intraluminal BAs concentrations favor the growth of
bacteria undergoing 7α-dehydroxylation, preventing ecological
dysregulation and inflammatory marker release. In contrast,
lower intraluminal BAs levels favor the growth of Gram-negative
bacteria, which can lead to overgrowth of pathogenic bacteria and
induce the release of inflammatory markers as well as an increased
inflammatory response in the liver, and in cirrhosis, ecological
dysregulation is the result of lower concentrations of bile salts
entering the intraluminal (Islam et al., 2011; Ridlon et al., 2013).
Recently, the term “cirrhosis dysbiosis ratio” indicates that
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microecological imbalance is an indicator related to the progression
of liver cirrhosis (Bajaj et al., 2014). Compared with the healthy
control group, changes in the proportion of microbiota in liver
cirrhosis were observed. Potentially pathogenic bacterias
(Enterobacteriaceae and Streptococcaceae) were common in
patients with liver cirrhosis at the family level. Proteobacteria and
Fusobacteria were relatively overgrown and the proportion of
beneficial Bacteroides, Lactobacillus and Bifidobacterium was
significantly reduced. These changes become more serious with
the progression of liver cirrhosis. When progressing to HE, the
gut microbiota dysbiosis may occur (Chen et al., 2011).

In a study, 454 pyrophosphate sequencing of the 16S ribosomal
RNA V3 region with real-time quantitative polymerase chain reaction
(qPCR) was performed to observe changes in the characteristics of the
fecal microbial community in patients with liver cirrhosis. Bacteroides
plays a dominant role in human intestinal microecology. The reduction
of the microbiome of liver cirrhosis and Lactobacillaceae and
Bacteroidetes may be related to the increase of Proteobacteria and
Clostridia (most Proteobacterial sequences belong to the class of
Aspergillus). It was proved that the child Turcotte Pugh (CTP)
score was positively correlated with Streptococcaceae, and the
significant reduction of Clostridium resulted in pro-inflammatory
response, which was negatively correlated with CTP score (Chen
et al., 2011; Gómez-Hurtado et al., 2011). In addition, the dramatic
shift of the proportion of Firmicutes, particularly theClostridium cluster
XIVa, which stemmed from elevated CA levels and led to elevated DCA
levels (Ridlon et al., 2013). In a study of a rat model of carbon
tetrachloride-induced cirrhosis, fecal intestinal aerobic bacterial flora
(e.g., Escherichia coli, Proteobacteria) were found to be enriched in the
cecum (Guarner et al., 1997). The prevalence of Streptococcus and
Enterobacter among the microorganisms in the stool of cirrhotic
patients explains exactly why Escherichia coli and Streptococcus are
themain causes of bacterial infections in cirrhotic patients (Riordan and
Williams, 2006).

4.3 Hepatic encephalopathy under the
influence of BAs and gut microbiota

HE is a common neuropsychiatric complication characterized
by hyperammonemia in the course of cirrhosis. It has previously
been proved to be related to the increase of ammonia and BAs levels
in the blood (Riordan and Williams, 1997; Munoz, 2008). Blood
ammonia mainly comes from the intestine. Excessive ammonia
produced by intestinal bacteria may lead to the increase of
ammonia content in the circulation. At the same time, liver
damage leads to the disorder of urea circulation. Insufficient
ammonia clearance can also lead to the abnormal increase of
ammonia concentration in the circulation. Ammonia is easy to
enter the brain through the blood-brain barrier (BBB)
(Adlimoghaddam et al., 2016). The serum conjugated BAs of
patients with cirrhosis increases. The further increase of BAs in
the blood during HE will lead to the increase of brain bile acid.
Because BAs can be used as a detergent, it can induce the
permeability of blood-brain barrier and lead to brain injury
(Figure 2) (Li and Chiang, 2015). In a mouse model of chronic
liver disease and acute liver failure (ALF) induced by azomethane
(AMO), ASBT mediated BAs reabsorption, increased the pH value

of intestinal cavity, increased the amount of ammonia, promoted the
conversion of intestinal ammonia into blood ammonia, resulting in
abnormally high levels of neurotoxic ammonia and cytotoxic BAs in
blood and brain, and finally damaged nerves. In contrast, SC-435
(ASBT inhibitor) blocks intestinal bile acid reabsorption and
reduces circulating BAs and ammonia concentrations, thereby
reducing liver and brain damage (Xie et al., 2018). Accordingly,
ASBT inhibitors may become a new treatment method,
predominantly for chronic neurological diseases dominated by
BAs and ammonia regulation disorders, such as HE.

Altered intestinal microbiome and intestinal permeability may
occur with associated dysfunctional bidirectional brain and
intestinal actions (Vilstrup et al., 2014). The clinical classification
of HE ranges from mild or recessive HE (MHE) to overt HE (OHE)
with progressive cognitive decline in patients, the
pathophysiological mechanisms of which are unclear and are
currently proposed to be possibly related to ammonia
accumulation and gut microbial activity. Cirrhosis in GF mice
exhibits hyperammonemia, but this is not associated with
systemic or neuroinflammation, and these inflammatory
responses are only seen in conventionally housed cirrhotic mice
(Kang et al., 2016). In patients with cirrhosis, urease containing
microorganisms are an important source of ammonia to the body,
usually Gram-negative bacteria such as Streptococcus salivarius and
Proteobacteria. They catalyze the conversion of urea to ammonia.
However, impaired liver clearance leads to ammonia accumulation
and in synergy with inflammation exacerbates nerve damage
triggering HE (Yukawa-Muto et al., 2022). This illustrates the
central role of the gut microbiota in the pathogenesis of human
HE and shows evidence of neuroinflammation, systemic
inflammation, hyperammonemia and cerebral edema.

Alteredmicrobiota function is likely to bemechanistically related to
cognitive impairment as confirmed by rifaximin, an effective antibiotic
for HE with broad-spectrum antimicrobial activity, and reduced
endotoxemia and improved cognitive function in its treatment of
patients with cirrhosis and MHE, accompanied by reduced harmful
metabolites, altered BAs composition and intestinalmicroecology (Bajaj
et al., 2013; Dalal et al., 2017). Enterobacteriaceae positively correlated
with fecal CDCA in humans and were strongly associated with the
development of HE, while Ruminococcaceae positively correlated with
DCA (Kakiyama et al., 2013). DCA is the most effective bactericide for
controlling intestinal bacterial growth and intestinal microbes, and the
improvement in cognitive function and endotoxemia in HE patients is
also the result of a lower DCA/CA ratio (Ridlon et al., 2013). Several
studies below describe more specifically the link between
microecological dysregulation and HE. Significant disruption of the
intestinal microecological flora in patients with MHE, with overgrowth
of potentially pathogenic Escherichia coli and Staphylococcus spp (Liu
et al., 2004). Other studies have shown that specific bacterial groups in
patients with cirrhotic HE, including the alkali-producing
Bacillariophyceae, Porphyromonas and Enterobacteriaceae are directly
related to poorer cognitive performance and increased inflammation in
OHE. In addition, Alcaligenaceae and Escherichia coli were significantly
more frequent in cirrhotic patients with HE compared to the group
without HE, and Alcaligenaceae and Porphyromonadaceae were
positively associated with cognitive impairment, whereas
Fusobacteriaceae, Enterobacteriaceae and Veillonellaceae were
positively associated with inflammation (Bajaj et al., 2012a; Bajaj
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et al., 2012b). These suggest that interactions between inflammation,
cognitive function, and microbiota changes play a role in HE and may
predict the development of HE (Bajaj et al., 2019).

5 Conclusion

BAs, a center factor in the regulation of the intestine-liver-brain
axis, has a beneficial effect on BAs homeostasis and microbiota to
some extent, but it also affects the permeability of the intestinal
barrier and the blood-brain barrier, which can cause complications
such as HE. Altered gut microbiota diversity and disturbed BAs
metabolism in cirrhosis have led to a focus on key pathological
mechanisms of dysbiosis and altered barrier permeability as
potential targets and approaches for the treatment of cirrhosis.
More personalized treatment strategies, such as the use of
targeted probiotics, antibiotics, and fecal transplants, can improve
cirrhosis, hepatic cholestasis status, and neurological function of the
brain by modulating specific flora to affect bile acid composition. In
conclusion, a deeper understanding of the complex relationship
between BAs signaling and microecology is expected to help us use
this knowledge in the clinical setting to improve future strategies for
the treatment of cirrhosis.
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