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Introduction: Immune checkpoint inhibitors (ICIs) exert antitumor responses in
many types of cancer but may also induce serious or fatal toxicities that affect all
organ systems, including the hematologic and lymphatic systems. However, the
risk of hematologic and lymphatic system toxicities following different ICI
treatments remains unknown. This study aimed to describe the hematologic
and lymphatic system toxicities associated with different ICI regimens and the
impact of combining ICIs with anti-vascular endothelial growth factor drugs using
the United States Food and Drug Administration Adverse Event Reporting System
pharmacovigilance database.

Methods: The reporting odds ratio (ROR) and information component (IC) indices
were used to identify disproportionate reporting of ICI-associated hematologic
and lymphatic adverse events (AEs).

Results: We extracted 10,971 ICI-associated hematologic and lymphatic AEs
from 35,417,155 reports. These AEs were more frequently reported in female
patients (ROR: 1.04 95% confidence interval [CI]: 1.01–1.07) and younger
patients (ROR: 1.05 95% CI: 1.01–1.09). The disseminated intravascular
coagulation fatality rate (63.97%) was the highest among the reported
preferred terms, despite its low incidence (3.32%). The time to onset of ICI-
related hematologic and lymphatic AEs was relatively short, with 77.44%
reported within 3 months. Disproportionate analysis showed that most ICIs
were associated with significant overreporting of hematologic and lymphatic
AEs (IC025: 0.34 and ROR025: 2.10). Hematologic and lymphatic system AEs
were more frequently reported in patients treated with anti-programmed cell
death protein 1/programmed cell death ligand 1 monotherapy than in those
treated with anti-cytotoxic T-lymphocyte-associated protein 4 monotherapy
(ROR: 1.54, 95% CI: 1.38–1.71), with atezolizumab showing the strongest signal
(ROR025: 4.19, IC025: 1.00). In patients receiving combined treatment, ICIs plus
bevacizumab exerted a higher disproportion signal than monotherapy (ROR:
161, 95% CI: 1.75–1.88).
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Discussion: The spectrum of hematologic and lymphatic AEs differed according to
the ICI regimen. Early recognition andmanagement of ICI-related hematologic and
lymphatic AEs are vital in clinical practice.
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1 Introduction

Immune checkpoint inhibitors (ICIs) targeting the
programmed cell death protein 1/programmed cell death
ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) have revolutionized the treatment landscape
for a wide range of cancers, demonstrating significant efficacy
and favorable responses and pioneering a new therapeutic
paradigm for many types of solid tumors (Ribas and Wolchok,
2018; Tang et al., 2018). Compared with monotherapy, combined
ICI blockade can further improve clinical outcomes (Hammers
et al., 2017; Hellmann et al., 2019; Wolchok et al., 2022). To date,
three main types of ICIs have been approved by the United States
Food and Drug Administration (FDA): PD-1 inhibitors such as
cemiplimab, nivolumab, and pembrolizumab; PD-L1 inhibitors
such as atezolizumab, avelumab, and durvalumab; and CTLA-4
inhibitors such as ipilimumab and tremelimumab (Ribas and
Wolchok, 2018).

Although clinically effective, ICIs can be accompanied by severe
and sometimes fatal organ system toxicities, including hematologic
and lymphatic toxicities (Kennedy and Salama, 2020; Ghanem et al.,
2022). Frequently reported ICI-related hematologic and lymphatic
system complications include anemia (Chambers et al., 2022),
thrombocytopenia (Xie et al., 2021), and pure red cell aplasia
(Wright and Brown, 2017; Kroll et al., 2022). ICI-induced
hematologic and lymphatic adverse events (AEs) are rare, with
an incidence of 3.6% for all grades and 0.7% for grades III–IV
(Michot et al., 2019; Petrelli et al., 2018). However, ICIs can lead to
serious and life-threatening AEs, which are reported less frequently
than common AEs and have not been extensively characterized.

Vascular endothelial growth factor (VEGF)-dependent
angiogenesis plays a critical role in tumorigenesis and
progression (Goel and Mercurio, 2013; Ferrara and Adamis,
2016). Bevacizumab, a recombinant humanized immunoglobulin
(Ig) G1 monoclonal antibody targeting VEGF, was the first
angiogenesis inhibitor approved by the United States FDA for
treating a wide range of tumors (Viallard and Larrivée, 2017).
VEGF can attenuate the antitumor immune response by
reprogramming the tumor immune microenvironment; thus,
anti-VEGF combined with immunotherapy has a potential
synergistic antitumor effect (Bejarano et al., 2021). However, in
combination therapy, the clinical benefits and overlapping toxicity
of the drugs must be carefully considered. Although rare,
bevacizumab can also cause some hematological complications,
such as thrombocytopenia. A phase III randomized trial of
bevacizumab for glioblastoma showed a higher incidence of
thrombocytopenia than the placebo (34.1% vs. 27.3%) (Saran
et al., 2016). According to a case report, a 59-year-old male

patient with colon adenocarcinoma developed thrombocytopenia
after treatment with bevacizumab (Kumar et al., 2012). Owing to the
complex biological effects of combined ICI and VEGF inhibitor use,
whether this combination enhances or reduces the toxicities of the
hematologic and lymphatic systems remains unclear.

Given the increase in the use of ICIs in clinical practice, the
potential risk to the hematologic and lymphatic systems should
be considered. Herein, we report the results of a systematic
analysis using real-world pharmacovigilance data to
investigate the association of hematologic and lymphatic
system toxicities of different ICI treatment regimens and
further consider the effect of bevacizumab to provide evidence
for clinical practice.

2 Materials and methods

2.1 Data sources and study design

This retrospective, observational pharmacovigilance study was
conducted using the FDAAdverse Event Reporting System (FAERS)
database, which is a collection of reports of AEs that allows for signal
detection and quantification of the association between drugs and
reporting of AEs (Min et al., 2018). All variables for each record,
including age, sex, outcomes, drug name, reporting year, and
reporting country, can be extracted from the FAERS database.
AEs were coded using preferred terms (PTs) according to the
international Medical Dictionary for Regulatory Activities
(MedDRA). A specific PT was assigned to high-level terms and
system-organ classes. In addition, we removed duplicate records
using FDA’s recommended method by choosing the latest FDA_DT
if the CASEIDwas the same and choosing the higher PRIMARYID if
the CASEID and FDA_DT were the same. In this analysis, the
coverage period was from 1 January 2014 to 31 December 2022. The
studied drugs included anti-PD-1 (nivolumab, cemiplimab, and
pembrolizumab), anti-PD-L1 (atezolizumab, avelumab, and
durvalumab), anti-CTLA-4 (ipilimumab and tremelimumab), and
anti-VEGF antibodies. As FAERS does not use a uniform coding
system for medications, both generic and brand-name drugs were
used to identify study drug-associated records. The details of the
drug names are listed in Supplementary Table S1. This study
included both monotherapy and combination therapy. Toxicity
was attributed to monotherapy if one drug was reported as the
“primary suspect” and to combination therapy if one drug was
reported as the “primary suspect” and other drugs were reported as
“secondary suspects.” This study included all blood and lymphatic
system disorders (MedDRA code: 10005329) according to MedDRA
version 25.0.
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2.2 Statistical analysis

Descriptive analysis was performed to summarize clinical
features. Disproportionality analysis was used to evaluate specific
AEs associated with a given drug (Ali et al., 2021). Reporting odds
ratios (RORs) and information components (ICs) were used as
indicators of disproportionality (Ang et al., 2016; Gatti et al., 2021).
A significant signal was defined if the lower limit of the 95%
confidence interval (CI) of ROR (ROR025) was >1 in at least
three cases or the lower limit of the 95% CI of the IC (IC025)
was >0. The equations for the two algorithms are provided in
Supplementary Table S2. In our analysis, ICIs were compared
with all other drugs in the full database. We did not consider
ICIs in combination with chemotherapy owing to the limitations
of chemotherapy drug screening. We performed disproportionality
analyses for different subgroups, including sex, age, and different
therapies (ROR only). Data were analyzed using SAS version 9.4
(SAS Institute Inc., Cary, NC, United States) and Microsoft Office
Excel version 2023 (Microsoft Corp., Redmond, WA, United States).

3 Results

3.1 Identifying hematologic and lymphatic
AEs from FAERS

To date, 62,142,596 records have been deposited in the FAERS
database. After excluding duplicate records, 35,417,155 records were
selected from 1 January 2014 to 31 December 2022, of which
330,947 were associated with ICI-related AEs. Subsequently,
10,971 records were screened for hematologic and lymphatic AEs
associated with ICIs. In addition, 554,221 records on hematologic
and lymphatic AEs associated with other drugs were included in the
analytic dataset (Figure 1).

3.2 Descriptive analysis from FAERS

The clinical characteristics of patients with ICI-induced
hematologic and lymphatic AEs are listed in Table 1. We found
that 83.38% of the cases were reported in 2018–2022, reflecting a

substantial increase in the use of ICIs in recent years. Most reports
were from Japan (3,045, 27.75%), the United States (2,267, 20.66%),
and France (1,143, 10.42%). There were more reports on men
(55.37%) than on women (37.00%) and on patients
aged ≥65 years (44.11%) than on those aged <65 years (36.25%).

In the analysis of deaths due to the 10 most frequently reported
PTs in class-specific hematologic and lymphatic AEs, 2,180 (19.87%)
were associated with ICIs (Table 1). Further analyses revealed that
the severity of these events varied. In general, anemia,
thrombocytopenia, febrile neutropenia, neutropenia,
pancytopenia, myelosuppression, disseminated intravascular
coagulation, lymphadenopathy, leukopenia, and autoimmune
hemolytic anemia were the 10 most frequently reported PTs in
class-specific hematologic and lymphatic systems. Although the
incidence of disseminated intravascular coagulation (358/
10,791%, 3.32%) was low, its case fatality rate (229/358%,
63.97%) was the highest among the 10 most frequently reported
PTs. Anemia had the highest incidence (2,071/10,791%, 19.19%)
and the second highest case fatality rate (542/2,071%, 26.17%;
Figure 2).

3.3 Time to onset (TTO)

Figure 3 shows the TTO of the 10 most frequently reported PTs in
the ICI-related hematologic and lymphatic systems. After excluding
records with no event times, 5,417 records were included. A higher
cumulative proportion of ICI-related hematologic and lymphatic AE
records occurred 1 month after administration (51.36%, 2,782/5,417)
than at any other time point. Of the ICI-related hematologic and
lymphatic AEs, 77.44% (4,195/5,417) occurred within 3 months.
Overall, the data for myelosuppression showed a relatively short
median onset time (13 days), whereas those for lymphadenopathy
and autohemolytic anemia had relatively long median onset times of
55 and 51 days, respectively (Figure 3).

3.4 Disproportionality analysis

The signal values and associations between hematologic and
lymphatic AEs and different ICI regimens are summarized in

FIGURE 1
Screening process for adverse event records in the FAERS database.
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TABLE 1 Clinical characteristics of patients with ICI- and other drug-induced hematological and lymphatic system toxicity.

Characteristics Hematological and lymphatic system AEs with ICIs
(n = 10971)

Hematological and lymphatic system AEs with other drugs
(n = 554221)

Sex

Female 4059 (37.00%) 262811 (47.42%)

Male 6075 (55.37%) 217088 (39.17%)

Missing 837 (7.63%) 74321 (13.41%)

Age, years

<65 3977 (36.25%) 240865 (43.46%)

≥65 4839 (44.11%) 164826 (29.74%)

Missing 2155 (19.64%) 148529 (26.80%)

Reporting year

2014 110 (1.00%) 19398 (3.50%)

2015 299 (2.73%) 23832 (4.30%)

2016 507 (4.62%) 43783 (7.90%)

2017 907 (8.27%) 36024 (6.50%)

2018 1242 (11.32%) 55422 (10.00%)

2019 1583 (14.43%) 65952 (11.90%)

2020 1740 (15.86) 92001 (16.60%)

2021 2094 (19.09%) 104194 (18.80%)

2022 2489 (22.69%) 113615 (20.50%)

Reporting country

United states 2267 (20.66%) 212322 (38.31%)

Japan 3045 (27.75%) 42120 (7.60%)

France 1143 (10.42%) 46665 (8.42%)

Germany 769 (7.01%) 30371 (5.48%)

China 638 (5.82%) 19397 (3.50%)

Italy 476 (4.34%) 23831 (4.30%)

Others 2017 (18.38%) 135728 (24.49%)

Missing 616 (5.61%) 101533 (18.32%)

Outcome

Death 2180 (19.87%) 49935 (9.01%)

Hospitalization 4519 (41.19%) 189710 (34.23%)

Other serious events 3643 (33.20%) 271900 (49.06%)

Life threatening 203 (1.85%) 33807 (6.10%)

Disability 160 (1.46%) 6816 (1.23%)

Required 5 (0.05%) 1109 (0.20%)

Missing 189 (1.72%) 943 (0.17%)

ICIs, immune checkpoint inhibitors.

Data are presented as n (%).
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Table 2. In general, higher reporting frequencies of hematologic and
lymphatic AEs were observed for most ICI regimens. The ROR025

was 2.10 and IC025 was 0.35 for ICIs, compared to the whole
database. AEs were reported more frequently in female patients
than in male patients (ROR: 1.05, 95% CI: 1.01–1.08, Supplementary
Table S3) and in patients aged <65 years than in those
aged ≥65 years (ROR: 1.05, 95% CI: 1.01–1.09, Supplementary
Table S3). Regarding monotherapy, most hematologic and
lymphatic AEs were reported for anti-PD-1 agents (N = 6407,
58.40%), whereas anti-PD-L1 drugs contributed to a lower

proportion of AEs (N = 1975, 18.00%) but had stronger signal
values (ROR025: 7.68, IC025: 2.84), especially atezolizumab, which
had the strongest signal values (ROR025: 4.19, IC025: 1.00) among the
monotherapies reported.

Hematologic and lymphatic toxicities were more frequently
reported in patients treated with anti-PD-1/PD-L1 than in those
treated with anti-CTLA-4 (ROR025: 1.38). Among the combination
therapies, nivolumab plus ipilimumab was the most common (N =
1476, 13.45%), but only its ROR was significant (ROR025: 1.59,
IC025: −0.25). Durvalumab plus tremelimumab showed a stronger

FIGURE 2
Records and proportions of deaths in class-specific hematological and lymphatic system adverse events.

FIGURE 3
Time of onset of the top 10 most frequently reported preferred terms in the hematological and lymphatic systems. (A) Time of onset and (B) the
cumulative proportion at different periods.
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signal (ROR025: 2.95, IC025: 0.20) than the above group, despite
contributing a very small proportion of reported AEs (N = 73,
0.06%). Furthermore, ICIs plus anti-VEGF therapy showed the
highest signal value among the combined therapies (ROR025:
3.42, IC025: 0.72). Disproportionate reporting was also found in
combination therapy compared with monotherapy: hematologic
and lymphatic AEs were more frequently reported in patients
treated with ICI plus anti-VEGF combination therapy than in
those treated with ICI monotherapies (ROR: 1.74, 95% CI:
1.61–1.88).

3.5 Spectrum of hematologic and lymphatic
AEs in different ICI regimens

Figure 4 shows the hematologic and lymphatic system toxicity
profiles of the different ICI monotherapy regimens. A total of 59 class-
specific signals were significant in the anti-PD-1/PD-L1 classes
compared with 15 signals in the anti-CTLA-4 class. Among the PD-
1 inhibitors, pembrolizumab showed the broadest spectrum of
hematologic and lymphatic AEs, with 41 PTs detected as signals,
ranging from aplastic anemia (ROR025: 1.06) to immune-mediated
cytopenia (ROR025: 131.29). There were 40 PTs significantly associated
with nivolumab treatment, ranging from bonemarrow failure (ROR025:
1.10) to acquired amegakaryocytic thrombocytopenia (ROR025: 20.58).
There were six PTs significantly associated with cemiplimab treatment,
ranging from febrile neutropenia (ROR025: 1.06) to lymphadenopathy

(ROR025: 2.81). These six PTs overlapped with those of pembrolizumab
and nivolumab therapy and included lymphadenopathy, eosinophilia,
thrombocytopenia, anemia, pancytopenia, and febrile neutropenia.

The hematologic and lymphatic system spectra of anti-PD-L1 drugs
varied substantially, with 24 PTs significantly associated with the
atezolizumab treatment, ranging from agranulocytosis (ROR025: 1.11)
to myelosuppression (ROR025: 13.20). There were 14 PTs associated with
durvalumab, ranging from anemia (ROR025: 1.21) to myelosuppression
(ROR025: 18.71). The following PTs were uniquely associated with
atezolizumab: pure red cell aplasia, aplastic anemia, and
lymphadenopathy. For the anti-PD-L1 group, myelosuppression was
the most significant signal associated with atezolizumab (ROR025: 13.20)
and durvalumab (ROR025: 18.71), followed by febrile neutropenia
(ROR025: 10.93 and 9.59, respectively). The four PT signals detected
by avelumab all overlapped with atezolizumab and durvalumab. Anti-
CTLA-4 treatment had 15 PTs significantly associated with ipilimumab,
with 13 PTs overlapping with anti-PD-1 and 12 PTs with anti-PD-L1
(Figure 4).

Compared with the immune-monotherapy group, the double-
ICI blockade group had relatively few PTs: 33 class-specific signals
were detected, of which 4 were newly generated, namely, hemolysis,
pseudolymphoma, thrombotic microangiopathy, and splenic
hemorrhage. Notably, splenic hemorrhage had a relatively high
signal for the durvalumab plus tremelimumab treatment
(ROR025: 11.82). Nivolumab plus ipilimumab, the most common
tumor treatment, showed the broadest spectrum of hematologic and
lymphatic system diseases, ranging from lymphadenitis (ROR025:

TABLE 2 Signal value of hematological and lymphatic system AEs associated with different immunotherapy regimens.

Strategy a (N) b c d ROR ROR025 ROR975 IC IC025 IC975

Total 10971 319976 554221 34531987 2.14 2.10 2.18 1.05 0.35 1.75

ICIs

Nivolumab 3343 108806 561849 34743157 1.90 1.84 1.97 0.9 0.05 1.75

Pembrolizumab 2961 87965 562231 34763998 2.08 2.00 2.16 1.03 0.16 1.90

Cemiplimab 103 3024 565089 34848939 2.10 1.73 2.56 1.04 −0.48 2.56

Atezolizumab 1379 20329 563813 34831634 4.19 3.97 4.43 1.99 1.00 2.98

Durvalumab 508 11878 564684 34840085 2.64 2.41 2.88 1.36 0.19 2.53

Avelumab 88 3109 565104 34848854 1.75 1.42 2.16 0.78 −0.78 2.34

Ipilimumab 372 16050 564820 34835913 1.43 1.29 1.58 0.50 −0.73 1.73

Polytherapy1 1476 54518 563716 34797445 1.67 1.59 1.769 0.72 −0.25 1.64

Polytherapy2 36 1430 565156 34850533 1.55 1.12 2.16 0.61 −1.20 2.42

Polytherapy3 73 1206 565119 34850757 3.73 2.95 4.73 1.81 0.20 3.41

ICIs + bevacizumab 753 12615 564439 34839348 3.68 3.42 3.96 1.81 0.72 2.90

Anti-PD-1/PD-L1 vs. anti-CTLA-4 8382 235111 372 16050 1.54 1.38 1.71

Polytherapy vs. monotherapy 1559 57489 8754 251161 0.77 0.74 0.82

ICIs + bevacizumab vs. ICIs 753 12615 10971 319976 1.74 1.61 1.88

Note: Bold text denotes significant signals.

ICIs, immune checkpoint inhibitors; Polytherapy1, nivolumab + ipilimumab; Polytherapy2, nivolumab + pembrolimab + ipilimumab; Polytherapy3, durvalumab + tremelimumab; CI,

confidence interval; ROR, reporting odds ratio; ROR025, lower limit of the 95% two-sided CI, of the ROR; ROR075, upper limit of the 95% two-sided CI, of the ROR. a(N), the number of reports

containing both ICIs, and hematological and lymphatic system AEs, in one subgroup; b, the number of reports containing both ICIs, and all other adverse events (except hematological and

lymphatic system AEs) in one subgroup; c, the number of reports containing both ICIs, and hematological and lymphatic system AEs, in another subgroup; and d, the number of reports

containing both ICIs, and all other adverse events in another subgroup.
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1.07) to immune-mediated cytopenia (ROR025: 45.05). As
mentioned above, immune-mediated cytopenia was also the
strongest signal in pembrolizumab monotherapy. In ICI plus
bevacizumab treatment, 19 PT signals were detected, 5 of which
were not present in the other combination regimens (Figure 5).

Overall, anemia (n = 207, 19.19%), thrombocytopenia (n = 1378,
12.77%), febrile neutropenia (n = 1078, 10.07%), and neutropenia
(n = 1074, 9.95%) were the four most common hematologic and
lymphatic system complications in patients who received ICIs.
However, their correlation with different ICI therapies varied.
Anemia and thrombocytopenia appeared to be associated with
the most regimens except polytherapy2 (Figure 6). Febrile
neutropenia was strongly associated with atezolizumab plus
tremelimumab and ICI plus bevacizumab combination regimens
but showed no correlation with avelumab. Similarly, neutropenia

was associated with pembrolizumab, atezolizumab, and ICI plus
bevacizumab combination regimens only.

4 Discussion

ICIs have remarkable clinical benefits against multiple tumor types.
Although complications are rare, ICIs can induce various hematologic
and lymphatic complications (Delanoy et al., 2019). However, the risk
of experiencing hematologic and lymphatic AEs following ICI use has
not been clearly quantified. To the best of our knowledge, this is the
largest and most comprehensive pharmacovigilance study of ICI-
induced hematologic and lymphatic system toxicities to date. In this
study, several key findings were noted, and the combination of ICIs with
anti-VEGF therapy was considered.

FIGURE 4
Hematological and lymphatic system toxicities for different ICI monotherapy strategies. PT, preferred term; IC, information component; IC025, lower
limit of the 95% confidence interval of IC; IC025, greater than 0 was deemed a signal; ICI, immune checkpoint inhibitor.
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The reporting frequency of ICI-related hematologic and lymphatic
AEs was higher in female patients than in male patients. This result is
consistent with that of a previous study by Ye et al. (2020). We attribute
this to the fact that women tend to have stronger triggered and sustained
immune responses against infections and have an increased propensity
to develop autoimmune diseases compared to men (Grassadonia et al.,
2018). Moreover, in the general population, there are differences in
physiological factors, hormone levels, and hemoglobin levels between
men and women, and women may be more susceptible to hematologic
disorders (Rushton and Barth, 2010). However, the precise factors
responsible for sex-related differences remain unclear and require
further verification.

The reporting frequency of ICI-related hematologic and lymphatic
AEs was also higher in younger patients than in older patients. A
correlation between immune-related AEs (irAEs) and age has been
hypothesized; however, different studies have yielded conflicting
evidence. Conversely, immune senescence increases the risk of
serious irAEs in older patients with cancer through an inflammatory
process. In 2018, 23,586 FDA safety reports for ICI drugs were analyzed,
and data were grouped according to age (<65, 67–75, and >75 years
old). In patients with cancer, the incidence of irAEs was higher in those

aged ≥65 years than in those aged <65 years for all single agents except
atezolizumab (Elias et al., 2018). Another study reported that lower
immunity in older patients may result in a lower effect of ICIs and may
reduce the occurrence of immune-related AEs (Marur et al., 2018).
Therefore, age should be considered in future studies, especially in
studies of AEs related to the hematologic system.

The reported case fatality rate due to ICI-related hematologic and
lymphatic AEs was higher owing to other drug-induced hematologic
and lymphatic AEs, indicating that ICI-related hematologic and
lymphatic AEs substantially affect patient mortality. Further analysis
showed that the incidence of disseminated intravascular coagulation
(DIC) was low, but the case fatality rate was high. DIC is a
clinicopathological syndrome and is the most common pathway for
the development of many disorders that cause a coagulation
dysfunction. Multi-organ dysfunction syndrome is the leading cause
of death in patients with DIC, and the death rate due to DIC is 31%–
80% (Levi and Sivapalaratnam, 2018). Several cases of DIC associated
with ICI therapy have been reported (Alberti et al., 2020; Maiorano
et al., 2022). Although rare, in view of the high case fatality rate, it is
important to pay close attention to the signs and symptoms of DIC
during ICI therapy. In addition, unexpectedly, anemia had the second

FIGURE 5
Hematological and lymphatic system toxicities for different ICI combination therapy strategies. PT, preferred term; IC, information component;
IC025, the lower end of the 95% confidence interval of IC; IC025, greater than 0 was deemed a signal; ICI, immune checkpoint inhibitor.
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highest fatality rate. In fact, the high fatality of anemia is associated with
the fatal events that it causes. For example, it can lead to anemic heart
disease (Goel et al., 2021), heart failure (Chopra and Anker, 2020;
Loncar et al., 2021) and acute kidney failure (Locatelli et al., 2021).
Furthermore, anemia exacerbates tumor hypoxia, which not only
produces proteomic alterations that affect tumor dissemination and
lead to malignant progression but also affects the efficacy of various
antitumor therapies (Gilreath et al., 2014). Studies have shown that
tumor-associated anemia increases the overall risk of death in cancer
patients by 65%. Therefore, although anemia is a common
complication, clinicians should not ignore it in their practice.

In the TTO analysis, the median TTO of ICI-related hematologic
and lymphatic AEs was 28 days, and 77.44% of the events occurred
within 3 months. Patients with myelosuppression had the shortest
median TTO, and those with lymphadenopathy had the longest.
Myelosuppression is the most common side effect of traditional
chemotherapy drugs and can also be caused by newer antitumor
drugs, such as targeted and immune drugs. Furthermore, more than
80% of chemotherapeutic drugs can lead to myelosuppression, which is
mainly caused by central granulocytopenia and thrombocytopenia
(Barreto et al., 2014; Fan et al., 2017; Weycker et al., 2019). The
incidence of myelosuppression caused by targeted therapy and
immunotherapy is significantly lower than that caused by
chemotherapy. In addition, there are differences in the mechanisms

of action. The onset of myelosuppression due to chemotherapeutic
agents usually begins 5–7 days after the end of chemotherapy, peaks at
11–12 days, and then decreases (Wu et al., 2010). This is approximately
the same as the time in our study using immunosuppressive agents to
cause myelosuppression, suggesting that blood cell levels should be
monitored timely, regardless of the treatment regimen used.

Lymphadenopathy is a common disease that can occur at any age
and can be benign or malignant. Most cases of superficial lymph node
enlargement are caused by non-specific acute/chronic inflammation,
reactive hyperplasia, and specific infections. In general, tumors cause
only a minority of lymphadenopathies (Maini and Nagalli, 2023). In
cancer patients, lymph node enlargement may indicate the presence of
local metastasis or disease progression. Meanwhile, pseudoprogression
with ICIs may also show lymph node enlargement, which is mainly due
to the activation of lymphocytes by ICIs, which causes a large number of
lymphocytes to gather in the lymph node area to fight against tumor
cells (Borcoman et al., 2019; Guan et al., 2022). Therefore, it is
particularly important to clarify the nature of lymph node
enlargement in oncological treatment, which is also the key for
further selection of treatment options.

Our study assessed and compared the signal intensities of
hematologic and lymphatic AEs associated with different ICI
regimens. First, we compared ICI regimens with high-frequency AEs
reported from the whole database. ICI treatment strategies are associated

FIGURE 6
Associations between four top ranked PTs and different ICI strategies. PT, preferred term; IC, information component; ROR025, greater than 0 was
deemed a signal; ICI, immune checkpoint inhibitor.
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with a high incidence of toxicity inmultiple organ systems, which are not
limited to hematologic and lymphatic systems but also include the
endocrine (Zhai et al., 2019), respiratory (Cui et al., 2022), hepatic
(Remash et al., 2021), and renal systems (Hu et al., 2021). In our study,
hematologic and lymphatic AEs were reported more frequently in
patients treated with anti-PD-1/PD-L1 monotherapy than in those
treated with anti-CTLA-4 monotherapy, with atezolizumab showing
the strongest risk signal. Notably, similar trends have been observed in
neurological (Haugh et al., 2020) and renal AEs (Hu et al., 2021). A
previous study (Michot et al., 2019) reviewed hematologic immune-
related AEs with ICIs and reported that the frequency of hematologic
AEs of all grades was higher with PD-1 (4.1%) and PD-L1 (4.7%) than
with CTLA-4 (0.5%), consistent with our results. However, the precise
mechanisms underlying these differences remain unclear and require
further investigation.

Our study also provides information on the spectrum of
hematologic and lymphatic AEs induced by different ICI regimens
and found that the spectra differed according to the treatment
regimen. Immune-mediated cytopenia showed the strongest
disproportionate signal with pembrolizumab. In 2018, four cases of
cytopenia following treatment with ICIs were reported in Texas (Sun
et al., 2018). All four cases responded to conventional steroid therapy.
Lymphadenopathy, eosinophilia, thrombocytopenia, anemia,
pancytopenia, and febrile neutropenia were common to all three PD-
1 drugs. Moreover, febrile neutropenia has been linked with
pembrolizumab (Tozuka et al., 2018) and nivolumab (Ramchandren
et al., 2019) immunotherapy; however, none of the disproportionality
signals were statistically significant. In addition, we were unable to find
any previous report of an association between cemiplimab and febrile
neutropenia. Anemia is a common AE. A systematic review of AEs
associated with PD-1 and PD-L1 inhibitor therapy in clinical trials
showed that the incidence of anemia as a grade 3 or higherAEwas 0.78%
(Wang et al., 2019). Myelosuppression showed the most significant
disproportionality in PD-L1 monotherapy; however, we were unable to
find any published clinical case reports. In the analysis of ICI
combination therapy, we identified four signals that have not been
reported in the literature previously: hemolysis, pseudolymphoma,
thrombotic microangiopathy, and splenic hemorrhage. These findings
highlight the importance of signal detection in FAERS.

Studies have shown that VEGF may reprogramme the tumour
immune microenvironment through multiple mechanisms. The
combination of bevacizumab therapy with ICI therapy has good
antitumor effects, especially in non-small-cell lung (Socinski et al.,
2021), hepatocellular (Finn et al., 2020), and colorectal (Mettu et al.,
2022) cancers. Our study showed that ICIs plus bevacizumab had the
highest signal of disproportionality with respect to hematologic and
lymphological AEs andwas reportedmore frequently than for ICIs alone.
Bai et al. (2021) found that PD-L1 checkpoint inhibitors combination
bevacizumab therapy reduced the risk of pneumonia, respiratory failure
and disease progression, while increasing the risk of fever, peripheral
neuropathy, nephritis and bone marrow failure. The current data are
limited to small prospective studies, and a real-world study with a large
sample size is still lacking, especially studies of hematologic complications.
The most recent pharmacovigilance analysis of ICIs in combination with
bevacizumab showed that bevacizumab was an independent risk factor
for interstitial lung disease, hypertension, and gastrointestinal bleeding
(Gu et al., 2023), but there was no analysis of hematologic AEs. Thus, our
results provide novel evidence for informing clinical practice.

This study had some limitations. First, FAERS is a spontaneous
reporting system with multiple sources of data, thus suffering from
inconsistent formats, duplication, and missing data. Second, the
baseline data in the FAERS database are incomplete. Lastly, we did
not consider combination chemotherapy regimens in this study, which
may have introduced bias into the results. Nevertheless, our study is a
systematic and an in-depth quantification of the potential risks to the
hematologic and lymphatic systems for both all ICIs and their specific
categories, in combination with bevacizumab. These results could
provide valuable evidence for further research and clinical practice.

Overall, hematologic and lymphatic system toxicities were more
frequently reported in ICI regimens than in other drug regimens,
especially among patients treated with anti-PD-1/anti-PD-L1 agents.
Comparedwith ICImonotherapy, ICI plus bevacizumabwas associated
with a higher incidence of hematologic and lymphatic AEs. Treatment
with different ICI immunotherapies may result in unique and distinct
profiles of hematologic and lymphatic AEs, depending on the agents
used. Therefore, early recognition and management of ICI-related
hematologic and lymphatic AEs are vital in clinical practice.
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