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Objective: Trabectedin is an anti-cancer drug commonly used for the treatment
of patients with metastatic soft tissue sarcoma (mSTS). Despite its recognized
efficacy, significant variability in pharmacological response has been observed
among mSTS patients. To address this issue, this pharmacometabolomics study
aimed to identify pre-dose plasma metabolomics signatures that can explain
individual variations in trabectedin pharmacokinetics and overall clinical response
to treatment.

Methods: In this study, 40 mSTS patients treated with trabectedin administered by
24 h-intravenous infusion at a dose of 1.5 mg/m2 were enrolled. The patients’
baseline plasmametabolomics profiles, which included derivatives of amino acids
and bile acids, were analyzed using multiple reaction monitoring LC-MS/MS
together with their pharmacokinetics profile of trabectedin. Multivariate Partial
least squares regression and univariate statistical analyses were utilized to identify
correlations between baseline metabolite concentrations and trabectedin
pharmacokinetics, while Partial Least Squares-Discriminant Analysis was
employed to evaluate associations with clinical response.

Results: Themultiple regression model, derived from the correlation between the
AUC of trabectedin and pre-dose metabolomics, exhibited the best performance
by incorporating cystathionine, hemoglobin, taurocholic acid, citrulline, and the
phenylalanine/tyrosine ratio. This model demonstrated a bias of 4.6% and a
precision of 17.4% in predicting drug AUC, effectively accounting for up to 70%
of the inter-individual pharmacokinetic variability. Through the use of Partial least
squares-Discriminant Analysis, cystathionine and hemoglobin were identified as
specific metabolic signatures that effectively distinguish patients with stable
disease from those with progressive disease.

Conclusions: The findings from this study provide compelling evidence to support
the utilization of pre-dose metabolomics in uncovering the underlying causes of
pharmacokinetic variability of trabectedin, as well as facilitating the identification
of patients who are most likely to benefit from this treatment.
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Introduction

The delivery of the most effective cancer treatment is
challenging since it is faced by the management of inter-patient
variability due to the complex interplay between drug, host, and
tumor. It is well recognized that differences in the pharmacokinetics
processes of absorption, distribution, metabolism, and excretion
(ADME) as well as environmental and genetic factors significantly
contribute to drug response variability. The identification of
predictors for drug pharmacokinetics and response is remarkably
important for the achieving of personalized treatments especially for
cancer therapies where the variability in the exposure to drugs with
narrow therapeutic index can lead to over-dosing and side effects or
conversely to under-dosing and therapeutic failure.

Numerous studies suggest that pharmacometabolomics may
represent a powerful tool to foresee individual drug exposure
associated with toxicity development and overall response
(Kaddurah-Daouk et al., 2015; Everett, 2016). At the base of
pharmacometabolomics is the study of the correlation between
metabolome, which represents the complete set of metabolites at
a determinate time in a biological system, and the pharmacological
effect of drugs (Wishart, 2016; Wishart, 2019). Metabolites, being
the downstream products of almost all cellular regulatory processes,
incorporate the complex interactions among gene transcription,
protein expression, and environmental factors such as age,
gender, lifestyle, diet, and physio-pathological conditions. For

these characteristics, the metabolome can provide a reliable
snapshot of the current individual phenotype, which may embed
information about the individual differences potentially responsible
for determining the individual drug pharmacokinetics and
pharmacodynamics. This concept found wide consensus in
different studies where the pharmacometabolomics approach was
successfully applied for the identification of predictive biomarkers to
optimize drug dosing (Phapale et al., 2010; Huang et al., 2015; Zhang
et al., 2017; Kaddurah-Daouk et al., 2018), and to monitor the
pharmacodynamic response to treatment. However, only a few of
these researches have concerned anticancer drugs (Miolo et al., 2016;
Corona et al., 2018; Bao et al., 2019; Wu et al., 2019; Miller et al.,
2021), leaving mainly unexplored the application of
pharmacometabolomics in this specific field. In an attempt to
prove the potential of such a new omics tool, the present study
focused on the antitumor drug trabectedin to search for
metabolomics signatures associated with its high
pharmacokinetics and pharmacodynamics variability among
mSTS patients. Trabectedin is a tetrahydro-isoquinoline first
isolated from the marine tunicate Ecteinascidia turbinata and
mainly used as second-line treatment in mSTS patients
progressing after anthracycline chemotherapy with higher efficacy
in leiomyosarcoma and liposarcoma histotype (L-sarcomas), and
translocation related STS (Le Cesne et al., 2012; Kawai et al., 2015).
Patients treated with trabectedin report a wide variability in
pharmacological response (Demetri et al., 2016), which could be
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partially ascribed to the high inter-individual drug exposure since its
clearance can vary up to about 50% among patients (Perez-Ruixo
et al., 2007; Ueda et al., 2014). Thus, both the efficacy and toxicity of
trabectedin may take advantage of optimizing individual
pharmacokinetics profiles. In this pilot study, we attempt for the
first time to elucidate the inter-patient pharmacological variability of
trabectedin in STSs patients, achieved through the examination of
pre-dose individual plasma metabolomics phenotype. The study
results indicate that differences in the individual metabolomics
profile among mSTS patients can explain approximately 70% of
the pharmacokinetics variability of trabectedin. Moreover, specific
pre-dose metabolic signatures were found able to distinguish the
patients who receive the most clinical benefit from the treatment.
Both findings support the use of metabolomics in the optimization
and personalization of trabectedin treatment.

Materials and methods

Chemicals

Acetonitrile and methanol (LC-MS grade) were purchased from
Carlo Erba Reagents (Milan, Italy). Ultrapure water was generated
by a Milli-Q Plus system (Millipore, Billerica, MA, United States).
Formic acid, ammonium formate, ammonium acetate, and dimethyl
sulfoxide (DMSO) were purchased from Sigma-Aldrich (Milan,
Italy). Analytical standards of trabectedin and its deuterium-
labeled derivative d3-trabectedin were provided by PharmaMar
(Colmenar Viejo, Madrid, Spain). Trabectedin-free human
plasma used for calibration curves and quality control
preparation was obtained from healthy volunteers at Centro di
Riferimento Oncologico, Aviano. The AbsoluteIDQ® Bile Acids
(BAs) kit, consisting of five calibrators, three levels of quality
controls (QCs), and labeled internal standard (IS), was acquired
from Biocrates Life Sciences (Innsbruck, Austria). Analytical
reference standards and labeled IS for amino acids (AAs)
quantification were purchased from Toronto Research Chemicals
(North York, ON, Canada) and Cambridge Isotope Laboratories
(Tewksbury, MA, United States of America).

Study design and patients’ population

The present monocentric study enrolled 40 mSTS patients
undergoing trabectedin treatment. The study aimed to find a
regression model, based on pre-dose plasma targeted
metabolomics profile, able to explain the trabectedin
pharmacokinetics variability and to find metabolomics signatures
associated with the clinical benefit of the treatment. This latter was
assessed at the third chemotherapy cycle identifying the proportion
of subjects with responsive disease (RD), stable disease (SD), or
progressive disease (PD). All the mSTS patients were enrolled at the
Centro di Riferimento Oncologico (CRO) National Cancer Institute,
Aviano (Italy). Trabectedin was administered by 24 h-intravenous
infusion at a dose of 1.5 mg/m2 body surface area every 21 days, after
premedication with 20 mg dexamethasone. Normal hematological,
renal, and liver functions, as well as the PS ≤ 2, were requested to
receive trabectedin therapy together with a 3-week free interval from

previous chemotherapy. All patients were evaluated for response to
the trabectedin treatment according to Response Evaluation Criteria
in Solid Tumours (RECIST). Both plasmametabolomics and clinical
variables were included in the development of the best correlation
models predictive for PK and PD of trabectedin. The investigation
was carried out in accordance with the principles of the Declaration
of Helsinki and approved by the CRO Institutional Ethical
Committee (nos. 2015.004CE, 09/04/2015, NCT04394728). All
subjects gave written informed consent.

Sample collection

Pre-dose fasting whole blood sample was collected for
metabolomics analyses while serial blood sampling was
performed for trabectedin pharmacokinetics analysis. Blood
sample collection was performed in 5 ml tubes containing EDTA
as an anticoagulant at the following time points 0 (pre-dose) and at
2, 4, 8, 24, 25, 28, 32, and 48 h from the start of infusion. Plasma was
separated from blood cells by centrifugation at 4°C for 10 min at
3,200 rpm by Heraeus Megafuge 16R centrifuge then samples were
immediately transferred into polypropylene tubes and stored
at −80°C until analysis.

Pharmacokinetics analysis

The quantification of plasma trabectedin concentration was
carried out using a previously described LC-MS/MS validated
method (Di Gregorio et al., 2020). Briefly, 50 μL of plasma
samples, calibrators, or QCs were mixed with 200 μL of
acetonitrile-1% formic acid containing 0.1 ng/mL trabecedin-d3
as IS. After vortexing and centrifugation at 20,800 g for 10 min at
4°C the supernatant was directly transferred into an auto-sampler
glass vial and 3 μL were injected into the LC-MS/MS system
constituted by an Ultivo triple quadrupole mass spectrometer
(Agilent, Santa Clara CA, United States). The multiple reaction
monitoring (MRM) transitions used for quantification were 762 →
234 (m/z) for trabectedin and 765 → 234 (m/z) for the IS. Eight
point calibration curves from 0.01 ng/mL LLOQ to 2.5 ng/ml and
three QCs sample levels (0.04, 0.8, 0.16 ng/ml) were included in each
analytical run. Intra and inter-day precision and accuracy were less
than 15%.

The pharmacokinetics parameters were obtained from the non-
compartmental model, using the trapezoidal method for the AUC
up to 48 h (AUC0-48 h) and extrapolating the Cmax from the
concentration-time plot pharmacokinetics profiles using PC-
NONLIN program (version 2.0). Both AUC and Cmax values
were normalized by the respective absolute dose in mg of
trabectedin administered to each patient.

Targeted metabolomics profile analysis

Metabolomics profile was carried out in pre-dose plasma of
patients and targeted to 48 AAs and 16 BAs derivatives
(Supplementary Tables S1, S2). The two classes of metabolites
were analyzed separately by LC-MS/MS using a HILIC and
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reverse phase (RP) chromatographic methods, according to the
manufacturer’s instruction Jasem AAs (SRA Instruments
Analytical Solutions, Italy) and Biocrates BAs (Innsbruck,
Austria) LC-MS/MS kits, respectively. Quantitative analysis was
performed by Ultivo triple quadrupole mass spectrometer using
internal standard calibration and MassHunter software (Agilent,
Santa Clara CA, United States). Intra-assay and inter-assay
variability for both AAs and BAs metabolites were ≤15%.

Statistical analyses

Quantitative metabolomics data were pre-processed by log
transformation and unit variance scaling before statistical
analyses. Correlations between pharmacokinetics parameters and
metabolites plasma concentration were assessed by double-stage
multivariate Partial least squares (PLS) analysis, selecting in each
step the metabolites with Variable Importance in Projection (VIP) ≥
1. The internal validation of the model was tested by K-fold cross-
validation and by permutation test to assess the degree of overfitting.
The Q2 and R2 value were used as indicators of the predictive ability
and goodness of fit model, respectively. Multiple regression analysis
was applied after double-stage PLS to further refine the model. The
backward method was used to reduce the number of metabolites in
the pharmacokinetics predictive model. The multicollinearity of
highly correlated variables was checked by evaluation of Variance
Inflation Factor (VIF) < 2. Multivariate supervised PLS discriminant
analysis (PLS-DA) was used to find differences in baseline
metabolomics profile between PD and SD patients as well as to
disclose association with the toxicity development following
trabectedin treatment. VIP and Student’s t-test were used to
identify significantly different plasma metabolite concentrations
between groups. Differences in categorical variables were
evaluated by Fisher’s exact test, while Pearson correlation was
used for continuous variables. The p-values were adjusted
(q-value) by multiple hypothesis testing based on False Discovery
Rate (FDR). Statistical significance was accepted for q ≤ 0.05 unless
otherwise specified. Receiver operating characteristic (ROC)
analyses were applied to evaluate the ability of selected
metabolites to discriminate the groups of interest. Statistical
analyses were performed using SIMCA Umetrics version 14.0,
MedCalc v. 19.2.1, and MetaboAnalyst 4.0 tools.

Results

Patients population

The 40mSTS enrolled patients had amedian age of 66 years with
a superimposable percentage of males and females (45% females and
55% males) (Table 1). L-sarcomas were the most prevalent
histological subtypes accounting for 42.5% of the cases. The
largest portion of the mSTS patients presented poorly
differentiated G3 grade tumors, with only 25% of patients that
showed moderate G2 grade differentiation. 52.5% of patients
showed a good general health condition, with an ECOG
performance status (PS) of 0, while the remaining 47.5% had a
PS between 1 and 2. Patients received trabectedin for a median of
three cycles (range: 1–48) mainly as second-third line (60%),
preceded by chemotherapeutic treatments based on
anthracyclines or gemcitabine. Trabectedin treatment induced
modest hematological toxicities (G0-2), such as anemia,
leukopenia, and neutropenia in 60% of patients while G3 side
effects were observed in 40% of the patients. Total toxicity
(hematological and extra-hematological toxicities) with G0-2 and
G3 grades occurred in 52.5% and 47.5% of patients, respectively. In
40% of patients who experienced adverse effects during the first
cycle, the dose of trabectedin was managed by a 75% dose reduction

TABLE 1 Demographic and clinical characteristics of patients.

Characteristics Value

Sex, n (%)

Female 18 (45.0)

Male 22 (55.0)

Age (years), median, range 66 (37–90)

Age, n (%)

<65 years 18 (45.0)

≥65 years 22 (55.0)

BMI (kg/m2), median (range) 27.0 (17.5–41.8)

Tumor subtype, n (%)

L-sarcomasa 17 (42.5)

Other sarcomasb 23 (57.5)

Tumour grade, n (%)

G2 10 (25.0)

G3 30 (75.0)

Performance status (ECOG score), n (%)

0 21 (52.5)

1–2 19 (47.5)

Trabectedin therapy, n (%)

1st line 16 (40)

2nd line 18 (45)

3rd line 6 (15)

Hematological toxicity grade, n (%)

G0-2 24 (60.0)

G3 16 (40.0)

Non-Hematological toxicity grade, n (%)

G0-2 21 (52.5)

G3 19 (47.5)

Disease status 3rd cycle, n (%)

PD 20 (50)

SD 16 (40)

NE 4 (10)

Overall survival, median in months (range) 13.2 (0.8–56.9)

BMI, bodymass index; ECOG, eastern cooperative oncology group; PD, progressive disease;

SD, stable disease; NE, not evaluable.
aLeiomyosarcoma (n = 12) and liposarcoma (n = 5).
bOther sarcomas include: malignant peripheral nerve sheath tumour (n = 3), fibrosarcoma

(n = 4), undifferentiated pleomorphic sarcoma (n = 4), chondrosarcoma (n = 2), synovial

sarcoma (n = 2), not otherwise specified sarcoma (n = 4), endometrial stromal sarcoma (n =

2), desmoplastic small-round-cell tumour (n = 1) and malignant fibrohistiocytoma (n = 1).
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administered during the following chemotherapy cycles. After three
cycles of treatment, the status of the disease was re-evaluated by
computed tomography scan: 20 patients reported a PD, while in
16 patients an SD was achieved. Four patients died before the
conclusion of the first three chemotherapy cycles and were not
evaluable for the pharmacological response. The median overall
survival was 13.2 months (range: 0.8–56.9 months).

Pharmacokinetics

Trabectedin plasma concentrations were evaluated up to 48 h
from the start of administration in all enrolled patients. Throughout
the 24-h infusion the trabectedin concentrations increased non-
linearly, reaching a steady state at about 8 h from the start of the
infusion. The elimination of trabectedin occurred by a bi-
exponential kinetics, with a rapid decline immediately after the
end of the infusion followed by a slower late elimination phase up to
48 h (Figure 1). The pharmacokinetics parameters of trabectedin are
summarized in Table 2. The mean experimental AUC0-48 and Cmax

were 33.2 ± 11.2 ngh·mL-1 (range: 12.7–63.4) and 1.2 ng mL-1 (range:
0.4–2.5) respectively, while AUMC0-48 and MRT were 596.8 ±
202.2 ng h2 mL-1 and 18.0 ± 1.0 h, respectively. The mean AUC
normalized by the absolute dose of trabectedin (AUC/Dose) was

13.6 ± 5.31 ng h·mL-1mg-1 (range 6.33–31.70 ng h·mL-1mg-1).
Differences in the trabectedin AUC/Dose were investigated also
as a function of the baseline patients’ clinical and demographic
characteristics (Figure 2). Patients with L-sarcomas showed
significantly lower AUC/Dose compared with those having other
sarcomas (p = 0.019). The same trend was observed for the tumor
grade: patients carrying grade 3 sarcoma had 1.4-fold higher AUC/
Dose compared with those having grade 2 (p = 0.022). PS was also
found associated with pharmacokinetics since patients with PS =
0 had significantly lower AUC/Dose than those with PS = 1 (p =
0.036). No correlations were instead found between
pharmacokinetics and gender or age.

Metabolomics and pharmacokinetics
correlations

A predictive model for AUC/Dose trabectedin was developed
from the baseline metabolomics profile data by double-stage PLS
regression analysis. Before analysis, principal component
analysis (PCA) was performed to detect any potential outliers.
One patient with an abnormal metabolomics profile was excluded
from further analyses (Supplementary Figure S1). An explorative
PLS plot (n = 39) of the individual targeted metabolomics profiles
showed a good linear relationship with trabectedin AUC/Dose
with an R2 = 0.59 (Supplementary Figures S2A–C). The refined
PLS model, obtained by reducing the noise variables based on
only twenty-four metabolites with VIP ≥1, improved fit
performance (R2 = 0.70) and predictability (Q2 = 0.42)
(Figures 3A,B). Random permutation test revealed no data
overfitting with all R2 and Q2 values for each permutation
lower than the original values (intercepts: R2 = 0.275,
Q2 = −0.276) (Figure 3C). To improve feasibility the
predictive model was simplified by backward multiple
regression analysis of the metabolomics hits selecting five
variables: cystathionine, hemoglobin (Hb), taurocholic acid
(TCA), citrulline, phenylalanine-tyrosine (Phe/Tyr) ratio, and
that have an independent impact on AUC/Dose prediction
without risk of multicollinearity (VIF <2) (Supplementary
Table S3). The final multiple regression model:

AUC/Dose = 20.07–0.15 [Citrulline]-0.82 [Hb]+15.70 [TCA]+2.69
[Cystathionine]+5.16 [Phe/Tyr], still showed a good prediction ability
(R2 = 0.69) with a bias and precision of 4.6% and 17.4%, respectively
(Supplementary Figure S3).

FIGURE 1
Plasma-concentration time profile of trabectedin in 40 mSTS
patients receiving 1.5 mg/m2 dose of trabectedin administered as 24 h
intravenous infusion.

TABLE 2 Pharmacokinetics parameters of trabectedin.

PK parameters Mean SD Range 95% CI

Cmax (ng·mL-1) 1.2 0.5 0.4–2.5 1.1 to 1.4

AUC 0–48 h (ng·h·mL-1) 33.2 11.2 12.7–63.4 29.6 to 36.7

AUMC 0–48 h (ng·h2·mL-1) 596.8 202.2 214.2–1105.1 53 to 660

MRT (h) 18.0 1.0 13.9–20.4 17.7 to 18.3

AUC/Dose (ng·h·mL-1·mg-1) 13.6 5.31 6.33–31.70 11.9 to 15.3

Cmax/Dose (ng·mL-1·mg-1) 0.50 0.21 0.22–1.24 0.43 to 0.57

SD, standard deviation; CI, confidence interval; AUC, area under the curve; AUMC, area under the first moment curve; MRT, mean residence time; Cmax; maximum concentration, Dose;

absolute dose of trabectedin administered expressed in mg.
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Metabolomics biomarkers of trabectedin
response

After three cycles of treatment, 16 patients (40%) achieved an SD,
while in the remaining 20 patients (50%) a PD was reported. Four
patients (10%) including the metabolomics outlier died before the third
cycle and were not included in the analysis. The PLS-DA, incorporating
the clinical data, clearly distinguished the baseline plasmametabolomics
profile of the SD and PD groups. The model showed an acceptable
classification performance (R2 = 0.57, Q2 = 0.33) without the risk of
overfitting. The plasmametabolites variables that mainly contributed to
such group classification with a VIP≥1 included 15 AAs derivatives,
3 BAs, and 5 clinical parameters such as Hb; red blood cells (RBC);
hematocrit (HCT); white blood cells (WBC); mean cell volume (MCV)
(Figure 4A–C). Five variables resulted to be statistically different among
SD and PD groups by T-test. In particular, Hbwas significantly lower in
PD patients (p = 9·10−4), while plasma cystathionine (p = 2·10−3) and
cholic acid (CA) (p = 0.02) were higher in PD patients (Figure 5A).
Interestingly, the PD group showed an AUC/Dose of trabectedin 1.5-
fold higher than the SD group (p = 5·10−5). Moreover, high tumor grade
and histotypes different from L-sarcomas were found also associated

with a poor response (p = 0.0017 and p = 0.041, respectively) while no
significant differences can be referred to PS, age, or gender. Despite the
increased AUC/Dose, the toxicity rate did not result statistically
different between the SD and PD groups (p = 0.503).

The ROC analysis showed Hb and cystathionine the highest
diagnostic capability in the classification of SD and PD patients with
an AUROC of 0.78 (55% sensitivity, 100% specificity) for Hb and
0.80 (85% sensitivity, 62.5% specificity) for cystathionine,
respectively while their combination improves the discriminatory
power with an AUROC = 0.87 (sensitivity 90%, specificity 75%)
(Figure 5B). Moreover, the integration of the model with the
pharmacokinetics parameter Cmax/Dose further enhanced its
ability in distinguishing SD versus PD patients (AUROC = 0.95,
90% sensitivity, 81.3% specificity) (Figure 5B).

Baseline metabolomics profiles investigated in the context of the
hematological and non-hematological toxicity development by PLS-DA
analysis showed only a modest separation between the toxicity groups
G0-2 (n = 21) or G3 (n = 19) (Supplementary Figure S5). However, the
model did not pass the internal cross-validation (R2 = 0.47, Q2 = −0.21),
not allowing the identification of specific metabolomics signatures
responsible for trabectedin side effects occurrence. Moreover, the

FIGURE 2
Association between trabectedin AUC and clinical characteristics such as histotypes, tumour grading, PS, sex and age. AUC data are expressed as
mean and SD. Age ≥65, PS 0 vs. 1–2. L, leimyosarcoma and lipoisarcoma; O, other sarcomas; PS, performance status; F, female; M, male; G2, G3, tumour
grade. AUC normalize by total administered dose.
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extent of both hematological and non-hematological toxicity observed
among patients was not found significantly associated with the
pharmacokinetics AUC/Dose of trabectedin (p = 0.550).

Discussion

Trabectedin is effective in the treatment of locally advanced or
mSTS patients, although a broad variability in the clinical outcome
has been observed (Le Cesne et al., 2015; Demetri et al., 2016). The
reasons behind such pharmacological variability are largely
unknown, posing a challenge in predicting the clinical benefit of
the treatment and emphasizing the need for predictive markers of
trabectedin efficacy.

The pharmacokinetics profiles of trabectedin observed in this
investigation were found superimposable with those reported in
other pharmacokinetics investigations (Perez-Ruixo et al., 2007;
Grosso et al., 2020). The drug exposure, expressed by AUC,

showed a relatively wide variability of about 34%, in agreement
with previous studies, not related to age and gender (Mehren et al.,
2008; Grosso et al., 2020). However, other important factors such
as individual genetics, as well as specific physio-pathological
conditions combined with environmental factors, can contribute
to influencing the trabectedin pharmacokinetics profile. All this
individual information is not easy to determine but can be
captured and integrated into circulating metabolomics profile
making it an extraordinary tool to investigate and explain the
trabectedin pharmacokinetics differences among patients. This
new concept was supported by the results of this investigation
since the baseline metabolomics profile was found strongly
correlated with the AUC of trabectedin demonstrating that
individual metabolic features may include information
associated with drug clearance. The optimized PLS regression
model, based on citrulline, Hb, cystathionine, TCA and Phe/Tyr
ratio targeted metabolomics, allowed to predict the individual
pharmacokinetics of trabectedin explaining almost 70% of inter-

FIGURE 3
Refined PLSmodel based on pre-dose plasmametabolites (A); Variable importance projection (VIP) scores ranked, (B); Predicted vs. observed AUC/
Dose plot, (C); internal validation goodness of fit (R2, green) and predictability parameters (Q2, blue) from the permutation analysis.
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individual variability. These variables do not guarantee specificity
to the disease alone, but they can contribute to the overall
understanding of a specific pharmacological profile. Although
these emerged metabolites are not directly involved in the
ADME process, it is well-known that both endogenous and
exogenous metabolites can indirectly induce alterations in drug
pharmacokinetics by affecting the expression and activity of
cytochrome 3A4 (CYP3A4) which is the main enzyme
responsible for the hepatic metabolic clearance of many drugs
including trabectedin (Vermeir et al., 2009; Machiels et al., 2014).

Within this framework, the TCA derivative, which is a primary BA
synthesized from cholesterol and conjugated with taurine in the
liver, can represent one of such endogenous metabolites. Indeed,
BAs, beyond their major activity in dietary lipids absorption, can
alter the CYP expression through direct interaction with the
nuclear farnesoid X receptor (FXR) (Gnerre et al., 2004). In
particular, high levels of primary free and conjugated BAs have
been found to enhance CYP3A4 expression to defense cells from
their toxic effect (Chen et al., 2014). Conversely to this mechanism,
we found a direct positive correlation between TCA levels and

FIGURE 4
Partial least squares discriminant analysis (PLS-DA) score plot discriminated serum clinical-metabolomics profiles of PD (n = 20, red) and SD patients
(n = 16, green) (A). Permutation test showed R2 (green) and Q2 (blue) validation parameters significantly different between permuted and original models
(B). Variable importance in projection (VIP) of PLS-DA model ranked by increasing values (C).
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AUC. This suggests that TCA may interact through an alternative
mechanism that reduces trabectedin clearance. Since the
regulation and detoxification of BAs processes involve CYP3A4
(Stedman et al., 2004), high concentrations of TCA may compete
for the catalytic site of this specific cytochrome contributing to
reducing the trabectedin clearance. This hypothesis appears

supported by other studies which report a positive correlation
between serum BAs and the AUC of drug metabolized by CYP3A4
(Taegtmeyer et al., 2014; McCune et al., 2023). In addition to
metabolic clearance, elevated TCA levels can impact the AUC of
trabectedin by modifying its cellular transport and elimination.
This is because both trabectedin and BAs are substrates of ATP

FIGURE 5
(A); Plasma concentrations of variables significantly different between PD (blue) SD patients (dark blue) expressed as mean ± SE. SE: standard error.
(B); Receiver operating characteristic (ROC) curve for single Hb (1) and cystahionine (2)with an AUROC of 0.78 and 0.8, respectively. The combination of
Hb and cystahionone (3) and the integration of this latter model with Cmax/Dose (4) achieved an AUROC of 0.87 (90% sensitivity, 75% specificity) and 0.95
(90% sensitivity, 81.3% specificity), respectively.
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Binding Cassette 1–2 (ABCC1-2), also referred to as multidrug
resistance-associated protein 1–2 (MRP1-2) (Beumer et al., 2010).
These proteins, mainly localized in the membrane of hepatocytes,
kidney, and intestine cells, regulate the excretion of organic anions
like bilirubin, BAs, and xenobiotics protecting cells from their toxic
accumulation. Taking into account this transport mechanism,
increased TCA levels could function as a competitive antagonist
for the ABCC binding of trabectedin. Consequently, this could lead
to higher plasma concentrations of trabectedin. Moreover, beyond
TCA, also other BAs, such as glycocholic acid, taurodeoxycholic
acid, and taurochenodeoxycholic acid, showed a positive
correlation with AUC, likely contributing to hamper trabectedin
elimination mediated by ABCC. In patients and animals with
dysfunctional ABCC transporters the increase in systemic
trabectedin exposure was found associated with acute severe
hepatotoxicity (Lee et al., 2008; van Waterschoot et al., 2009).
Nevertheless, in our patient cohort, we did not identify any
noteworthy connections between trabectedin AUC and liver
toxicity, likely because all patients received pre-treatment with
dexamethasone (Martin et al., 2008; Micuda et al., 2008), a potent
ABCC inducer, which effectively can mitigate the risk of severe
hepatic injury. Unlike TCA, the other AUC predictors such as
cystathionine, citrulline, Phe/Tyr ratio, and Hb, did not show any
potential link with the ADME processes. Serum accumulation of
cystathionine was observed in patients with aggressive tumors
while low serum levels of citrulline were frequently associated with
poor outcomes indicating the potential negative prognostic role of
these two metabolites (Ouaknine Krief et al., 2019; Miolo et al.,
2020). Moreover, the Phe/Tyr ratio, which was proposed as a
surrogate metabolic marker of immune activation associated with
inflammation, was found elevated in advanced cancer patients that
commonly present such immune dysregulation (Neurauter et al.,
2008; Ploder et al., 2008). Thus, these metabolites more likely seem
to outline specific pathological conditions characteristic of highly
aggressive cancer that indirectly predispose to an increased
trabectedin exposure. The evidence that individuals with high
AUC display a poor performance status, a higher tumor grade,
or a more aggressive non-L-sarcoma histotype may further bolster
the aforementioned metabolic-pharmacological hypothesis.
Beyond pharmacokinetics, the information embedded in the
pre-dose metabolomics profiling could also infer trabectedin
pharmacodynamics. Indeed, PD patients can be clearly
distinguished from those with SD through PLS-DA analysis
based on both clinical and metabolomics data. The metabolites
that more contributed to the phenotype differentiation were: low
Hb and high cystathionine levels all identified as negative
prognostic factors. Cystathionine and Hb biomarkers resulted as
the best classifiers by ROC analysis, especially when used in
combination. The tumor metabolic reprogramming can induce
modifications not only limited to the cellular level but also
involving the host systemic metabolism. Thus, certain
concentrations of circulating metabolites could be depleted to
meet cancer’s demands, while others could be synthesized to
sustain cancer proliferation and metastasis (Vander Heiden and
DeBerardinis, 2017). In this context, cystathionine and Hb may
represent a specific metabolomic signature arising from the
complex host-tumor metabolic interplay. Cystathionine is an
important intermediate of the trans sulphuration pathway

which initiates with the homocysteine and serine condensation
by the cystathionine β-synthase to produce cystathionine, followed
by its hydrolysis into cysteine (Sbodio et al., 2019). The latter is
essential for the synthesis of glutathione (GSH), which protects
cells from reactive oxygen species (ROS) damage (Belalcázar et al.,
2013). The high cystathionine concentrations observed in the PD
group might reflect the intensification of the trans-sulfur pathway
to sustain the pool of cysteine and GSH, which makes cancer cells
able to survive even in highly oxidant environments as those
induced by chemotherapeutics (Kennedy et al., 2020). This
hypothesis is corroborated by the observation of a high
cystathionine β-synthase expression in drug-resistant tumor
phenotype (Bhattacharyya et al., 2013; Wang et al., 2018).

The low level of Hb, in general, is indicative of a subclinical
anemia status that has been frequently reported as a poor prognosis
biomarker for mSTS as well as in other tumor types (Szkandera et al.,
2014; Shi et al., 2021). It has been suggested that an inflammatory
process, likely induced by tumor itself, can lead to the development
of a chronic anemic status (Natalucci et al., 2021). In this scenario,
interleukin-6 (IL-6), a pro-inflammatory cytokine, that was often
found elevated in advanced cancers including STS (Hagi et al., 2017;
Nakamura et al., 2020), can reduce gut iron absorption resulting in
blood Hb drop (Nemeth et al., 2004). Moreover, low Hb levels
induce tumor hypoxia that, in turn, can trigger the activation of
several molecular pathways promoting angiogenesis, anaerobic
metabolism, and the transcription of target genes that enhance
cell proliferation and tumor metastasis (Lv et al., 2017). On this
basis, the low Hb levels that characterize PD patients, as observed in
the present study, may indicate a more aggressive tumor behavior
that is associated with a poor prognosis. The predictive power for the
clinical benefits of trabectedin treatment, as well as its specificity, can
be enhanced when information from Hb and cystathionine were
integrated with pharmacokinetic parameters such as Cmax which is
highly correlated with AUC, providing surrogate information on the
overall drug exposure. Its determination requires only a simple
blood sample, which makes it useful for enhancing the prognostic
clinical model in the clinical setting. However, further investigations
are necessary to validate these metabolomics predictive biomarkers,
given the small patient cohort and the absence of an external
independent group, which limits its full validation.

Conclusion

The findings of this investigation confirm the potential of
metabolomics as a valuable tool for predicting the
pharmacokinetics and pharmacodynamics of trabectedin in mSTS
patients. This exploratory pharmacometabolomics study represents
a significant improvement, into elucidate the inter-patient
pharmacokinetic variability of trabectedin by leveraging
individual metabolomic characteristics. The study results
demonstrate that the baseline plasma metabolomic profile holds
significant advantages in revealing differences in individual
pharmacological phenotypes which may be associated with both
trabectedin exposure and the clinical benefits. These findings
highlight the significance of integrating metabolomics into
clinical practice, as it can potentially enhance the optimization of
treatment in terms of efficacy and safety.
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