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Background: Kidney renal papillary cell carcinoma (KIRP) is a rare malignancy with
a very poor prognosis. Anoikis is a specific form of apoptosis involved in
carcinogenesis, but the role of anoikis in KIRP has not been explored.

Methods: Anoikis-related genes (ARGs) were obtained from the GeneCards
database and Harmonizome database and were used to identify different
subtypes of KIRP and construct a prognostic model of KIRP. In addition, we
also explored the immune microenvironment and enrichment pathways among
different subtypes by consensus clustering into different subtypes. Drug sensitivity
analysis was used to screen for potential drugs. Finally, we verified the mRNA and
protein expression of the independent prognostic gene PLK1 in patient tissues and
various cells and further verified the changes in relevant prognostic functions after
constructing a PLK1 stable knockdown model using ShRNA.

Results: We identified 99 differentially expressed anoikis-related genes (DEGs)
associated with KIRP survival, and selected 3 genes from them to construct a
prognostic model, which can well predict the prognosis of KIRP patients.
Consensus clustering divided KIRP into two subtypes, and there was a
significant difference in survival rates between the two subtypes. Immune
profiling revealed differing immune statuses between the two subtypes, and
functional analysis reveals the differential activity of different functions in
different subtypes. Drug sensitivity analysis screened out 15 highly sensitive
drugs in the high-risk group and 11 highly sensitive drugs in the low-risk
group. Univariate and multivariate Cox regression analysis confirmed that
PLK1 was an independent prognostic factor in KIRP, and its mRNA and protein
expression levels were consistent with gene differential expression levels, both of
which were highly expressed in KIRP. Functional verification of PLK1 in KIRP
revealed significant results. Specifically, silencing PLK1 inhibited cell
proliferation, clonogenicity, and migration, which indicated that PLK1 plays an
important role in the proliferation and migration of KIRP.
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Conclusion: The prognosis model constructed by ARGs in this study can accurately
predict the prognosis of KIRP patients. ARGs, especially PLK1, play an important role
in the development of KIRP. This research can help doctors provide individualized
treatment plans for KIRP patients and provide researchers with new research ideas.
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1 Introduction

Kidney renal papillary cell carcinoma (KIRP) is aggressive
carcinoma with a low incidence and poor prognosis. KIRP
accounts for approximately 10%–20% of renal parenchymal
tumors (Fernandes and Lopes, 2015) and is the most common
subtype of non-clear cell renal cell carcinoma (Hu et al., 2019).
According to a study conducted between 1992 and 2015 using the
Surveillance, Epidemiology, and End Results (SEER) database, the
incidence of KIRP is approximately 0.934 per 100,000 patients (Saad
et al., 2019). KIRP mainly occurs in male and black patients, and its
prognosis is poor. Notably, type 2 KIRP may have a worse prognosis
than type 1 KIRP (Sweeney et al., 2022). However, past studies have
found no successful cases of targeted therapy against KIRP (Akhtar
et al., 2019). Thus, the search for potential therapeutic targets and
prognostic markers for KIRP has become a key step in its treatment.

Anoikis is a type of programmed cell death, apoptosis induced
by loss of or inappropriate cell adhesion (Valentijn et al., 2004).
Anoikis results from insufficient cell-matrix interactions, which
disrupt the multiple cytokine networks for growth, motility, and
angiogenesis that the extracellular matrix provides to cells through
enzymatic digestion and cytoskeletal remodeling (Frisch and
Ruoslahti, 1997; Cao et al., 2016). Anoikis is involved in a variety
of pathological processes, including carcinogenesis. Tumor cells are
able to promote anoikis resistance primarily by regulating integrins
and initiating epithelial-mesenchymal transition (EMT). Tumor
cells metastasize or migrate to distant sites following EMT or the
extracellular matrix (ECM) dissection processes, colonize and
proliferate at new sites, and ultimately lead to tumor spread and
a loss of surgical intervention opportunities (Guan, 2015). Tumor
cells can employ multiple mechanisms to eliminate anoikis and
facilitate their invasion and metastasis. Tumor cells can promote
anoikis resistance by activating oncogenic signaling of pro-survival
pathways, or through changes in the acidic environment and
generation of reactive oxygen species (ROS) within the tumor
microenvironment (Hu et al., 2019; Vander Linden and Corbet,
2019; Wang et al., 2019). While anoikis has been widely studied in
many tumors, including colorectal carcinoma (Cai and Zhou, 2022),
head and neck squamous cell carcinoma (Chi et al., 2022), and clear
cell renal cell carcinoma (Chen et al., 2022), its role in KIRP remains
unknown.

In this study, we continued to explore the TCGA database and
GEO database to study the prognosis and immune correlation of
anoikis-related genes (ARGs) in KIRP and screened out the
independent prognostic gene PLK1 for bioinformatics analysis
and preliminary verification of its role in promoting proliferation
andmigration, thus further clarifying the role of ARGs in KIRP. This
study can provide new insights and perspectives for the treatment
strategies and anti-tumor targets of KIRP patients.

2 Methods and materials

2.1 Data download and its preprocessing

On 20 December 2022, we downloaded 290 KIRP samples from
The Cancer Genome Atlas (TCGA) database; Supplementary Table
S1 presents relevant clinical information. From The Cancer Genome
Atlas-Kidney Renal Papillary Cell Carcinoma Database (TCGA-
KIRP, https://portal.gdc.cancer.gov/), we downloaded 323 samples
and clinical data from 291 KIRP patients. RNA-Seq expression data
must be normalized using the FPKM (Fragments Per Kilobase of
exon model per Million mapped fragments) method. From the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds)
database, we obtained the GSE2748 dataset, which includes
clinical information from 34 tumor specimens. Perl scripts and R
(version 4.2.2) with the R Bioconductor packages were used to
perform the data analysis.

2.2 Identification and mutation frequency
analysis of ARGs

ARGs were obtained from the GeneCards database (https://
www.genecards.org/) with a correlation score >0.4 as a filter and
the Harmonizome database (https://maayanlab.cloud/
Harmonizome/) (Rouillard et al., 2016) (Supplementary Table
S2). Based on these ARGs, we used the “limma” package to
select differentially expressed genes (DEGs) between normal
and tumor samples in the training dataset (|log FC| > 1,
p-value <0.05). Subsequently, the search tool for the retrieval of
interacting genes (STRING, https://string-db.org) was used to
construct protein-protein interaction (PPI) networks for
99 ARGs to retrieve interacting genes. We then selected
prognosis-related genes using univariate Cox analysis. Lasso
analysis was applied to remove overfitting genes. The positions
of copy number variations (CNV) alterations in 11 ARGs on
23 chromosomes were mapped by using the “RCircos”
package in R.

2.3 Consensus cluster analysis

With the R package “ConsensusClusterPlus”, 11 prognostic
ARGs were used to perform consensus clustering analysis with a
maximum of K = 9. Clustering is performed based on partitioning
around the center point using ‘Euclidean’ distance and is validated
1000 times. Next, KIRP patients were divided into different
molecular subtypes for further analysis according to the best
classification with K = 2-9.
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2.4 Constructing a prognostic model

The R package “glmnet”was used to select ARGs associated with
overall survival (OS) based on univariate Cox regression analysis
and utilizing the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm. Next, multivariate Cox regression analysis was
performed to select ARGs that could independently predict the
prognosis of KIRP. A risk model was established based on the
prognostic features of the ARGs using the following formula:
prognostic risk score = ∑n

i�1exp − genei*coef − genei. KIRP
patients were subsequently divided into low-risk and high-risk
groups based on the median risk score. By using the R package
“survival”, Kaplan-Meier survival curves were used to estimate the
OS rate of KIRP patients in the low-risk and high-risk groups.

2.5 Constructing a nomogram

Then, combining the risk score and other clinicopathological
data, we used the R packages “rms” and “regplot” to construct a
nomogram. In the nomogram scoring system, each variable is
assigned a score. The total score for each sample is calculated by
summing the scores of all variables, enabling the prediction of the 1-y,
3-y, and 5-year survival rates of KIRP patients. Calibration
nomograms were used to depict the correlation between predicted
1-y, 3-y, and 5-year survival events and actual observed outcomes. The
R package “pROC”was used to evaluate the diagnostic accuracy of the
risk score and clinicopathological features of KIRP.

2.6 Immune microenvironmental landscape
and drug sensitivity analysis

ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumours using Expression data) was used to assess the
immune cell abundance (ImmuneScores) and stromal cell abundance
(StromalScores). We estimated KIRP’s stromal, immune, and
ESTIMATE scores by using the R package “estimate”. Based on
“CIBERSORT R script v1.03″, the proportions of 22 types of
immune cells were estimated using the CIBERSORT algorithm.
The R package “GSVA” was used to perform single-sample gene
set enrichment analysis (ssGSEA) to evaluate the differences in
expression of 23 immune cells. The immune function score of
each patient was evaluated by the R package “GSVA”. The
Genomics of Drug Sensitivity in Cancer (GDSC) database was
used to predict antitumor drug responses in the low-risk and high-
risk groups for each KIRP sample, with drug sensitivity (IC50) serving
as an important indicator for evaluating treatment response. The R
package “ggplot2” was used to visualize all statistical analyzes.

2.7 Screening for independent prognostic
genes

Univariate and multivariate Cox regression analysis and using
forest plot by “forestplot” package to display each variable (p-value,
hazard ratios (HR), and 95% confidence intervals (CI)), screening
independent prognostic genes. The expression levels of independent

prognostic genes in KIRP tissues and adjacent normal tissues were
compared using the R package “ggplot2”. Kaplan-Meier survival
curves yielded p-values and HR with 95% CI by log-rank test and
univariate Cox regression for comparison between high and low
expression of independent prognostic genes. P < 0.05 was
considered statistically significant.

2.8 Tissue samples

During January and March 2023, 10 pairs of KIRP tissues and
adjacent normal tissues were collected from the Third Xiangya
Hospital of Central South University. These tissues were used to
detect PLK1 expression levels by immunohistochemistry. The study
has been approved by the Ethics Committee of the Third Xiangya
Hospital of Central South University. The approval number is
23188.

2.9 Immunohistochemical staining

Adjacent normal tissues and KIRP tissues were fixed in 4%
paraformaldehyde and then embedded in paraffin and sectioned to
a thickness of 6 μm. For immunohistochemical staining, sections were
deparaffinized and rehydrated. Rehydrated sections were treated with
Tris-EDTA buffer solution containing 10 mM Tris-Hcl and 1 mM
EDTA to expose antigens and inactivate endogenous peroxidases. The
sections were then boiled in a pressure cooker for 5 min. After being
washed 3 times, sections were incubated with BSA for 30 min and
subsequently incubated with anti-PLK1 antibody (1:200 dilution;
proteintech, China) overnight at 4°C. The following day, sections
were incubated at room temperature with a secondary antibody for
1 h, then developed with DAB staining solution for 30 s. After the
nucleus was stained with hematoxylin, sections were dehydrated and
mounted using neutral resins.

2.10 Quantitative real-time PCR

Total RNA was isolated using an RNeasy mini kit (QIAGEN,
Beijing, China). High-capacity cDNA reverse transcription kit
(Thermo, Shanghai, China) was used to synthesize the
complementary DNA (cDNA). PCR was carried out using
TaqMan Gene Expression Master Mix (Bio-Rad, Shanghai,
China) according to the manufacturer’s protocol and TaqMan
probes for human PLK1 and GAPDH (Sangon Biotech,
Shanghai, China). Primers used in this study included PLK1
(forward 5′-GTGCCTAAGTCTCTGCTGCTCAAG-3′, reverse 5′-
TCCAACACCACGAACACGAAGTC-3′), GAPDH (5′-CAGGAG
GCATTGCTGAT-3′, 5′-GAAGGCTGGGGCTCATTT-3′).

2.11 Western blot

The cells were transfected with PLK1 or control plasmid for 48h,
and the protein was extracted. The protein extract was separated by
SDS-PAGE and transferred to a PVDF membrane, which was then
probed with an anti-PLK1 antibody (1:1000 dilution; proteintech,
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China). The antigen-antibody response was observed by a
ChemiDoc system using a peroxide-coupled secondary antibody.
ImageJ was used to quantify the intensity of the band.

2.12 MTT

Cells were transfected with PLK1 or a control plasmid for 24 h
and then seeded into a 96-well plate at a density of 6 × 10̂3 cells per

well. 50 μM of 2 mg/mL MTT was added to each well and incubated
in the incubator for 4 h. After removing the medium, 150 μL DMSO
was added and shaken for 10 min. Absorbance (OD) was measured
at 490 nm.

2.13 Scratch assay

Cells were transfected with PLK1 or a control plasmid for 24 h
and then seeded into a 12-well plate at a density of 3 × 10̂5 cells per
well. After 24 h, cells were scraped using a 200 µL tip to create an
injured area. Cells were then washed twice with phosphate-buffered
saline and incubated with serum-free medium for the indicated time
periods. Digital images were taken under the microscope at times
0 and 24 h.

2.14 Transwell assay

After 24 h of transfection with PLK1 or a control plasmid, 4 ×
10̂4 cells in 200 μL of serum-free mediumwere seeded into the upper
chamber of a Transwell device. 600 μL medium supplemented with
10% serum was used as a chemoattractant in the lower chamber.
After 24 h, cells were fixed with 4% paraformaldehyde and stained
with 0.1% crystal violet. Uninvaded cells on the upper sides of the
membrane were removed with absorbent cotton and then
photographed under a microscope.

3 Results

3.1 Identification of DEGs in KIRP and
adjacent normal tissues

We obtained a total of 640 ARGs from the Genecards database
and the Harmonizome database. From the TCGA database, we
obtained a total of 135 genes expressed in KIRP and adjacent normal
tissues. Visualization of these genes resulted in the identification of
99 DEGs, with 50 genes upregulated and 49 downregulated in KIRP,
as shown in the heatmap and volcano diagram (Figures 1A, B).
Finally, a protein-protein interaction (PPI) analysis was used to
reveal the key nodes of 99 DEGs. We found that PLK1, CDKN3,
PDK4, CDKN1A, TAGLN, etc. were important central genes
(Supplementary Figure S1).

3.2 Screening of prognostic-related genes
and mutation frequency analysis

To establish a more accurate signature of ARGs, we used
univariate regression analysis on the 99 DEGs, identifying
11 genes (PDK4, BIRC5, CDKN3, CDKN1A, PLK1, OLFM3,
PDGFRB, TP73, ADAMTSL1, SFRP1, TAGLN) associated with
KIRP prognosis (Figure 2A). The network diagram shows that
10 of these 11 genes are high-risk genes, while CDKN1A is a
low-risk gene, and there are positive regulatory relationships
among most genes, while there are negative regulatory
relationships between CDKN3 and CDKN1A, CDKN1A and

FIGURE 1
DEGs in KIRP and adjacent normal tissues (A) Heatmap showing
99 DEGs in KIRP. (B) Volcano diagram shows the DEGs with the
threshold set at |FC| ≥ 2 and p-value <0.05.
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PDK4, and PDK4 and BIRC5 (Figure 2B). Figure 2C shows that the
frequency of copy number gain of BIRC5, PDK4, PDGFRB,
CDKN3, and PLK1 is greater than that of copy number loss,
while the frequency of copy number gain of TP73, OLFM3,
CDKN1A, SFRP1, ADAMTSL1, TAGLN is less than that of copy
number loss. The mutation positions of the 11 genes on the 23 pairs
of chromosomes are shown in Figure 2D.

3.3 Analysis of consensus clustering and the
immune microenvironmental landscape

Next, we used the consensus cluster analysis to cluster KIRP
patients into different subgroups based on 11 ARGs. The heatmap
shows the best classification of KIRP patients with K = 2
(Figure 3A), with 229 samples in group A and 94 samples in
group B, and the survival analysis of the two subgroups shows that
cluster A outperforms cluster B in terms of survival time
(Figure 3B), the PCA illustrates the significant separation
between cluster A and cluster B based on 11 ARGs (Figure 3C).
Differential analysis revealed these 11 genes were highly expressed
in cluster B (Figure 3D), confirmed by a heatmap (Figure 3E). The
difference analysis of immune cells between the two groups of
samples was carried out. Results of the single-sample gene set
enrichment analysis (ssGSEA) revealed 18 immune cells with

significant differences between the two subtypes.
Activated.B.cell, Activated. CD4.T.cell, Activated. CD8.T.cell,
Gamma. delta.T.cell, Immature.B.cell, MDSC, Macrophage,
Mast. cell, Natural. killer.T.cell, Natural. killer.cell,
Plasmacytoid. dendritic.cell, Regulatory.T.cell, T.
follicular.helper.cell, Type.1.T.helper.cell, Type.2.T.helper.cel
were highly expressed in cluster B, whereas
CD56bright.natural.killer.cell, CD56dim.natural.killer.cell,
Type.17.T.helper.cell were highly expressed in cluster A
(Figure 3F). Gene set variation analysis (GSVA) revealed
differential enrichment of KEGG pathways between clusters B
and A. KEGG_BUTANOATE_METABOLISM, KEGG_
CARDIAC_MUSCLE_CONTRACTION, KEGG_
ALZHEIMERS_DISEASE, and KEGG_PARKINSONS_DISEASE
were highly enriched in cluster A, while the remaining pathways
were highly enriched in cluster B (Figure 3H). Gene set enrichment
analysis (GSEA) pathway analysis showed functional activity of
KEGG_CALCIUM_SIGNALING_PATHWAY, KEGG_ECM_
RECEPTOR_INTERACTION, KEGG_FOCAL_ADHESION,
and KEGG_VASCULAR_SMOOTH_MUSCLE_
CONTRACTION in cluster B, with KEGG_VALINE_
LEUCINE_AND_ISOLEUCINE_DEGRADATION being
functionally silent in cluster B (Figure 3G). Overall, these
results suggest that ARGs may provide insights into the
immune response and immune infiltration in KIRP.

FIGURE 2
Screening of prognostic-related genes and mutation frequency analysis (A)The forest plot shows the top 11 ARGs (p < 0.01) via the univariate Cox
regression analysis. (B)Network diagram showed the correlations between the top 11 ARGs. (C)Copy number variations (CNVs) of 11 ARGs in TCGA-KIRP.
(D) Chromosome region and alteration of ARGs.
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FIGURE 3
Analysis of consensus cluster and the immune microenvironmental landscape. (A) The consensus matrixes for the legend, k = 2 and k = 3 were
obtained by applying consensus clustering. (B) Overall survival of two subtypes (p < 0.001). (C) Principal component analysis shows a significant
distribution of patients in cluster A and cluster B based on the ARGs prognostic signature. (D) ARGs expression in two subtype clusters. (E) Heatmap of
ARGs expression and corresponding clinicopathological features of two subtypes. (F) Immune infiltration patterns in two subtype clusters. (G,H)
GSVA analysis focused on the differential enrichment of KEGG pathways between clusters B and A.
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3.4 Construction of a prognostic model

Five ARGs (CDKN3 CDKN1A PLK1 ADAMTSL1 TAGLN)
associated with OS rates were identified by LASSO based on
univariate Cox regression analysis. Based on multivariate Cox
regression analysis, three ARGs (CDKN1A PLK1 TAGLN) that
could independently predict the prognosis of KIRP were selected
for constructing a risk model. According to the regression analysis
results of these 3 prognostic genes, the risk score prognostic model
was established as follows: (−0.373813566624579 * CDKN1A
expression) + (0.884910890301322 * PLK1 expression) +
(0.214132906470507 * TAGLN expression) (Figures 4A, B).

The KIRP patients were randomly divided into two groups: a
training group and a testing group, and according to the patient’s
median risk score, patients were divided into high-risk and low-
risk groups for survival analysis. The results showed that the
survival rate of patients in the low-risk group was better than that
in the high-risk group, which shows that the constructed model
can accurately distinguish patients in high and low-risk groups
(Figures 4C–E). The ROC curve indicated that the AUC values of
1-y, 3-y, and 5-year patients surviving in the training group are
0.901, 0.810, and 0.750 respectively, and the AUC values of 1-y, 3-
y, and 5-year patients surviving in the testing group are 0.920,
0.769, 0.649, and the AUC values of 1-y, 3-y, and 5-year survival of

FIGURE 4
Construction of a prognostic model. (A,B) LASSO regression analysis shows the minimum lambda and optimal coefficients of the prognostic ARGs.
(C–E) The K-M curves showed different prognosis in the different risk groups. (C) Train group, (D) Test group, (E) All group. (F–H) The time-dependent
ROC curves for OS at 1-, 3-, and 5-years. (F) Train group, (G) Test group, (H) All group. (I) Heatmap diagram shows the expression of the 3 prognostic
ARGs. (J) Risk score in two clusters established before. (K) Alluvial diagram of subtype and living status.
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patients in all groups were 0.910, 0.783, 0.681, indicating that the
constructed model can accurately predict the patient’s survival
period (Figures 4F–H). The risk heatmap showed that CDKN1A
was a low-risk gene, while PLK1 and TAGLN were high-risk genes
(Figure 4I). The difference analysis between clusters A and B
shows that there is a significant difference in the patient’s risk
score between the two groups (Figure 4J), and the corresponding
correlation between the patients’ type and the survival status is
shown in Figure 4K.

3.5 Constructing a nomogram

In view of the role of the risk score in assessing patient survival,
we used the risk score of the three genes combined with other
clinicopathological features to construct a nomogram with the
purpose of predicting the survival probability of KIRP. Each
feature corresponds to a score, and a patient’s total risk score is
462 points. This indicates that the patient’s 1-year, 3-year, and 5-
year survival rates are 0.983, 0.95, and 0.926, respectively.
(Figure 5A). The predicted nomogram showed that the 1-year,
3-year, and 5-year OS curves were relatively well-revealed
compared to the ideal model for the entire cohort (Figure 5B).
Patients’ risk increases over time, and patients in the high-risk
group had a greater risk than those in the low-risk group
(Figure 5C). Decision curves demonstrated that the constructed
nomogram was superior to other clinical traits in predicting
patient survival (Figures 5D–F).

3.6 Immune cell infiltration and tumor
microenvironment analysis

The immune response has an irreplaceable role in the anti-cancer
process, so we evaluated the difference in the immune cells between
the high and low-risk groups, and the content of immune cells was
significantly different between the two groups (Figure 6A), and the
correlation heatmap between immune cells is shown in Figure 6B.
Figures 6C–G shows that B cells memory, Plasma cells, T cells
CD4 naive, T cells focal helper, Mast cells resting, and Mast cells
activated have significant differences between the two groups. The
correlation analysis between immune cells and a patient’s risk score
showed that T cells follicular helper and Mast cells activated were
positively correlated with the risk score, while T cells CD4 naive,
Plasma cells, andMast cells resting were negatively correlated with the
risk score (Figure 6H). The differential analysis of the tumor
microenvironment revealed that there were significant differences
in StromalScore between the high- and low-risk groups, and the
tumor microenvironment (TME) score of the high-risk group was
significantly higher than that of the low-risk group (Figure 6I).

3.7 Drug sensitivity analysis

Drug therapy is an indispensable part of tumor treatment,
therefore, we conducted a drug sensitivity analysis related to
prognostic genes for KIRP patients, and the results showed that
26 drugs had significant differences between high and low-risk

FIGURE 5
Constructing a nomogram. (A) Nomogram plot based on ARGscore and clinicopathological factors. (B) Calibration plot for the validation of the
nomogram. (C)Cumulative hazard curve represented the probability of survival over time progression. (D–F)DCA curves of the nomogram for 1-, 3- and
5-year OS in KIRP patients.
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groups. The IC50 values of these 11 drugs (AZD3759, Afuresertib,
Gefitinib, Erlotinib, AGI−5198, BMS−345541, OF−1, JAK1_8709,
Sapitinib, Selumetinib, Tamoxifen) were significantly increased in
the high-risk group, indicating that these drugs sensitivity in the high-
risk group was lower than that in the low-risk group (Figure 7A), and
the IC50 values of these 15 drugs (Alpelisib, AZD6738, AZD7762,
BPD−00008900, Daporinad, MK−1775, IGF1R_3801, Leflunomide,
Linsitinib sensitivity, ULK1_4989, Telomerase Inhibitor IX, VE−822,
Pevonedistat, TAF1_5496,Wee1 Inhibitor) were significantly lower in
the high-risk group, indicating that these drugs are highly sensitive in
the high-risk group (Figure 7B).

3.8 Screening of independent prognostic
genes and their preliminary validation

Afterwards, we performed univariate and multivariate Cox analysis
of the p-values, risk coefficients HR and CI of the three prognostic gene

expressions and clinical characteristics, and found that PLK1 and pM
stages could be used as independent prognostic factors for KIRP (Figures
8A, B). The differential expression of PLK1 in adjacent normal tissues
and KIRP tissues revealed that PLK1 was highly expressed in KIRP
tissues (Figure 8C), and the high-expression group of PLK1 had a worse
survival time than the low-expression group (Figure 8D).

3.9 Validation of PLK1 expression and
prognostic function in KIRP

To investigate the expression of PLK1 in KIRP, we stained PLK1 on
adjacent normal tissues and KIRP tissues. IHC results showed that
PLK1 was significantly higher in KIRP compared with adjacent normal
tissues (Figure 9A). Next, we evaluated PLK1 expression in twoKIRP cell
lines and one normal renal cell line by WB and qRT-PCR. As shown in
Figures 9B, C, we found that the protein and mRNA levels of PLK1 in
KIRP were significantly higher than those in normal cells. Therefore, we

FIGURE 6
Immune cell infiltration and tumor microenvironment analysis. (A) The relative proportion of infiltrating immune cells with different risk scores. (B)
Correlation between immune cells. (C–G) The correlation analysis between risk score and the proportion of immune cells in KIRP tissues. (H) Immune cell
component between the high-risk group and low-risk group. (I) Estimate score of the expression profile in the high-risk group and low-risk group.
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further explored the function of PLK1 in KIRP. After the successful
silencing of PLK1 was verified by WB and PCR (Figures 10A, B), the
effects of PLK1 on KIRPwere respectively detected byMTT, clonogenic,
scratch, and transwell assays, and the results showed that silencing
PLK1 significantly inhibited cell proliferation, clonogenesis and
migration (Figures 10C–G). All of these results suggest that
PLK1 plays an important role in the proliferation andmigration ofKIRP.

4 Discussion

Given the extremely poor prognosis once KIRP is diagnosed,
the 5-year survival rate is significantly low. Therefore, early
diagnosis and risk assessment are very important to improve the
survival time of KIRP patients. In our study, 3 ARGs were
identified to be associated with KIRP’s OS, and they were used

FIGURE 7
Drug sensitivity analysis. IC50 values were calculated for patients in the high- and low-risk groups to assess the sensitivity of chemotherapeutic
agents. (A) Drugs that are highly sensitive in low-risk groups. (B) Drugs that are highly sensitive in high-risk groups.
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to construct a new risk model to assess the prognosis of KIRP.
The role of prognosis-related genes in KIRP was further
evaluated through immune cell infiltration and drug

sensitivity analyses. Basic experiments further verified the
expression and function of the independent prognostic
gene PLK1.

FIGURE 8
Screening for independent prognostic genes. (A,B) Hazard ratio and p-value of the constituents involved in univariate and multivariate Cox
regression considering clinical parameters and three prognostic ARGs in KIRP. (C) Expression of PLK1 in KIRP and adjacent normal tissues. (D)Comparison
of OS of PLK1 in KIRP high expression group and low expression group.

FIGURE 9
PLK1 is overexpressed in KIRP tissue and cells. (A) The expression of PLK1 in KIRP and adjacent tissues was determined by IHC. (B) The expression of
PLK1 in two KIRP cells and one normal renal cell was determined by WB. (C) The expression of PLK1 in two KIRP cells and one normal renal cell was
determined by PCR.
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First, we obtained 11 genes (PDK4, BIRC5, CDKN3, CDKN1A,
PLK1, OLFM3, PDGFRB, TP73, ADAMTSL1, SFRP1, TAGLN)
associated with KIRP prognosis from 99 DEGs by univariate
regression analysis. Pyruvate dehydrogenase kinase 4 (PDK4) is
one of the important biomarkers involved in energy metabolism,
which is related to the energy metabolism of proximal tubule cells
and involved in the occurrence and development of chronic kidney
disease (CKD) (Zhou et al., 2022). The occurrence of CKD can cause
the decline of renal function, which has a higher prognosis
correlation with KIRP, and the aggravation of renal injury can

accelerate the occurrence and development of KIRP (Woldu
et al., 2014). Baculovirus IAP repeats 5 (BIRC5) is a member of
the inhibitor of apoptosis (IAP) family and plays an important role
in the occurrence and development of tumors. BIRC5 is highly
expressed in most cancers and has a strong oncogenic effect in
promoting cancer cell proliferation and cancer development, which
significantly shortens the survival time of patients (Ye et al., 2022). A
recent study demonstrated that BIRC5 expression is upregulated in
kidney renal clear cell carcinoma (KIRC), and promotes KIRC
proliferation and tumorigenicity (Zhang et al., 2019). Small

FIGURE 10
Validation of PLK1 prognostic function in KIRP. (A) The expression of PLK1 after silencing PLK1 was measured byWB. (B) The expression of PLK1 after
silencing PLK1 was measured by PCR. (C) MTT was used to evaluate cell proliferation after silencing PLK1. (D) Clonogenic assay was used to evaluate
colony suppression after silencing PLK1. (E–G) Scratch and transwell assay was used to evaluate migration suppression after silencing PLK1.
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nucleolar RNA host gene 6. (SNHG6) has been shown to be
associated with poor prognosis of various human cancers (Shen
et al., 2020), which may regulate BIRC5 expression to promote KIRP
progression (Liu et al., 2023). BIRC5 was also proved to be the
prognosis-related gene of KIRP in our study, further indicating that
the expression of BIRC5 is crucial to the occurrence and
development of KIRP. Cyclin-dependent kinase inhibitor 3
(CDKN3) has also been proven to be related to the occurrence
and treatment of various cancers, such as bladder carcinoma,
colorectal carcinoma, cervical carcinoma, etc. (Berumen et al.,
2014; Li et al., 2020; Li et al., 2022), However, its role in KIRP
has not been elucidated so far, and it is the first time in our paper that
CDKN3 is associated with the prognosis of KIRP.

Through GSVA and GSEA analysis to explore the activity of
KEGG pathways in clusters A and B, it was found that KEGG_ECM_
RECEPTOR_INTERACTION was active in cluster B, while KEGG_
VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION was
silent in cluster B. The expression of ITGA6 and CD44 in the
ECM-receptor-interaction pathway plays an important role in the
proliferation and invasion of renal cell carcinoma cells. Treatment
offers a new research direction (Zhang et al., 2016). Increased
concentrations of leucine, isoleucine, and valine were found in the
urine of patients with non-small cell lung carcinoma treated with
cisplatin infusion, suggesting that valine leucine and isoleucine
degradation may be affected by cisplatin influence (Doskocz et al.,
2015). Therefore, the analysis of GSVA and GSEA can provide a more
scientific basis for the immunotherapy and chemotherapy of KIRP.

Subsequently, we identified three genes (CDKN1A, PLK1,
TAGLN) that can independently predict the prognosis of KIRP.
These genes were selected using the LASSO algorithm via univariate
and multivariate Cox regression analysis, and were then used to
construct a risk model, in general, the constructed risk model can
accurately predict the prognosis of KIRP patients.

The cyclin-dependent kinase inhibitor p21 (CDKN1A) plays an
important role in the DNA damage response by inducing cell cycle
arrest, directly inhibiting DNA replication, and regulating
fundamental processes such as apoptosis and transcription
(Cazzalini et al., 2010). The cell cycle is a complex process that is
regulated by a large number of genes at the transcriptional, post-
transcriptional, and post-translational levels, and abnormalities at any
stage of the cell cycle may lead to diseases including cancer. Therefore,
genes play a crucial role in the proliferation process role. CDKN1A is
the target of miRNA, and its expression can affect the binding site of
transcription factors in the promoter region, thereby affecting the
proliferation of DNA, causing cell generation obstacles, and possibly
inducing cancer (Bhattacharyya et al., 2016). Until now, CDKN1A has
been found to play a role in numerous cancers. CDKN1A can
promote ovarian cancer resistance to cisplatin, resulting in
cisplatin treatment failure and aggravating the patient’s condition
(Wang and Liu, 2021). The study found that the mRNA and
protein expression levels of CDKN1A/p21 were significantly
upregulated in breast carcinoma tissues compared with adjacent
non-neoplastic breast tissues, which indicated that high expression
of CDKN1A/p21 was closely related to adverse pathological
parameters and poor prognosis of breast carcinoma, and CDKN1A/
p21 can be listed as a possible candidate for breast carcinoma
biomarker (Zaremba-Czogalla et al., 2018). Many studies have
found that microRNA (miR)-93 can play an oncogenic role in

various cancers by inhibiting the expression of CDKN1A.
Compared with normal tissues, the expression levels of miR-93 and
CDKN1A in cervical carcinoma tissues were significantly increased and
decreased, indicating that the upregulation of miR-93 and the
downregulation of CDKN1A may be related to the occurrence and
development of cervical carcinoma and the prognosis of patients,
suggesting that CDKN1A could potentially serve as a therapeutic
target for this carcinoma (Zhang et al., 2018). CDKN1A acts as a
cell cycle regulator involved in genome stability, and low expression of
CDKN1A contributes to poor prognosis in chromophobe renal cell
carcinoma (Ohashi et al., 2020). CDKN1A has been shown to be a
member of ferroptosis-associated signature genes to predict graft loss
after renal allograft transplantation (Fan et al., 2021). Moreover, the
prognosis of KIRP patients can also be accurately predicted by the risk
model constructed by using CDKN1A as a ferroptosis-related gene
signature (Da et al., 2022). A study in a mouse model identified
CDKN1A as a target of phagocytosis-mediated immunotherapy of
acute leukemia cells, CDKN1A promotes phagocytosis of leukemia
cells and subsequently promotes pro-inflammatory reprogramming of
phagocytic macrophages via interferon Gamma extends to
surrounding macrophages, presenting the therapeutic opportunity
for cancer therapy (Allouch et al., 2022). However, in our study,
CDKN1A was used for the first time as an anoikis-related gene to
construct a risk model for KIRP. This model helps to evaluate the
prognosis and immune response of KIRP patients, thereby further
expanding the understanding of CDKN1A’s role in KIRP.

Polo-like kinase 1 (PLK1) is an evolutionarily conserved Ser/Thr
kinase, which plays an important role in the regulation of the cell
cycle and is mainly expressed in the G2/S and M phases of the cell
cycle (Petronczki et al., 2007). Genetic ablation or inhibition of
PLK1 results in abnormal chromosome segregation and,
consequently, mitotic arrest, often accompanied by cell death
(von Schubert et al., 2015). PLK1 is often overexpressed in a
variety of tumors and is associated with poor clinical outcomes.
In our study, we found that the expression of PLK1 was increased in
KIRP, and the prognosis of high expression of PLK1 was worse than
that of low expression. In addition, PLK1 overexpression is
associated with chemotherapy resistance, and inhibition of
PLK1 can enhance the sensitivity of cancer cells to chemotherapy
and radiotherapy (Strebhardt, 2010; Gutteridge et al., 2016). In non-
small cell lung carcinoma (NSCLC), inhibition of PLK1 selectively
kills cancer cells and upregulates PD-L1 expression in surviving
cancer cells, providing a feed-forward target for antigen-releasing
agents and checkpoint inhibitors (ARACs) Delivery provides the
opportunity to effectively reach immunotherapy in NSCLC (Reda
et al., 2022). Similarly, a study suggests that Plk1 may be a biomarker
of gemcitabine response in pancreatic ductal adenocarcinoma
(PDAC), inhibition or depletion of Plk1 leads to upregulation of
PD-L1 via activation of the NFκB pathway. Plk1 can thus co-inhibit
PDAC progression and suppress NFκB activity. Consequently,
targeting Plk1 could enhance the efficacy of PDAC
immunotherapy (Zhang et al., 2022). The PLK1 gene is a
potential anti-breast cancer drug target and a prognostic marker,
and its overexpression is closely related to the low survival rate of
breast carcinoma patients (Fang et al., 2022). As a necroptosis-
related gene, PLK1 has also been studied in KIRC, and it was found
that PLK1 can be used as an independent prognostic marker for
KIRC patients with excellent stability and accuracy (Xin et al., 2022).
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Although some studies have also found that PLK1 can be used as a
new important prognostic factor involved in the pathogenesis of
KIRP (He et al., 2020), but these are not very comprehensive, and
further research is needed. In our study, PLK1, as one of the
independent prognostic factors of KIRP, played an indispensable
role in KIRP. We conducted qRT-PCR and WB experiments on
PLK1 and found that the protein and mRNA levels of PLK1 in KIRP
were significantly higher than those in normal cells, which was
consistent with the differential expression of KIRP, further proving
the accuracy of our results. We also further explored the function of
PLK1 in KIRP and found that silencing PLK1 significantly inhibited
cell proliferation, clonogenicity, and migration, suggesting that
PLK1 plays an important role in the regulation of the cell cycle
and the proliferation and migration of KIRP.

Transgelin (TAGLN, also known as SM22), an actin-associated
protein, is found to have a significant role in the development of various
cancers due to its dysregulation. It is generally considered a tumor
suppressor (Wen et al., 2021) and has an important role. Studies have
identified TAGLN as a potential molecular target for colorectal cancer
progression, as the interaction between TAGLN and HMGA2 is
involved in TGF-β-induced cell migration and promotion of colon
carcinoma cells (Zhou et al., 2020). TAGLN has also been shown to be a
potential biomarker for diagnostic and therapeutic targets, significantly
impacting the survival of bladder carcinoma patients (Liu et al., 2019).
The evaluation of the response to immunotherapy and chemotherapy
in patients with bladder carcinoma by the prognosticmodel constructed
byTAGLN showed that the high-risk group showed significantly higher
sensitivity to anti-PD-1 therapy (Liu et al., 2021). There is no relevant
evidence for TAGLN as a prognostic biomarker in KIRP. In our study,
TAGLN, as a gene that can independently predict the prognosis of
KIRP, participated in the construction of the risk model. Overall, it is
suggested that the constructed model can accurately predict the
prognosis of KIRP, further reinforcing its role in KIRP. It also
provides a new potential target for the future treatment and research
of KIRP.

Our drug sensitivity analysis revealed 15 drugs sensitive, and
11 drugs insensitive, to the high-risk group. Afuresertib is an Akt
pathway inhibitor that exerts cytotoxic and antiproliferative activities in
human cancer cells (Uko et al., 2020). And in the study in rats, it was
also found that Afuresertib can inhibit the expression of PI3K and Akt-
related proteins in rat tumor tissues to exert its anti-tumor effect (Min
et al., 2022). These show that Afuresertib has anti-tumor effects in both
humans and animals. Erlotinib (OSI-774) inhibits the epidermal growth
factor receptor (EGFR), which blocks tumor cell division, produces cell
cycle arrest, and initiates programmed cell death in EGFR-
overexpressing human tumor cells, and has therapeutic potential for
lung cancer strong effect (Brower and Robins, 2016; Tagliamento et al.,
2018). However, the therapeutic efficacy of these drugs for KIRP
remains largely unexplored. In our study, the sensitivity of these
drugs in KIRP was analyzed, which provides more potential options
for drug treatment of KIRP.

Although the characteristic model of ARGs that we constructed
has strong performance in predicting the prognosis of KIRP
patients, there are still many limitations in our study. The KIRP
samples used in our research are mainly sourced from public
databases, which may lack some important information.
Although we also collected some clinical tissue samples for basic
experimental verification, our research results still need more in vivo

and in vitro experiments for further verification. In addition, our
prognostic model was constructed by screening only a few
characteristic risk genes, while other valuable genes may be
ignored. More research is needed to further verify our results.

5 Conclusion

We identified 99 DEGs associated with KIRP survival, from
which we selected 3 genes to construct a prognostic model that
effectively predicts the prognosis of KIRP patients. Furthermore, the
relationship between different subtypes and immune
microenvironments and different functions was initially
demonstrated by immune infiltration landscape analysis and
functional enrichment analysis. Drug sensitivity analysis screened
15 highly sensitive drugs in the high-risk group and 11 highly
sensitive drugs in the low-risk group. PLK1 is an independent
prognostic factor for KIRP, and its mRNA and protein
expression levels are consistent with gene differential expression
levels, both of which are highly expressed in KIRP. The results of
functional verification in KIRP found that silencing
PLK1 significantly inhibited cell proliferation, clonogenesis, and
migration, indicating PLK1’s importance in KIRP. In conclusion,
our findings can provide a new idea for future research and provide
clinicians with new targets for the treatment of KIRP patients.
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