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Introduction: Natural products such as phytoestrogens-enriched foods or
supplements have been considered as an alternative therapy to reduce depressive
symptoms associatedwithmenopause. It is known that the aqueous extract ofPunica
granatum (AE-PG) exerts antidepressant-like effects by activating β-estrogen
receptors and facilitates the antidepressant response of the clinical drug
citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie
investigated the antidepressant-like response of combining AE-PG and CIT at sub-
optimal doses, analyzing their effects on the formation and maturation of dendrite
spines in granule cells as well as on the dendrite complexity.

Methods:OvariectomizedWistar rats (3-month-old) were randomly assigned to one
of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-
PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125mg/kg), C) CIT at a
sub-threshold dose (0.77mg/kg plus vehicle of AE-PG), and D) a combination of CIT
plus AE-PG (0.125mg/kg and 0.77mg/kg, respectively). All rats were treated
intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the
force swimming test test (FST). The complexity of dendrites and the number and
morphology of dendrite spines of neurons were assessed in the dentate gyrus after
Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic
factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as
markers of synaptogenesis, were also determined.

Results: Administration of CIT combined with AE-PG, but not alone, induced a
significant antidepressant-like effect in the FST with an increase in the dendritic
complexity and the number of dendritic spines in the dentate gyrus (DG) of the
hippocampus, revealed by the thin and stubby categories of neurons at the
granular cell layer. At the same time, an increase of mBDNF and synaptophysin
expression was observed in the hippocampus of rats that received the
combination of AE-PG and CIT.
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Introduction

Estrogens are a factor in regulating emotions, mainly in women.
Several studies have shown that hormonal fluctuations at some
stages of women’s lives, such as the perimenopausal transition
period, induce more anxiety and depressive symptoms (Woods
et al., 2006; Bromberger et al., 2007; 2010; Joffe et al., 2007;
Soares, 2010; 2014; Sander et al., 2021), and that estrogens are an
effective treatment to alleviate depression symptoms associated with
menopause (Rasgon et al., 2002; Cohen et al., 2003; Gordon and
Girdler, 2014; Schmidt et al., 2015). In this sense, hormonal
replacement therapy (HRT) induces beneficial effects on
climacteric symptoms, like osteoporosis, hot flashes, and
vasomotor symptoms. Evidence obtained from humans and
rodents showed that HRT might improve the efficacy and
shorten the latency to observe effects of antidepressants (Zanardi
et al., 2007; Récamier-Carballo et al., 2012; Vega-Rivera et al., 2015;
El-Khatib et al., 2020). However, other studies showed that using
hormones as therapy could increase the risk of endometrial or breast
cancer (Beral et al., 2011; Azam et al., 2018).

Research has been aimed at searching for new complementary
therapies to improve depressive symptoms and decrease the side
effects of estrogens. Several studies have suggested that natural
alternatives such as foods or supplements with phytoestrogens
can reduce menopausal symptoms (Cheng et al., 2007; Taku
et al., 2010; 2012; Chen et al., 2015; Estrada-Camarena et al.,
2017; Echeverria et al., 2021; Li et al., 2021) and exert
antidepressant effects due to their estrogenic activity (Hu et al.,
2017; Ko et al., 2020; Gorzkiewicz et al., 2021; Valdés-Sustaita et al.,
2021; Park et al., 2022). Phytoestrogens are nonsteroidal natural
compounds found in a wide variety of plants and foods that have a
similar structure to estradiol (E2), with the capability to generate
estrogenic or antiestrogenic effects through their binding to estrogen
receptors (ER) (Morito et al., 2002; Kostelac et al., 2003; Zhao et al.,
2011; Wang et al., 2020; Cho et al., 2021; Gorzkiewicz et al., 2021).
Among the phytoestrogens with an important estrogenic-like
activity are ellagitannins, which are mainly present in the Punica
granatum (Pomegranate) (González-Trujano et al., 2015). The
pomegranate has been recognized as a fruit with nutritional
properties (Shaygannia et al., 2016), relevant anti-inflammatory
(Adams et al., 2006; Rasheed et al., 2009), antioxidant (Gil et al.,
2000; Mena et al., 2014; Les et al., 2015), anti-microbial (Saquib et al.,
2021), anti-carcinogenic, anti-nociceptive, anti-depressive, and
neuroprotective properties (Mori-Okamoto et al., 2004; Jurenka,
2008; Olajide et al., 2014; Velagapudi et al., 2016; Valdés-Sustaita
et al., 2017; 2021). All these properties are related to the high content
of phytochemicals, such as polyphenols, in all parts of the fruit (Wu
and Tian, 2017; Bonesi et al., 2019; Shalaby et al., 2019; Ruan et al.,
2022).

It is known that downregulation of neuroplasticity-related
mechanisms, including dendritogenesis and synaptogenesis in
specific brain areas, such as the hippocampus, may contribute to
the pathophysiology of depression (Bessa et al., 2009; Castrén and
Hen, 2013; Mateus-Pinheiro et al., 2013; Duman and Duman, 2014;

Duman et al., 2016; Alves et al., 2017; Castrén and Antila, 2017; Levy
et al., 2018; Levy et al., 2019). In fact, over the last years, several
studies have evidenced the participation of neuroplasticity-related
mechanisms as key players in the action of antidepressants, such as
serotonin-reuptake inhibitors (Ampuero et al., 2010; Rubio et al.,
2013; Mcavoy et al., 2015; Kitahara et al., 2016; Ampuero et al., 2019;
Levy et al., 2019; Klöbl et al., 2022), electroconvulsive or hormonal
therapies (Foy et al., 2010; Abbott et al., 2014; Catenaccio et al., 2016;
Pirnia et al., 2016). Evidence has shown that these effects are
associated with the upregulation of certain neurotrophins, like
the mature brain-derived neurotrophic factor (mBDNF), which is
known to be repressed by stress and is a critical mediator of
antidepressant responses (Karege et al., 2002; Monteggia et al.,
2004; Gonul et al., 2005; Duclot and Kabbaj, 2015; Ghosh et al.,
2015; R. S; Duman et al., 2016; Castrén and Antila, 2017).

The administration of an aqueous extract of pomegranate (AE-
PG) improves antidepressant-like effects of drugs of clinical use
(Valdés-Sustaita et al., 2021). In a previous study, the administration
of low doses of AE-PG combined with the antidepressant citalopram
(CIT) synergized to produce an antidepressant-like effect in the
forced swimming test (FST) in rats (Valdés-Sustaita et al., 2021),
suggesting the participation of the serotoninergic system and
estrogen receptors, specifically the beta receptors (ERβ), as a
possible mechanism of action (Valdés-Sustaita et al., 2017;
Valdés-Sustaita et al., 2021). It is noteworthy that ERβ has been
considered an important target for antidepressant treatment and a
mediator of the mechanism by which estrogen may influence
neuronal plasticity (Liu et al., 2008; Zhao et al., 2011; Chhibber
et al., 2017; Chidambaram et al., 2019). Nevertheless, neuroplasticity
underlying these behavioral responses has not been explored at all.

The mBDNF is related to the dendrite spines, whose formation
follows a fine-tuning process involving the sprouting of the
membrane to generate filopodia, thin, stubby, and mushroom-
head-type spines (Zhang and Benson, 2000; Kasai et al., 2003;
Kasai et al., 2010; von Bohlen und Halbach, 2009). Interestingly,
each of these morphological changes is associated with the
formation of neuronal connections, information storage, and
processing within the brain circuits that involves proteins such as
synaptophysin (Valtorta et al., 2004; Zuo et al., 2005; O’Donnel et al.,
2011; Hlushchenko et al., 2016; Runge et al., 2020). Thin-like spines,
called small or immature spines due to their smaller head and
narrow neck, have been considered learning spines capable of
forming new memories during the synaptic plasticity process
(Hayashi and Majewska, 2005; Bourne and Harris, 2007; Caroni
et al., 2012). In contrast, mushroom or large spines, considered more
stable, have the ability to form strong synaptic connections, capable
of maintaining neuronal networks and long-term memory
(Trachtenberg et al., 2002; Hayashi and Majewska, 2005; Bourne
and Harris, 2007; Caroni et al., 2012). Regarding stubby spines,
although having been classified as immature spines, some studies
have suggested that this type of spines could be a form of active
mushroom (Holtmaat et al., 2005; Caroni et al., 2012; Tønnesen
et al., 2014). Finally, filopodia-shaped spines, which lack functional
synapses, are considered important because they can still be found,
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mainly under specific conditions like induction of plasticity (Dailey
and Smith, 1996; Ziv and Smith, 1996; Grutzendler et al., 2002; Zuo
et al., 2005; Caroni et al., 2012). Considering that AE-PG exerts an
antidepressant-like effect and potentiates the effects of clinical drugs
such as CIT, in this study, their influence on neuroplastic changes in
dendritic complexity, spines density, and neuroplasticity-related
morphological changes was evaluated in the hippocampus using
a selected combination. Also, mBDNF levels and expression of the
synapse-related protein, synaptophysin, were measured in the
hippocampus.

Materials and methods

Animals

Young adult (3-month-old) ovariectomized (OVX) female
Wistar rats, weighing 210–260 g, were used in this study.
Ovariectomy was performed by ventral approximation doing an
incision on the skin and muscle of female rats under anesthesia with
tribromoethanol (Estrada-Camarena et al., 2011). Oviducts and
ovaries were located and after ligating the oviducts, ovaries were
removed. Afterward, muscle and skin were sutured, rats received a
dose of meloxicam to prevent surgery-related pain (Kim et al., 2023)
and were left undisturbed for 3 weeks for recovery. All procedures
related to animal care were in accordance with the Mexican official
norm for animal care and handling (NOM-062-ZOO-1999) and
approved by the Institutional Ethics Committee of the Instituto
Nacional de Psiquiatria “Ramón de la Fuente Muñiz" (CEI-200/
2015). The experimental work was developed in Mexico City
(2,240 m above sea level) from March to April (Atmospheric
pressure = 1,022.6 Pa; Servicio Meteorológico Nacional, 2023
Mexico City). During the whole experimental process, animals
were maintained in standard laboratory cages (5 animals per
cage) under a 12-h light/12-h dark cycle (starting the light cycle
at 22:00 and ending at 10:00 h) at a temperature of 23 ± 1°C, and
with free access to food and water. The same personmanipulated the

animals daily for approximately 15 min during the treatment
administration.

Experimental design

As shown in Figure 1, 3 weeks after the OVX, the animals were
exposed to an acute stress session (15 min) induced by a forced
swimming test and, subsequently, animals were randomly assigned
to the respective treatment. Based on Valdés-Sustaita et al. (2017),
the DE30 for CIT and AE-PG was calculated and dose-response
curves were constructed with independent groups of rats (n =
8–10 per group) to select a non-effective dose for the
combinations on FST. Doses for CIT (0.77, 3.06, and
12.24 mg/kg) and AE-PG (0.125, 0.50, and 2.0 mg/kg) were
combined in a 1:1 proportion, and only the combination of
drugs that alone did not produce behavioral effects on FST were
processed for neuroplastic analysis. In all cases, AE-PG, CIT, their
combination, and/or the saline solution were administered
chronically for 14 days (once a day) from 9 to 10 a.m. (Valdes-
Sustaita et al., 2017; Valdes-Sustaita et al., 2021). One day after
completing the administration, the animals were subjected to the
open field test to discard a motor alteration that could interfere with
the response of animals in the FST (Estrada-Camarena et al., 2002);
30 min later, a second forced swimming test session (5 min) was
performed to evaluate ability to cope with a stressful situation.

Hence, the animals analyzed for the neuroplastic effect were
groped in: A) Control group (saline solution [s.s.], 0.9% NaCl) plus
distilled water, n = 15), B) AE-PG group at a sub-threshold dose (s.s
Plus AE-PG 0.125 mg/kg, n = 12), C) CIT group at a sub-threshold
dose (CIT 0.77 mg/kg plus vehicle of AE-PG, n = 15), and D)
combination of a sub-threshold dose of AE-PG plus CIT
(0.125 mg/kg and 0.77 mg/kg, respectively; n = 12). At the end of
the behavioral test, animals were euthanized by decapitation and
their brain collected and prepared to analyze the formation and
maturation of dendrite spines on granule cell dendrites and changes
in the dendritic complexity (n = 4–5). Blood was collected to

FIGURE 1
Schematic representation of the experimental design used to evaluate the effects of the combination of AE-PG plus CIT at sub-optimal doses on the
depressive-like behavior induced by the forced swimming test (FST), plasma corticosterone and mBDNF, synaptophysin protein expression and mBDNF
in hippocampus, and dendritic complexity, density, and morphology of dendritic spines in the dentate gyrus of the ovariectomized rat. Created in
BioRender.com.
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evaluate corticosterone and mBDNF (n = 4–6), and the
hippocampus was dissected, divided into right and left
hemisphere, and frozen at −70°C until evaluating mBDNF levels
and synaptophysin protein expression (n = 4–6).

Behavior test

Open-field test
To discard a possible influence of drug treatments on locomotor

activity, the effect of the AE-PG and CIT drugs, alone or in
combination, was tested in the open-field test for 5 min. The test
consisted in placing the animals individually on an opaque-Plexiglas
box (40 × 50 × 30 cm3) with the floor divided into 12 equal squares
(12 × 12 cm2) on which the animals could walk freely. The number of
times the animal crossed the squares during a 5-min session were
registered and analyzed (Estrada-Camarena et al., 2002).

Forced swimming test (FST)

The FST consisted in two swimming sessions separated by 14 days
(Detke et al., 1997; Estrada-Camarena et al., 2008; Vega-Rivera et al.,
2013; Vega-Rivera et al., 2015). On the first session (pre-test), rats were
forced to swim for 15 min to induce a state of stress in them. Fourteen
days after, on a second session (test), the animals were re-exposed to the
forced swimming for 5 min to evaluate the effects of treatment. In both
sessions, the animals were placed in Plexiglass cylinders (20 cm in
diameter and 46 cm tall, filled with a 30-cm water layer at 23°C ± 2°C;
after each swimming session, animals were dried and then placed in
their home cages, changing the water of the cylinder to avoid any
influence on the next rat (Bogdanova et al., 2013). Considering that the
rodents were less active and stressed during the dark phase, both
sessions were carried out at the beginning of the dark cycle (10:
00 to 12:00 h). The 5-min test was video recorded, and three
behaviors were scored by an observer unaware of treatments in 5-s
intervals until completing 5 min: 1) Immobility, which was defined as
minimal movements exerted by the animal to keep its head above the
water and float; 2) swimming, defined as movement of forepaws to
displace the body along the swimming cylinder, and 3) climbing,
defined as vigorous movements with forepaws in and out of the
water along the cylinder walls (Porsolt et al., 1977; Lino-De-Oliveira
et al., 2005). FST sessions were carried out in a separate room used only
for the scoring of the behavior. Then animals remained in a “waiting
room” for holding prior to the behavioral test and, then, were moved to
a next room to perform the behavioral test. Also, to ensure constant
control of the environment and to minimize interference that may
modify experimental results (Bogdanova et al., 2013) only the
experimenter had access to the behavioral room.

Drugs and chemicals

Citalopram (Sigma-Aldrich, Mexico) was dissolved in
physiological saline solution (0.9% NaCl), AE-PG (Nutracitrus
SL, Elche, Alicante, Spain) was freshly prepared using distilled
water. CIT and AE-PG were administered intraperitoneally (i.p.)
in a volume of 4 mL/kg body weight of the animals.

Determination of BDNF and corticosterone

Corticosterone (CORT) was determined in plasma samples, and
mBDNF levels were quantified from plasma and hippocampal tissue.
Blood samples were obtained by decapitation and kept on ice until
centrifugation (4,000 rpm at 4°C for 15min) to allow plasma
extraction. Plasma was kept at −80°C until analyzed with a commercial
ELISA corticosterone (EnzoLife Sciences, Farmingdale,NY,United States)
and BDNF immunoassay kit (EMD Merck-Millipore Corporation,
Darmstadt, Germany) according to manufacturer’s instructions. The
right hemisphere containing hippocampal tissue was homogenized in
lysis buffer (RIPA Lysis Buffer System: sc-24948S) with an ultrasonic
apparatus. The homogenates were centrifuged at 14,000 rpm for 15min at
4°C, and the supernatants were collected to determine the mBDNF with a
commercial ELISA immunoassay kit (EMD Merck-Millipore) and total
protein concentration using Bradford reagents and bovine serum albumin
(BSA) as the standard. Microplates were read at 405, 450, and 595 nm in
an ELISA reader (BioTek Instruments, Winooski, VT, United States).

Western blot analyses of synaptophysin
protein

For total protein extraction, hippocampal tissue was homogenized
with 300 µL of RIPA lysis buffer containing protease inhibitors (Santa
Cruz Biotechnology, Dallas, TX, United States). A total of 60 μg of
proteins was separated by electrophoresis on a 12% SDS-PAGE gel and
transferred to a nitrocellulosemembrane.Membraneswere blocked and
blots were tested using primary antibodies including synaptophysin
(Abcam, ab14692; 1:500) and Anti-GAPDH (FNab 03,343, Fine Test; 1:
5,000). All antibodies were incubated overnight, the next day the
membrane was washed with TBST; the Goat-anti-mouse HRP
secondary antibody (Advansta) was incubated for 1 h at room
temperature. Membranes were washed again; images were obtained
using ChemiDoc XRS+ (Bio-Rad, Hercules, Ca, United States). The
relative density of the specific bands was quantified using Image Lab
6.1 software (Bio-Rad).

Brain golgi staining

To evaluate neuroplasticity reflected by density and type of
dendritic spines, the animals were euthanized by decapitation (n =
4–5), their brains were removed and the mid-brain of each animal
was processed for Golgi-Cox with the FD Rapid Golgi Stain TM kit
according to manufacturer’s instructions of (FD
NeuroTechnologies, Columbia, MD, United States) (Das et al.,
2013; Risher et al., 2014; Zaqout and Kaindl, 2016; Du, 2019).
The tissue was sectioned using a microtome (Leica SM 2010R;
Leica Biosystems, Deer Park, IL, United States) to obtain coronal
sections of 200 μm of thickness from the entire hippocampus (AP:
−2.3 to −4.5 from bregma) (Paxinos and Watson, 2007). The tissue
sections were mounted onto gelatin-coated glass slides to develop
thereafter the Golgi-Cox impregnation with NH4OH and,
subsequently, dehydrated through a series of graded ethanol
washes and cleared in NeoClear™ (Merck, United States) to be
covered with mounting medium (Neumount; Merck, United States)
and left in the dark. From each animal, 10 representative neurons,
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located within the granular layer of the hippocampal dentate gyrus,
were selected at random using a Leica (Leica Microsystems, Inc.,
Buffalo Grove, IL, United States) microscope at 100X. Density and
the type of dendritic spines were analyzed in 20 μm of length of the
secondary dendrite of each neuron using the Reconstructor®

software (Fiala, 2005; Risher et al., 2014). The classification of
type of dendritic spine was based on a critical formula to
determine length and length-to-width ratio (LWR) divided by the
width value of an individual spine (Risher et al., 2014).

Sholl analysis

To determine whether AE-PG andCIT at sub-threshold doses were
able to induce changes in the dendritic complexity of Golgi-
impregnated neurons of the hippocampal dentate gyrus, the
branching pattern and length of the dendritic trees of seven different
Golgi-impregnated neurons per animal were evaluated by the Sholl’s
concentric circles technique as previously reported (Vega-Rivera et al.,
2013). For this analysis, we only considered neurons with vertical-
oriented dendrites with their arborizations extending through the
granular cell layer and reaching the molecular layer (ML) and being
relatively isolated from neighboring impregnated cells (Vega-Rivera
et al., 2015). These neurons were selected using a light microscope
(Leica DMLS, Germany) coupled to a digital DM50 camera. The FijiJ
software (Image processing and Analysis in Java; NIH Bethesda, MA,
United States) was used to convert the branches observed in three
dimensions to a two-dimensional image and calculate dendritic
complexity, reflected by dendritic length and the number of
intersections (Vega-Rivera et al., 2015).

Statistical analysis

Results are shown as the mean ± standard error of the mean
(S.E.M). Comparisons among groups were done using the Sigma Plot
12.0 software (Systat Software Inc., Chicago, IL, United States). The
behavioral analysis, the hormone levels, protein expression, dendritic
complexity, density, and category of dendritic spines with Golgi-Cox
impregnation were analyzed with one-way analysis of variance
(ANOVA) followed by Holm-Sidak post hoc test. Data from the
Sholl technique were analyzed by a two-way ANOVA followed by
Tukey´s post hoc test, considering the treatment and the number of
dendritic branches as testing factors. In all cases, the statistical level of
significance was set at p < 0.05.

Results

Dose response curves of DE30 of AE-PG and
CIT on FST

As depicted on Table 1, from the DE30 of AE-PG only the dose of
2 mg/kg significantly reduced the immobility behavior on FST (F:3,34 =
9.03, p< 0.001) with a concomitant increase in climbing behavior (F:3,34 =
5.43, p = 0.04) compared against the control group, without significant
changes on swimming at any dose. CIT reduced the immobility behavior
at the 12.04 mg/kg dose (F:3,41 = 9.39, p < 0.001), increasing swimming

(F:3,41 = 7.80, p < 0.001) and climbing (F:3,41 = 4.40, p = 0.01) in
comparison to the control group (Table 1).

Next, three combinations of AE-PG and CIT (Table 1; 0.125 +
0.77, 0.5 + 3.06 and 2.0 + 12.04 mg/kg, respectively) were tested. All
combinations were effective in reducing the immobility behavior
(F:3,31 = 9.11, p < 0.001) and increasing the swimming behavior
(F:3,31 = 13.5, p < 0.001) as compared against the control group. No
changes were observed in climbing behavior with any combination,
and no differences were observed among them.

Finally, no changes in general activity were observed with any
treatment either alone or in combination (Table 1).

Combining AE-PG and CIT improves coping
with inescapable stress in the forced-swim
test

In a second experiment, the effects of AE-PG (0.125mg/kg) and CIT
(0.77mg/kg) either alone or in combination were tested on the animals’
ability to cope with an acute stressful situation in the FST (Figures 2A–C).
Confirming our previous data, AE-PG (0.125mg/kg) and CIT
(0.77mg/kg) alone did not modify the immobility behavior
(Figure 2A, non-significant) nor the swimming behavior (Figure 2B,
non-significant) when compared to the control group. Whereas the
combination of AE-PG plus CIT (0.125mg/kg and 0.77mg/kg)
significantly (p < 0.001) decreased the immobility behavior in the FST,
increasing the swimming behavior (p < 0.001). Neither AE-PG, CIT, nor
the combination AE-PG plus CIT modified the climbing behavior
(Figure 2C, non-significant). One-way ANOVA analysis yielded the
following values: for immobility F3,50 = 13.075, p < 0.001; swimming
F3,50 = 18.133, p < 0.001; and for climbing F3,50 = 1.085, non-significant.

Effect of the combination of AE-PG plus CIT on dendritic
complexity of granule cells in the dentate gyrus: Sholl analysis.

The analysis of the dendritic complexity of Golgi-impregnated
neurons in rats treated with AE-PG, CIT, or their combination
(Figures 3A,B) revealed the main effects of the treatment (F3,237 =
26.325, p < 0.001). Here, the combination AE-PG plus CIT showed
higher effects on the dendritic complexity than in the control group
(p = 0.001). Similar effects were seen after the comparison with AE-
PG (p < 0.001) or CIT (p < 0.001).

In addition, the post hoc analysis of the number of intersections
from soma along the dendrite showed a relevant effect of the distance
(F3,237 = 28.097, p < 0.001) (Figures 3A,B). The combination AE-PG
plus CIT increased the number of dendritic branches from 80 µm (p =
0.014) to 110 µm (90 μm, p = 0.002; 100 μm, p = 0.002; and 110 μm, p =
0.012) compared to the control group. Two-way ANOVA revealed:
interaction of treatment × distance was not significant, F3,237 = 0.560,
p = 0.983. Concerning the length of the longest dendrites of
hippocampal neurons, we observed no statistically significant
difference among the groups (Figure 3C, p = 0.355).

Effects of the combination of AE-PG plus CIT
on density and maturation of dendritic
spines

In addition to the analysis of the dendritic complexity, the
structure of dendritic spines along dendrites was analyzed in
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granule cells (Figure 4). Quantification of the dendritic spines along
20 μm of the dendrite revealed that the combination of AE-PG plus
CIT significantly increased (F3,16 = 11.508, p < 0.001; Figures 4A,B)
the number of dendritic spines compared with the control group
(p = 0.002), AE-PG (p = 0.003), or CIT (p = 0.001). The analysis of
the morphology of dendritic spines revealed differences in some
stages of their development (Figures 4C–F). Following the course of
the generation of dendritic spines, the analysis of filopodium and
long-thin spine categories did not show differences among the
groups (F3,16 = 0.560, non-significant; F3,16 = 0.99, non-
significant, respectively). However, the analysis of the categories
thin (Figure 4E) and stubby (Figure 4F) showed an increased
number in both categories in rats treated with the combination
of AE-PG plus CIT compared to the control group (p = 0.041, p =
0.028, respectively). The other groups did not show differences
(F3,16 = 3.90, p = 0.034; F3,16=3.60, p = 0.43, respectively). Finally,
the treatments did not affect the latest stage of dendritic spines
development identified through the mushroommorphology (F3,16 =
2 .057, p = 0.156; Figures 4A,B).

The combination of AE-PG plus CIT increases mBDNF
concentrations and synaptophysin protein expression in the
hippocampus but not in CORT or mBDNF in plasma.

Quantification of CORT as an index of activation of the
hypothalamic-pituitary-adrenal (HPA) axis revealed that chronic
administration of AE-PG, CIT, and the combination AE-PG plus
CIT at non-effective doses were not statistically significant different
when compared among groups (Figure 2D; F3,34 = 1.518, p = 0.228).
Like corticosterone levels in serum, mBDNF levels were not
significantly different among the different groups (Figure 5A;
F3,18 = 2.478, p = 0.101). However, differences among the groups
were observed in hippocampal tissue (F3,20 = 7.102, p = 0.003;

Figure 5B). Here the combination of AE-PG plus CIT significantly
increased the mBDNF concentrations compared with the control
group (p = 0.004) and AE-PG (p = 0.009), but not with CIT (p =
0.278).

Finally, the expression of synaptophysin, a protein index of
synaptogenesis, was analyzed in the hippocampus. As seen, AE-PG
alone (p < 0.03) or its combination with CIT (p < 0.01) increased the
expression of synaptophysin in samples of the hippocampus (F:3,20 =
4.48, p = 0.01; Figure 5C) when compared against the control group,
without differences between them.

Discussion

Our present results evidence that a combination of subthreshold
doses of AE-PG plus CIT produced antidepressant-like effects by
diminishing the immobility behavior associated to an increase in the
complexity of the dendrites of the granule neurons at the granular
cell layer in the rat hippocampus. Particularly, a significant increase
was observed in the number of dendritic spines of thin and stubby
categories associated to an increase in hippocampal mBDNF
concentrations and synaptophysin protein expression.

Antidepressant-like effects of a combination
of AE-PG plus CIT

Previous studies revealed that AE-PG induces antidepressant-
like effects in the FST in OVX rodents (Mori-Okamoto et al., 2004;
Valdés-Sustaita et al., 2017) and synergizes the effects of non-
pharmacological compounds, such as Citrus limon (Riaz and

TABLE 1 Effect of Citalopram, AE-PG alone or in combination on immobility behavior and locomotor activity.

Treatment (mg/kg) Immobility Swimming Climbing Number of squares crossed in 5-min

CONTROL 43.60 ± 1.82 11.26 ± 1.11 5.13 ± 1.28 43.25 ± 8.08

CIT 0.77 41.66 ± 1.58 12.33 ± 1.05 6.00 ± 1.09 39.20 ± 6.43

CIT 3.06 38.10 ± 2.74 17.40 ± 2.40* 4.50 ± 0.88 ND

CIT 12.04 24.00 ± 4.13** 23.60 ± 3.57** 12.4 ± 2.42* 34.60 ± 3.76

One-Way Anova test F:3,41 = 9.39, p < 0.001 F:3,41 = 7.80, p < 0.001 F:3.41 = 4.40, p = 0.01 F:2,20 = 0.36, ns

CONTROL 43.09 ± 1.59 13.09 ± 0.95 3.81 ± 0.93 30.44 ± 5.18

AE-PG 0.125 39.75 ± 2.88 13.66 ± 2.16 6.58 ± 1.50 47.00 ± 6.80

AE-PG 0.50 34.44 ± 2.51* 17.00 ± 2.42 8.10 ± 1.75 ND

AE-PG 2.0 21.40 ± 3.80** 21.60 ± 4.20 17.0 ± 5.52* 34.60 ± 3.76

One-Way Anova test F:3, 34 = 9.03, p < 0.001 F:3,34 = 2.21,ns F:3,34 = 5.43, p = 0.04 F:2.21 = 2.59, ns

CONTROL 41.25 ± 2.75 12.25 ± 10.6 6.50 ± 1.96 40.06 ± 2.84

CIT (0.77)+ (AE-PG 0.125) 26.86 ± 1.88** 24.41 ± 1.15* 8.75 ± 2.02 22.41 ± 5.18

CIT (3.06)+ AE-PG (0.50) 33.30 ± 1.62* 21.50 ± 1.49* 5.20 ± 0.85 ND

CIT (12.04)+ AE-PG (2.0) 22.40 ± 5.16** 25.20 ± 3.18* 12.40 ± 3.88 38.60 ± 5.38

One-Way Anova test F:3,31 = 9.11, p < 0.001 F:3,31 = 13.5,p < 0.001 F:3,31 = 1.81, ns F:2,17 = 0.07, ns

Data are presented as mean ± error standard median of number of immobilities scored in a 5-min forced swimming test and of the number of squares crossed in a 5-min. CIT, citalopram; AE-

PG, Aqueous extract of Punica granatum. *p < 0.05; **p < 0.005 Holm-Sidack post hoc test. One Way ANOVA values are presented in italic.
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Khan, 2017), or antidepressant clinical drugs like CIT (Valdés-
Sustaita et al., 2017). In the present work, we confirmed that a
combination of non-effective doses of AE-PG plus CIT produced
significant antidepressant-like effects not observed in the
administration of AE-PG or CIT alone. This effect is likely
produced through the participation of the serotonergic system
because an increase in swimming behavior was found in animals
treated with the combination of AE-PG plus CIT. To this respect,
preliminary reports demonstrated that antidepressant-like effects of
AE-PG were associated with the serotonergic system and β-estrogen
receptors in the FST (Valdés-Sustaita et al., 2017; Valdés-Sustaita
et al., 2021). Notably, ERβ agonists and E2 promoted the same
behavioral profile that serotonergic compounds in the FST (Detke
et al., 1995; Estrada-Camarena et al., 2003; Valdés-Sustaita et al.,
2021). Further, estradiol modulated the serotonergic system and
facilitated the antidepressant action of fluoxetine (FLX) in the same
tests (Estrada-Camarena et al., 2006a; Estrada-Camarena et al.,
2006b). Thus, our results suggest that antidepressant-like effects
of AE-PG plus CIT involve the serotonergic system in the FST. Also,
two active compounds found in the used AE-PG are ellagic acid and
punicalagin, which induce a behavioral profile like that induced by

AE-PG, i.e., decrease of immobility plus increase of swimming
(Cervantes-Anaya et al., 2022). Both compounds are ellagitannins
with estrogenic activity, and at least ellagic acid is also active in the
serotonergic system (Dhingra and Chhillar, 2012). Specific
experiments are warranted to prove this assumption.

The combination of AE-PG plus CIT
modifies dendritic complexity of the
granular neurons in the granular cell
layer

The present study showed that the antidepressant-like effect
produced by the combination of suboptimal dose of AE-P plus CIT
occurred with an increased dendritic complexity of Golgi-
impregnated neurons of the granule cell layer in the
hippocampus. In this sense, several studies evidenced that
therapeutic effects of antidepressant drugs are associated with
dendrite restructuration and maturation (Norrholm and Ouimet,
2001; Malberg and Duman, 2003; Chen et al., 2006; Plümpe et al.,
2006; Wang et al., 2008; Guirado et al., 2012; Vega-Rivera et al.,

FIGURE 2
The combination of AE-PG plus CIT reduces the immobility behavior induced by FST. Rats were treated with AE-PG (0.125 mg/kg, orally
administered), CIT (0.77 mg/kg; i.p.), or with the combination of AE-PG (0.125 mg/kg) plus CIT (0.77 mg/kg) for 14 days Data are expressed as the mean
number of counts ± SEM of immobility (A), swimming (B), and climbing (C) in a 5 min test period of n = 12–14 per group. Panel (D) show the effect of
treatments on corticosterone levels of n = 4-5 animals per group. Two Way ANOVA test followed by Tukey post hoc test, ***p ≤ 0.001.
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2015). For instance, an effective dose of FLX produces
antidepressant-like actions concomitantly increasing the dendritic
tree complexity in newborn neurons in the hippocampus after at
least 21 days of treatment (Wang et al., 2008; Guirado et al., 2012).
Previously, it was shown that E2 synergizes with FLX inducing an
antidepressant-like action associated with increased dendritic
complexity (Vega-Rivera et al., 2015). Thus, it is possible that the
phytoestrogens present in the AE-PG could contribute to stimulate
actions on the dendritic tree complexity and facilitate the action of
CIT in 14 days. Supporting this, the antidepressant-like action of

AE-PG is blocked by non-selective estrogen receptors (tamoxifen)
and the ERβ-antagonist (PHTPP) (Valdés-Sustaita et al., 2017;
Valdés-Sustaita et al., 2021).

The increased dendritic complexity found in granule neurons in
rodents treated with the combination of suboptimal doses of AE-PG
plus CIT may occur, directly or indirectly, through the serotonergic
system (Rojas et al., 2017), which is also modulated by the activation
of ERβ (Rybaczyk et al., 2005). The activation of ERβ increases the
hippocampal dendritic complexity through the regulation of
signaling pathways involved in the cytoskeleton rearrangement

FIGURE 3
Effect of the combination of AE-PG plus CIT on dendritic complexity of granule cells in the dentate gyrus: Sholl Analysis (A) Representative
photomicrographs of Golgi-impregnated neurons and their respective illustrative drawing of concentric Sholl circles superimposed on the granular
neuron to determine the number of intersections (B) The dendrite complexity of Golgi-impregnated neurons is represented by themean total number of
intersections ± SEM concerning the soma distance (C) Full dendritic length of Golgi-impregnated neurons in the dentate gyrus of the hippocampus.
Two Way ANOVA test followed by a Holm Sidak post hoc test. The bracket shows the differences between the group that received the combination AE-
PG plus CIT at doses sub-optimal and the rest of the groups: *p ≤ 0.05 vs control; n = 28 (four animals per treatment, seven neurons per animal).
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FIGURE 4
Effects of the combination of AE-PG plus CIT on density andmaturation of dendritic spines (A) Representative photomicrographs of dendritic spines
along secondary dendrite of neurons of different treatments. Scale bar = 10 µm (B) The number of spines was quantified along 20 μm of the dendrite of
neurons from control, AE-PG, CIT, and the combination AE-PG plus CIT (C) Representative photomicrographs of five types of dendritic spines based on
their head and neck morphology (filo: long and thin protrusions without a bulbous head; long thin; thin: smaller head and a narrow neck; stubby:
large bulbous head and a short wide neck; mushroom: Characterized by a large bulbous head and a short narrow neck) (D–H) Effects of combination AE-
PG plus CIT at doses sub-optimal on filo (D), long thin (E), thin (F), stubby (G), and mushroom (H) spines number along 20 μm of the dendrite of neurons
from control, AE-PG, CIT, and the combination AE-PG plus CIT. The data represents the mean of the total number of dendritic spines ±SEM. One Way
ANOVA test followed by Tukey, *p ≤ 0.05; ***p ≤ 0.001.
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(Srivastava et al., 2010; Rojas et al., 2017). The behavioral profile
observed in the present study (increase of swimming behavior)
induced by the combination of AE-PG and CIT suggests the
involvement of the serotonergic system in modulating the
dendritic complexity and the antidepressant-like action in OVX
rats. Specific experiments are necessary to confirm this hypothesis.

The combination of AE-PG plus CIT modifies the density and
the morphology of dendritic spines in granular neurons in the
granular cell layer.

Results showed that antidepressant-like effects produced by the
combination of suboptimal doses of AE-PG plus CIT are associated
with an increased density of dendritic spines in the hippocampus.
Evidence has shown that an increase in spines density is associated
with restructuration of synaptic connectivity and improves
maladaptive behavior and learning tasks (Moser et al., 1994;
Moser et al., 1997; Bruel-Jungerman et al., 2005; Kozorovitskiy
et al., 2005; von Bohlen und Halbach, 2009; Chidambaram et al.,

2019). Hence, the increase in the spine’s density induced by the
combination of AE-PG plus CIT, at suboptimal doses, could be
forming more synaptic contacts and, therefore, improving a
neuronal connection permitting a better behavioral response in
rats exposed to a stressful situation, such as the one elicited by
the FST. Furthermore, the reestablishment of the dendritic spine
number and shape are considered the basis for the restoration of
behavioral homeostasis induced by antidepressants (Norrholm and
Ouimet, 2001; Hajszan et al., 2005; Mcavoy et al., 2015), estrogens,
and phytoestrogens like resveratrol (Gould et al., 1990; Woolley and
McEwen, 1994; Murphy and Segal, 1996; Li et al., 2021).

The combination of AE-PG plus CIT influences the morphology
of dendritic spines in granular neurons in the granular cell layer.

It is suggested that an increase in interneural connectivity
depends on the shape, not the increase in the number of spines.
Evidence showed that morphological changes of spines are
associated to maturation and stabilization of synapsis (Peters and

FIGURE 5
Effects of the combination of AE-PG plus CIT on mBDNF on plasma (A) and hippocampus (B) and synaptophysin protein expression on
hippocampal tissue (C) of ovariectomized rats. Representative immunoblot of synaptophysin protein expression. Data are expressed as the mean ±SEM
of n = 4-6 animals per group. One Way ANOVA test followed by Holm-Sidack, *p < −0.05.
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Kaiserman-Abramof, 1970; Kasai et al., 2003; Tashiro and Yuste,
2003; Nimchinsky et al., 2004; Duman and Duman, 2014;
Hlushchenko et al., 2016; Chidambaram et al., 2019; Runge et al.,
2020), and that remodeling of dendritic spines is related to fast
behavioral effects of antidepressant treatments (Hajszan et al., 2005;
Bessa et al., 2009; O’Leary et al., 2009; Duman and Duman, 2014;
Moda-Sava et al., 2019). In relation to this, behavioral effects of
antidepressant drugs correlate with dendritic spines known as
mushroom-like spines, which have been associated to stronger
and longer lasting synaptic connections (Ampuero et al., 2010;
Wang et al., 2013). From this, reduction of the immobility
behavior observed in the AE-PG and CIT combination might be
associated with the increase of mushroom spines. Contrary to this,
the present results showed that the combination of suboptimal doses
of AE-PG plus CIT increases the number of thin or stubby-like
dendrites in rats that showed low immobility behavior. Other
reports indicate similar findings. For example, the anxiety/
depressive-like phenotype induced by chronic exposure to
corticosterone (35 days) has been associated with a reduction in
thin and stubby spines density, but not mushroom; accordingly, this
reduction was reversed by long-term treatment with FLX (Wang
et al., 2013). Also, studies in hippocampal neuronal slices of 12-
week-old male rats showed that, after treatment with E2, the density
of thin spines increased, but not that of mushroom and stubby
spines (Mukai et al., 2007).

The fact that the combination of AE-PG and CIT increases
dendritic spines and dendritic tree complexity and favors the
reduction of immobility behavior suggests that this treatment
contributes to develop strategies to cope with stressful situations.
In this sense, growing evidence indicates why thin-like spines are
also called “learning spines” for their information-acquiring ability
during the synaptic plasticity process (Trachtenberg et al., 2002;
Kasai et al., 2003; Matsuzaki et al., 2004; Bourne and Harris, 2007).
After stimulation, the immature dendritic spines can transit to stable
mushroom-like dendritic spines, achieving solid appraisal of the
situation and rapid acquisition of new memory (Matsuzaki et al.,
2004). Here, it is possible that the antidepressant-like effect of the
AE-PG plus CIT combination involves the presence of more thin
dendritic spines, which would receive the information given by the
exposure to force swimming test test and induce their maturation.
However, this assumption needs to be analyzed in additional studies.

Different studies have shown that regulation of morphological
changes in spines is associated with the maturation and stabilization
of synapsis in the central nervous system and could be mBDNF-
dependent (von Bohlen and Halbach, 2009; von Bohlen und
Halbach and von Bohlen und Halbach, 2018; Zhang and Benson,
2000; Kasai et al., 2003; Kasai et al., 2010). It has been demonstrated
that mBDNF has a critical role in the behavioral and cellular efficacy
of different antidepressant treatments, including selective serotonin
reuptake inhibitors, such as FLX (Li et al., 2017; Saarelainen et al.,
2003; Sairanen et al., 2005; Shirayama et al., 2002; Gonul et al., 2005;
Duclot and Kabbaj, 2015; Ghosh et al., 2015; Duman et al., 2016;
Castrén and Antila, 2017). Further, expression of mBDNF in
structures of the limbic system, such as the hippocampus, is
upregulated after a chronic treatment with antidepressants
(Nibuya et al., 1995; Nibuya et al., 1996). Several findings
indicate that serum BDNF is a biomarker of antidepressant
efficacy (Levada et al., 2016). In this sense, studies have suggested

that blood and plasma mBDNF levels reflect brain-tissue BDNF
levels (Klein et al., 2011). In the present work, we observed that the
antidepressive-like behavioral effects of AE-PG plus CIT are
associated with increased hippocampal BDNF levels, but not with
BDNF in plasma. It is important to mention that because BDNF is
synthesized in multiple tissues throughout the body, including
muscle cells, thymus, or cells of the immune system, such as B-
or T-cell and monocytes, among others (Donovan et al., 2000;
Nakahashi et al., 2000; Cefis et al., 2022; Matthews et al., 2009),
blood/serum circulating BDNF levels may not reflect changes in
neurons (Lanz et al., 2012). Thus, our result could suggest that the
antidepressive-like effect of AE-PG plus CIT can be exerted through
the participation of the hippocampal BDNF.

Synaptophysin protein expression increases in the hippocampus
in response to AE-PG and its combination with CIT at non-effective
doses. Similar effects are observed after the treatment with several
types of antidepressants including escitalopram (Seo et al., 2014) and
it has been proposed that this is a mechanism involved in the
synaptogenesis induced by antidepressant drugs. Synaptophysin, a
synaptic vesicle protein, is located at the presynaptic terminal
(Chang et al., 2021; Valtorta et al., 2004) and participates with
other proteins, such as BDNF, in the synaptogenesis process
(Valtorta et al., 2004; Seo et al., 2014). In turn, the mBDNF
protein was also increased in the hippocampus of rats treated
with the combination, but not with the drugs alone. Both
synaptophysin (presynaptic marker) and BDNF (postsynaptic
marker) could together enhance the synaptogenesis process,
acting as a more efficient system to contend against stressful
situations and regulating the behavioral response. The precise
molecular mechanism, as well as the temporal course, by which
the combination of AE-PG plus CIT exerts its effects on spine and
the synaptogenesis process requires further examination.

Several reports indicate that polyphenols present in
pomegranate may inhibit some enzymes of the cytochrome P450
(CYP) 3A family, affecting drug metabolism (Basheer and Kerem,
2015); however, according to the literature, it seems unlikely that the
behavioral and neuroplastic effects observed here are related to a
pharmacokinetic interaction. In line with this idea, citalopram is the
antidepressant that interacts less with other drugs prescribed for
medical complications (Brosen and Naranjo, 2001) and is mainly
metabolized by CYP2C19, 3A4 and 2D6 (Mrazek et al., 2011).
Regarding polyphenols, they are known to be metabolized mainly
through the intestinal microbiota (Duda-Chodak et al., 2015); the
main route for ellagitannins (Garcñ-Munos and Vaillant, 2014). In
addition, polyphenols present in AE-PG inhibit the activity of the
CYP3A4 enzyme (Basheer and Kerem, 2015), and the ellagic acid is
known to have an inhibitory potential on the CYP1A1 and
CYP2E1 enzymes (Ahn et al., 1996). From these data it is
unlikely that a pharmacokinetic interaction may modify their
bioavailability, promoting a drug-drug interaction. Specific
experiments are warranted. An advantage of this combination,
based on the behavioral response observed and the literature, is
that the inhibitory effect of the polyphenols contained in the AE-PG
do not interfere with the metabolism of citalopram, so their
combined use could be safe.

In conclusion, the results of this study support the fact that the
AE-PG plus CIT combination induces antidepressant-like effects
involving the increase of dendritic complexity by increasing the
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number of dendritic spines, primarily the thin spines category and
through the participation of the hippocampal BDNF.
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