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Introduction: Type 2 diabetes (T2D) is a multifactorial complex chronic disease
with a high prevalence worldwide, and Type 2 diabetes patients with different
comorbidities often present multiple phenotypes in the clinic. Thus, there is a
pressing need to improve understanding of the complexity of the clinical Type 2
diabetes population to help identify more accurate disease subtypes for
personalized treatment.

Methods:Here, utilizing the traditional Chinesemedicine (TCM) clinical electronic
medical records (EMRs) of 2137 Type 2 diabetes inpatients, we followed a
heterogeneous medical record network (HEMnet) framework to construct
heterogeneous medical record networks by integrating the clinical features
from the electronic medical records, molecular interaction networks and
domain knowledge.

Results: Of the 2137 Type 2 diabetes patients, 1347 were male (63.03%), and 790
were female (36.97%). Using the HEMnet method, we obtained eight non-
overlapping patient subgroups. For example, in H3, Poria, Astragali Radix,
Glycyrrhizae Radix et Rhizoma, Cinnamomi Ramulus, and Liriopes Radix were
identified as significant botanical drugs. Cardiovascular diseases (CVDs) were
found to be significant comorbidities. Furthermore, enrichment analysis
showed that there were six overlapping pathways and eight overlapping Gene
Ontology terms among the herbs, comorbidities, and Type 2 diabetes in H3.

Discussion: Our results demonstrate that identification of the Type 2 diabetes
subgroup based on the HEMnet method can provide important guidance for the
clinical use of herbal prescriptions and that this method can be used for other
complex diseases.
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1 Introduction

Type 2 diabetes (T2D) is the most common type of diabetes
and accounts for approximately 90% of all diabetes cases
worldwide; T2D is a complex, serious and multifactorial
chronic disease that has become an increasingly prevalent
health issue and imposes a tremendous economic burden
worldwide (Li et al., 2015; International Diabetes Federation
IDF, 2019). People with T2D have an approximately 15%
higher overall excess mortality risk than people who do not
have T2D (Tancredi et al., 2015). Although T2D is defined by
a single metabolite, glucose, it is increasingly recognized as a
highly heterogeneous disease with varying clinical manifestations
(Gregg et al., 2014; World Health Organization, 2019a; Ahlqvist
et al., 2021). Therefore, identifying the precise subtypes of T2D
patients would be important for preventing serious
complications, predicting individualized drug responses and
improving health outcomes for patients with diabetes in the
early stage and help predict the drug responses of patients
with diabetes (Pigeyre et al., 2022; Williams et al., 2022).

Precision medicine has been recognized as a new medical
approach for refining the disease taxonomy and improving
the healthcare capability (National Research Council US, 2011;
Zhou et al., 2018). Recently, several studies have identified new
subtypes of T2D through data-driven analysis of a clinical
population, which has improved the understanding of T2D with
the goal of improving patient care in clinical settings (Li et al., 2015;
Ahlqvist et al., 2018). These studies suggested that there are
opportunities to further refine the current definition of T2D in
real-world clinical settings into additional subtypes (American
Diabetes Association, 2010). Traditional Chinese medicine
(TCM) is a typical kind of personalized medicine (Jiang et al.,
2012; Zhou et al., 2014) that classifies disease conditions into
different subtypes (i.e., syndromes) through the comprehensive
analysis of symptom phenotypes identified by the four main
diagnostic TCM procedures (observation, listening, questioning,
and pulse analyses). Furthermore, individualized treatment (in
most cases, with herbal prescriptions) would be ordered for
patients according to the diagnosis of syndromes. This clinical
framework presents a novel view of disease conditions from
symptom profiles and herbal prescriptions for patients.

In this study, we collected large-scale real-world TCM clinical data
on T2D and used an established heterogeneous medical record network
(HEMnet) (Edward et al., 2017)method to identify the clinical subgroups
of T2D. Four types of clinical features, namely, symptom phenotypes,
syndrome diagnoses, herbal prescriptions and comorbid disease
conditions, together with phenotype–genotype associations and
botanical drug -efficacy relationships, were incorporated into the
HEMnet approach to help identify clinical groups with both clinical
meaningfulness and biological insights. Enrichment analysis was used to
identify the significant features of the clinical characteristics and
molecular pathways of the T2D patient groups. Our findings are
expected to help refine the understanding of T2D by both improving
personalized treatment and identifying the underlying mechanisms.

2 Materials and methods

2.1 Clinical data and preprocessing

The data of 2137 inpatients diagnosed with T2D were collected
from the EMR database of the Second Affiliated Hospital of Shandong
University of TCM from 2016 to 2021, which included all inpatient
information obtained during hospitalization, such as demographic
information, symptoms, laboratory or physical tests, diagnoses and
treatment. Because most data were in free text that cannot be used
directly for analysis, we used a clinical information extraction tool (Shu
et al., 2019) to efficiently extract the biomedical entities (e.g., symptoms,
diseases) from these records. Then, to normalize the various clinical
term descriptions, we manually checked and standardized the terms
“disease”, “botanical drug” and “drug” by referring to the 10th Revision
of International Classification of Diseases (ICD-10) (World Health
Organization, 2019b), the Pharmacopoeia of the People’s Republic of
China 2020 Revision (ChP 2020) (Chinese Pharmacopoeia
Commission, 2020), and DrugBank Online (Wishart et al., 2018),
respectively. In addition, diseases with detailed ICD-10 codes were
further aggregated into higher level codes. For example, the ICD-10
codes I50.903 and I50.905 were aggregated into ICD-10 code I50.9.

2.2 External data sources

In this study, several external data sources were used to support
this research. The efficacy of botanical drugs was extracted fromChP
2020, and human protein‒protein interactions (PPIs) were obtained
from the STRING database (Szklarczyk et al., 2019). The
phenotype–genotype and botanical drug–target associations were
extracted from the SymMap database (Wu et al., 2019). The
disease–gene associations were extracted from the MalaCards
database (Rappaport et al., 2017).

2.3 The HEMnet method

Missing data and semantic mismatch were the two main
challenges of EMR analysis. Therefore, we used HEMnet to
address the challenges of EMR analysis by leveraging information
from several external sources to supplement clinical data (Edward
et al., 2017). In our study, we utilized three distinct categories of
edges to create the HEMnet (Figure 1). The first two categories PPI
and phenotype–genotype were drawn from the external database,
while the last category was drawn directly from the EMRs.

1) PPI. This network was based on HumanNet, an external network of
protein-encoding genes (Lee et al., 2011). The nodes are proteins,
and the undirected edges are the interactions between proteins.

2) Phenotype–genotype associations. This network was obtained
from SymMap. The nodes were phenotype or genotype, and the
undirected edges were the association of the phenotype and
genotype.
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3) Co-occurrence of clinical entities from the EMR. We directly
added the clinical cooccurrence edges of botanical drugs from
each medical record. The missing data was one of the main
challenges of electronic medical records (EMR) analysis,
especially the lack of symptom information. Botanical drugs
can represent symptom precision to address missing symptom
information in EMR. We repeated this for all clinical features in
each patient’s medical record.

Then, HEMnet uses an embeddingmethod, ProSNet (Wang et al.,
2017), to infer relationships among its constituent nodes. ProSNet
takes a heterogeneous network as input, on which it performs a novel
dimensionality reduction algorithm to optimize a low-dimensional
vector representation for each node. The vectors of two nodes are
colocalized in the low-dimensional space if the nodes are close to each
other in the heterogeneous network. After generating low-
dimensional vector representations of nodes in the HEMnet, a
similarity matrix was constructed according to the similarity
between every two embedding vector features, which was
calculated by cosine similarity. Finally, the similarity matrix was
used to fill in missing features of the original patient characteristics
and form the phenotypes of patients (Edward et al., 2017).

The K-means clustering (MacQueen, 1967) was used for the
patient phenotype. According to the outcomes, the patients were
divided into eight non-overlapping subgroups. The t-distributed
stochastic neighbour embedding (t-SNE) algorithm (Cieslak et al.,
2020) was used to visualize the outcomes.

The chi-square test and relative risk (RR) (Pirhaji et al., 2008;
Ouimet et al., 2010) were used to assess the significance of clinical
features, including symptom phenotypes, syndrome diagnoses,

botanical drugs and comorbidities in eight subgroups. In this
study, patients with a certain clinical feature, such as a symptom
phenotype, in a particular subgroup as an exposed group, and the
remaining patients with this certain clinical feature as the non-
exposed group. So RR is defined as RR = (Cij/Ci)/((Cj-Cij)/(N-Ci)),
where Ci is the number of patients in subgroup i, Cj is the number of
patients with a clinical feature j,Cij represents the number of patients
in subgroup i and with a clinical feature j and N is the total number
of patients in the study. A p-value <0.05, which was obtained from
the chi-square test, and an RR > 1 indicated that a clinical feature
was truly significant.

2.4 Gene ontology (GO) and KEGG pathway
enrichment analysis

The GO and KEGG pathway enrichment analysis are useful to
trackle the DNA-related and protein-related problems. And they offers
considerable power for discovering the biological functions of genes and
proteins (Chen et al., 2017). The Gene Ontology (GO) project serves as
a comprehensive source for functional genomics. The project creates
evidence-supported annotations to describe the biological roles of
individual genome products (e.g., genes, proteins, ncRNAs,
complexes) (Gene Ontology Consortium, 2015). The KEGG
pathway database is the main database in Kyoto Encyclopedia of
Genes and Genomes (KEGG), and it consists of manually drawn
reference pathway maps together with organism-specific pathway
maps (Kanehisa et al., 2017). We obtained enriched GO and KEGG
pathways using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID), which is a web-based online

FIGURE 1
The pipeline for the HEMnet.
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bioinformatics resource that aims to provide tools for the functional
interpretation of large lists of genes/proteins (Sherman et al., 2022).

3 Results

3.1 Basic characteristics

As shown in the table below (Table 1), of the 2137 T2D patients,
1347 (63.03%) were male, and 790 (36.97%) were female. The ages of
most T2D patients (60.60%) were between 60 and 79 years old. The
average length of stay (LOS) was 14.08 ± 9.20, and for most patients
(41.83%), LOS was between 8 and 14 days. We counted the distinct
number of comorbidities of each patient and found that most
patients had 6–10 diagnoses (56.43%).

Then, we analysed the distribution of the top five clinical
features including symptom phenotypes, syndrome diagnoses,
botanical drugs, and comorbidities (Table 2).

3.2 The result of the HEMnet

With the method introduced in the Materials and Methods, we
utilized three distinct categories of edges to create the HEMnet,
which contained 5,846 nodes and 125,426 connected edges. There
were 3,000 symptom nodes and 2,846 gene nodes. Furthermore,
there were 16,641 PPI edges, 8,749 phenotype–genotype edges, and
100,036 symptom edges.

Then, the embedding method ProSNet was used to generate
low-dimensional vector representations of nodes in the HEMnet. A

similarity matrix was constructed according to the similarity
between every two embedding vector features, which was
calculated by cosine similarity, and used to fill in missing
features of the original patient characteristics to form the patient
phenotypes. Finally, using the K-means clustering algorithm, eight
non-overlapping patient subgroups were obtained. The t-SNE
algorithm was used to visualize the clustering results (Figure 2).
The numbers of patients in the eight subgroups were as follows
(Table 3): H1 (n = 547, 25.60%), H2 (n = 501, 23.44%), H3 (n = 432,
20.22%), H4 (n = 298, 13.94%), H5 (n = 197, 9.22%), H6 (n = 132,
6.18%), H7 (n = 18, 0.84%), and H8 (n = 12, 0.56%).

3.3 The significant clinical features of the
subgroups

We then selected the top 10 clinical features in these modules
according to their frequency in each subgroup. Then, the RR and
chi-square test (RR > 1 and p < 0.05, see Materials and methods)
were used to screen the significant clinical features.

Because of fewer patients in H7 and H8 subgroups, it was less
meaningful to analyse them. And since this study focused on the
precision treatment of comorbidities, the H1, H2, and H4 subgroups
with no significant botanical drugs and the H5 subgroup with a lower
frequency of botanical drug use were excluded according to the
screening results. Finally, H3 and H6 were included for further analysis.

We present the statistically significant botanical drugs,
comorbidities, syndromes, and symptoms in H3 and H6
(Table 4, Table 5, Table 6, and Table 7), Poria, Astragali Radix,
Glycyrrhizae Radix et Rhizoma, Cinnamomi Ramulus, and
Ophiopogonis radix were the significant botanical drugs.
Essential (primary) hypertension, atherosclerotic heart disease,
heart failure, unstable angina, etc., were the significant
comorbidities. Qi-Yin deficiency was the main significant
syndrome. And chest tightness, fever, coarse lung breathing,
vomiting, expectoration, etc., were the significant symptoms. In
H6, Chuanxiong Rhizoma, Gastrodiae Rhizoma, and Baked Ziziphi
Spinosae Semen were the significant botanical drugs. Cerebral
infarction, sequelae of cerebral infarction and sequelae of
intracerebral haemorrhage were the significant comorbidities.
Deficient qi and blood stasis was the main significant syndrome.
And poor physical activity, fever, slurring of speech, vomiting, etc.,
were the significant symptoms.

3.4 Significant GO terms and pathways for
H3 and H6

In this part, we explored the shared molecular associations
between the significant botanical drugs and comorbidities of T2D
in H3 and H6. First, we identified the distinct genes associated with
each significant botanical drug and comorbidity in H3 and H6 from
an external database (see Materials and methods). Then, we
obtained the pathways and GO terms for the botanical drugs,
comorbidities and T2D in H3 and H6 by the DAVID program
(2021, see Materials and methods). Finally, we screened out
pathways and GO terms with p < 0.05 from botanical drugs,
comorbidities and T2D. We identified the overlapping pathways

TABLE 1 The characteristics of the 2137 T2D inpatients.

Characteristics n (%)/(mean ± SD)

Sex Male 1347 (63.03)

Female 790 (36.97)

Age 66.31 ± 11.44

Age group <20 1 (0.05)

20–39 30 (1.40)

40–59 527 (24.66)

60–79 1295 (60.60)

≥80 284 (13.29)

LOS 14.08 ± 9.20

LOS group 1–7 495 (23.16)

8–14 894 (41.83)

15–21 391 (18.30)

22–28 186 (8.70)

≥29 171 (8.00)

Number of comorbidities 1–5 764 (35.75)

6–10 1206 (56.43)

≥11 167 (7.81)
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and GO terms among the botanical drugs, comorbidities, and T2D
in H3 and H6 (Table 8 and Table 9). In H3, there were six
overlapping pathways and eight overlapping GO terms among
the botanical drugs, comorbidities, and T2D. In H6, there were
no overlapping pathways among the botanical drugs, comorbidities,
and T2D. Therefore, we reported on the pathways that overlapped
between the two of them. There was only one overlapping GO term
among the botanical drugs, comorbidities, and T2D. For example,
most of the pathways and GO functions in H3 were associated with

TABLE 2 The top five clinical features.

Clinical features n (%)

Symptom phenotypes Insomnia 763 (35.70)

Poor absorbing 487 (22.79)

Lack of energy 416 (19.47)

Chest tightness 239 (11.18)

Constipation 215 (10.06)

Syndrome diagnoses Deficient qi and blood stasis 618 (28.92)

Qi-Yin deficiency 247 (11.56)

Qi stagnation and blood stasis 97 (4.54)

Blood stasis 77 (3.60)

Wind and phlegm blocked channel 43 (2.01)

Botanical drug Poria 1294 (60.55)

Astragali radix 1133 (53.02)

Angelicae sinensis radix 1073 (50.21)

Glycyrrhizae radix et rhizoma 969 (45.34)

Glycyrrhizae radix et rhizoma praeparata cum melle 848 (39.68)

Comorbidities Essential (primary) hypertension 1569 (73.42)

Atherosclerotic heart disease 1127 (52.74)

Cerebral infarction 743 (34.75)

Heart failure 664 (31.07)

Unstable angina 429 (20.07)

FIGURE 2
The visualized clustering result of HEMnet. The correspondence
between the C_0-C_7 clusters in the figure and the H1-H8 subgroups
in this paper is as follows: C_0 =H5, C_1 =H2, C_2 =H1, C_3 =H6, C_
4 = H4, C_5 = H8, C_6 = H7, C_7 = H3. This picture was to
reduce the dimensionality of the patient’s characterization vector to a
two-dimensional vector for display. So the x-axis and y-axis represent
the patient’s characterization vector, and the closer the two points are,
the closer the patient’s characteristics are.

TABLE 3 The numbers of patients in the eight subgroups.

Subgroups n (%)

H1 547 (25.60)

H2 501 (23.44)

H3 432 (20.22)

H4 298 (13.94)

H5 197 (9.22)

H6 132 (6.18)

H7 18 (0.84)

H8 12 (0.56)
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T2D, such as type II diabetes mellitus, insulin resistance, glucose
metabolic process, and response to glucose. The significant botanical
drugs in H3 had some overlapping pathways and GO terms with
comorbidities and T2D.

4 Discussion

In recent years, the continual growth of EMR databases
has facilitated clinical research, paved the way for data mining
applications, and supported population health. However, missing
data is the biggest barrier to using EMRs (Kruse et al., 2018). In our
study, the problem of missing data and semantic mismatch in EMRs
posed a considerable challenge. For example, if T2D was not the
primary diagnosis, the patient’s T2D-related symptoms would not
be recorded in the medical record, which results in incomplete
information in the patient’s medical record. Furthermore, the
overabundant expression of symptoms, diagnoses, botanical drugs,
and syndromes in clinical TCM data leads to mismatched records
containing semantically similar but lexically distinct terms. Therefore,
the problem of missing data and semantic mismatch were solved by
standardizing the data and creating theHEMnet to ensure the reliability
of the research results (Edward et al., 2017).

Analysing disease comorbidities with EMR data has become
popular in real-world clinical settings for chronic disease conditions

such as T2D and chronic liver diseases (Li et al., 2015; Ahlqvist et al.,
2018; Shu et al., 2019; Mansour Aly et al., 2021). In this manuscript,
the HEMnet method was used to identify the eight non-overlapping
patient subgroups. Then, H3 and H6 were screened according to a
specific screening strategy for subgroups to further analyse the
clinical features. For example, cardiovascular disease (CVD), such
as atherosclerotic heart disease, heart failure, unstable angina,
cardiac arrhythmia, atrial fibrillation and flutter, was a significant
comorbidity of T2D in H3. In large prospective trials, T2D has been
identified as a significant risk factor for CVD, including stroke,
angina, heart failure, myocardial infarction, and atherosclerosis
(Emerging Risk Factors Collaboration Sarwar et al., 2010; Peters
et al., 2014; Shah et al., 2015; Einarson et al., 2018). Regarding
treatment, Poria, Astragali radix, Glycyrrhizae radix et rhizoma,
Cinnamomi ramulus, and Ophiopogonis radix were the significant
botanical drugs in H3. And studies have shown that these botanical
drugs used alone or in combination with other botanical drugs are
often used to treat diabetes as well as other disorders (Jia et al., 2003;
Li et al., 2004; Lindequist et al., 2005).

Furthermore, to explore the sharedmolecular associations among
the significant botanical drugs, comorbidities and T2D in H3 and H6,
we explored the overlapping pathways and GO terms between the
significant botanical drugs and comorbidities of T2D in H3 and H6.
The significant botanical drugs in H3 had six pathways and eight GO
terms that overlapped between comorbidities and T2D. This result

TABLE 4 The significant botanical drugs in H3 and H6.

Subgroup Botanical drug n (%) p RR

H3 Poria 150 (34.72) 4.35E-03 1.25

Astragali Radix 131 (30.32) 1.36E-02 1.24

Glycyrrhizae Radix et Rhizoma 118 (27.31) 5.74E-03 1.29

Cinnamomi Ramulus 100 (23.15) 1.50E-02 1.29

Ophiopogonis radix 89 (20.60) 2.72E-02 1.28

H6 Chuanxiong Rhizoma 35 (26.52) 2.84E-02 1.41

Gastrodiae Rhizoma 28 (21.21) 1.01E-09 3.17

Baked Ziziphi Spinosae Semen 24 (18.18) 1.62E-03 1.89

TABLE 5 The significant comorbidities in H3 and H6.

Subgroup Comorbidity n (%) p RR

H3 Essential (primary) Hypertension 344 (79.63) 1.07E-03 1.11

Atherosclerotic Heart Disease 265 (61.34) 6.05E-05 1.21

Heart Failure 194 (44.91) 3.48E-12 1.63

Unstable Angina 127 (29.40) 6.09E-08 1.66

Cardiac Arrhythmia 65 (15.05) 3.24E-04 1.64

Atrial Fibrillation and Flutter 52 (12.04) 6.80E-03 1.52

H6 Cerebral Infarction 93 (70.45) 6.21E-19 2.17

Sequelae of Cerebral Infarction 23 (17.42) 3.00E-08 3.21

Sequelae of Intracerebral Haemorrhage 17 (12.88) 4.60E-25 15.19
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indicated that these botanical drugs may have therapeutic effects on
comorbidities and T2D via the pathways and GO terms identified in
the analysis. For example, the overlapping pathways in H3 inculded
insulin resistance which is one shared defect in T2D and Essential

(primary) Hypertension. Although the mechanisms by which
defective insulin action per se contributes to high blood pressure
are still somewhat uncertain (Ferrannini and Cushman, 2012). But
previous studies have demonstrated that within the physiological
concentration range of insulin, it causes slight increases in limb
blood flow by enhancing the release of nitric oxide (via stimulation
of nitric oxide synthase activity in endothelial cells) and by
potentiating acetylcholine-induced vasodilation. In people with
insulin resistance, vasodilation in response to supraphysiological
insulin concentrations is reduced (Taddei et al., 1995; Yki-Järvinen
and Utriainen, 1998; Steinberg and Baron, 2002; Giacco and
Brownlee, 2010). Astragaloside Ⅳ (AST Ⅳ, chemical formula:
C41H68O14, molecular weight:785), as the primary active
ingredient of Astragali radix, has the pharmacological effects of
regulating lipid and carbohydrate metabolism and improving
insulin resistance. Previous studies have shown that AST Ⅳ
improvement of insulin resistance may be related to activation of
the IRS1/protein kinase B (AKT) insulin signaling pathway to increase
the glucose transporter type 4 (GLUT4) activity, thus increasing
glucose uptake and insulin sensitivity (Zhou et al., 2021). So the
main findings of the GO and KEGG pathway enrichment analysis
require further experimental verification.

Our study has several potential limitations. Our sample included
only 2137 hospitalized patients, resulting in an insufficient number of
patients with some subtypes of T2D for identification of additional
significant TCM phenotypes. In future studies, more patients should
be included to ensure the abundance of the results. Another limitation
is thatWesternmedicine and laboratory tests were not included in our
study. Therefore, the resulting disease subtypes would incorporate
little information on these features. In addition, some patients were
not given herbal prescriptions. This might affect the results of data
mining. Finally, we used EMRs from only one hospital, and the
resulting patient subgroups that were identified may not be
representative. And further experiments should be performed to
verify the results of this paper (Sheng et al., 2021).

TABLE 6 The significance syndromes in H3 and H6.

Subgroup Syndrome n (%) p RR

H3 Qi-Yin deficiency 63 (14.58) 2.77E-02 1.35

Qi-blood deficiency 9 (2.08) 2.02E-02 2.96

Defideficiency of spleen and kidney 9 (2.08) 4.75E-05 8.88

Wind-cold attacking lung 7 (1.62) 7.31E-03 4.60

Phlegm-damp obstructing lung 6 (1.39) 1.37E-02 4.74

Phlegm-heat obstructing lung 6 (1.39) 6.04E-03 5.92

H6 Deficient qi and blood stasis 70 (53.03) 3.44E-10 1.93

Wind and phlegm bloke channel 13 (9.85) 2.99E-10 6.58

Phlegm and blood stasis blocking collaterals 8 (6.06) 6.89E-05 4.86

Blood stasis blocking collaterals 7 (5.30) 1.58E-03 3.94

Deficiency of liver and kidney 5 (3.79) 6.18E-06 10.85

Stirring wind due to yin deficiency 4 (3.03) 1.41E-06 20.25

Kidney deficiency 2 (1.52) 1.60E-03 30.38

TABLE 7 The significant symptoms in H3 and H6.

Subgroup Symptom n (%) p RR

H3 Chest tightness 315 (72.92) 4.56E-33 1.79

Fever 268 (62.04) 7.32E-10 1.36

Coarse lung breathing 253 (58.56) 6.36E-25 1.85

Vomiting 250 (57.87) 2.01E-16 1.60

Expectoration 242 (56.02) 5.11E-25 1.90

Dizziness 231 (53.47) 1.50E-09 1.43

Fatigue 225 (52.08) 5.34E-11 1.49

Insomnia 224 (51.85) 1.42E-23 1.94

Cough 218 (50.46) 9.21E-22 1.90

Headache 156 (36.11) 6.33E-08 1.55

H6 Poor physical activity 103 (78.03) 1.86E-164 14.90

Fever 78 (59.09) 1.47E-02 1.23

Slurring of speech 76 (57.57) 3.18E-80 8.55

Vomitting 69 (52.27) 4.53E-03 1.32

Poor activity 66 (50.00) 8.53E-66 8.08

Fatigue 64 (48.48) 1.36E-02 1.29

Coarse lung breathing 63 (47.73) 9.46E-03 1.31

Disability of left limbs 55 (41.67) 2.35E-104 21.98

Choking cough 50 (37.88) 9.95E-36 5.75
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5 Conclusion

Our results demonstrate that Cardiovascular disease (CVD) and
Qi-Yin deficiency syndrome were significant comorbidity and TCM
syndrome of T2D in subgroup H3, respectively. Regarding
treatment, Poria, Astragali radix, Glycyrrhizae radix et rhizoma,
Cinnamomi ramulus, and Ophiopogonis radix were the significant
botanical drugs in subgroup H3. In subgroup H6, cerebral infarction
and its sequelae, Qi deficiency and blood stasis syndrome were
significant comorbidities and TCM syndrome, respectively.
Regarding treatment, Chuanxiong rhizoma, Gastrodiae rhizoma,
and Baked ziziphi spinosae semen were the significant botanical
drugs. So identification of the T2D subgroup based on the HEMnet
method can provide important guidance for the clinical use of herbal
prescriptions and that this method can be used for other complex
diseases.
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