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Missense variants in CALM genes encoding the Ca2+-binding protein calmodulin
(CaM) cause severe cardiac arrhythmias. The disease mechanisms have been
attributed to dysregulation of RyR2, for Catecholaminergic Polymorphic
Ventricular Tachycardia (CPVT) and/or CaV1.2, for Long-QT Syndrome (LQTS).
Recently, a novel CALM2 variant, G114R, was identified in a mother and two of her
four children, all of whom died suddenly while asleep at a young age. The G114R
variant impairs closure of CaV1.2 and RyR2, consistent with a CPVT and/or mild
LQTS phenotype. However, the children carrying the CALM2 G114R variant
displayed a phenotype commonly observed with variants in NaV1.5,
i.e., Brugada Syndrome (BrS) or LQT3, where death while asleep is a common
feature. We therefore hypothesized that the G114R variant specifically would
interfere with NaV1.5 binding. Here, we demonstrate that CaM binding to the
NaV1.5 IQ-domain is severely impaired for two CaM variants G114R and G114W.
The impact was most severe at low and intermediate Ca2+ concentrations (up to
4 µM) resulting in more than a 50-fold reduction in NaV1.5 binding affinity, and a
smaller 1.5 to 11-fold reduction at high Ca2+ concentrations (25–400 µM). In
contrast, the arrhythmogenic CaM-N98S variant only induced a 1.5-fold reduction
in NaV1.5 binding and only at 4 µM Ca2+. A non-arrhythmogenic I10T variant in
CaM did not impair NaV1.5 IQ binding. These data suggest that the interaction
between NaV1.5 and CaM is decreased with certain CaM variants, which may alter
the cardiac sodium current, INa. Overall, these results suggest that the phenotypic
spectrum of calmodulinopathies may likely expand to include BrS- and/or LQT3-
like traits.
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Introduction

The cytosolic calcium (Ca2+) binding protein calmodulin (CaM) serves as a critical
mediator of intra-cellular Ca2+ signals in a multitude of physiological processes (Chin and
Anthony, 2000; Xia and Storm, 2005; Clapham, 2007; Sorensen et al., 2013; Berchtold and
Villalobo, 2014). The multifaceted nature of CaM comes from its ubiquitous expression and
its ability to interact with, and relay information to, more than 350 cellular target proteins
(Yap et al., 2000; Tidow and Nissen, 2013).

This extraordinary versatility is due to the two lobes of CaM, the N-lobe and C-lobe, each
containing two Ca2+-binding EF hands (Figure 1A). The lobes differ in Ca2+-affinity and
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-kinetics, allowing CaM to respond to changes in Ca2+ over a broad
range of concentration and time. This range is even further
expanded by target-specific changes in Ca2+ binding-affinities and
-kinetics upon CaM binding to protein targets (Villarroel et al., 2014;
Søndergaard et al., 2015a; Søndergaard et al., 2015b).

The cellular importance of CaM Ca2+-sensing and integrity is
highlighted by the protein’s unique genetic architecture and
evolutionary conservation. Mammals have three independent
genes (CALM1-3) that all encode an identical CaM protein.

Moreover, the protein sequence is invariant in all vertebrates,
underpinning the extreme selection pressure against any amino
acid variation in this central Ca2+-sensor protein (Figure1B)
(Berchtold et al., 1993; Toutenhoofd and Strehler, 2000;
Friedberg and Rhoads, 2001).

As a result, genetic variation in all three CALM genes is ultra-
rare. Until the first human missense variant was discovered in 2012,
and linked to a severe cardiac arrhythmia (Catecholaminergic
Polymorphic Ventricular Tachycardia (CPVT)) and sudden

FIGURE 1
(A) Crystal structure of Ca2+-bound calmodulin (CaM) (PDB ID: 1CLL) with EF hands I (red), II (orange), III (blue), and IV (cyan) indicated along with
their corresponding alpha-helices (α1-8). Beta-sheets are shown in green and flexible loops/unstructured regions in yellow. Amino acid residues known
to harbor arrhythmogenic substitutions (Crotti et al., 2019) are shown in purple stick representation, with residue G114 highlighted with a yellow circle.
Ca2+-ions are shown as black spheres. (B)CaM protein sequence alignment. Red highlights indicate amino acid differences or gaps in the alignment.
Residue G114 is indicated by a blue frame. Numbering is according to immature human CaM (including the initial M).
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cardiac death (SCD) (Nyegaard et al., 2012), mutations in the CALM
genes were considered incompatible with life (Jensen et al., 2018).
Since the initial discovery of human missense variants linked to
CPVT, mutations have also been identified in individuals affected by
long QT syndrome (LQTS) (Crotti et al., 2013) and Idiopathic
Ventricular Fibrillation (IVF) (Marsman et al., 2014). In 2019, Crotti
and co-workers presented an extensive collection of 28 unique CaM
variants, identified in 74 carriers, in the International
Calmodulinopathy Registry (Crotti et al., 2019). CALM variant
carriers in this registry present with cardiac arrhythmia
phenotypes including LQTS (49%), CPVT (28%), overlap LQTS/
CPVT (4%), and a few cases of IVF, sudden unexplained death
(SUD), or atypical phenotypes (Crotti et al., 2019).

Clinical characteristics of the calmodulinopathies include an
early age of onset (a mean of 1.5 years for LQTS and 6 years for
CPVT) and a high risk of a major arrhythmic event (68%), such as
cardiac arrest or SCD/SUD (Crotti et al., 2019). The molecular
mechanisms underlying the two main phenotypes has largely been
ascribed to specific dysregulation of the two primary cardiac Ca2+

channels, CaV1.2 for LQTS, and RyR2 for CPVT-like phenotypes
(Limpitikul et al., 2014; Yin et al., 2014; Søndergaard et al., 2019;
2020; 2017; Nyegaard and Overgaard, 2019; Holt et al., 2020). The
broad phenotypic spectrum caused by CaM variants, including
mechanistically different cardiac arrhythmias, is likely a
consequence of CaM serving as a key regulator of multiple
cardiac ion-channels, besides CaV1.2 and RyR2, that control
cardiac excitation-contraction coupling. Indeed, given the vast
number of CaM-regulated proteins, the phenotypic spectrum of
calmodulinopathies is likely to expand even further as more carriers
are discovered (Jensen et al., 2018; Urrutia et al., 2019).

In 2019, a novel CALM2 variant, G114R (immature protein
numbering including initial Met), was identified in an Australian
mother and two of her four children. Over a 10-year period, all four
children died suddenly and unexpectedly while asleep, at ages
ranging from 19 days to 18 months (Brohus et al., 2021). Further,
the two children carrying the G114R variant had infections at the
time of death, implying a potential presence of fever. In 2021, we
showed that the G114R variant impairs CaM’s ability to bind Ca2+-
ions and to interact with and regulate CaV1.2 and RyR2, with an
impact suggesting an arrhythmogenic potential consistent with
CPVT, IVF, or mild LQTS (Brohus et al., 2021).

Death while asleep or at rest have only been observed in a small
subset of CaM variant carriers, and mainly for CaM variants with a
severe impairment of Ca2+ binding and/or Ca2+-dependent inactivation
of CaV1.2, larger than the effect imposed byG114R (Brohus et al., 2021).
Therefore, the phenotype of the children carrying the CALM2 G114R
variant to some degree represents an expansion of the known clinical
manifestations of CaM variant carriers. The phenotype more closely
resembles that of carriers of missense variants in the cardiac sodium
channel, NaV1.5, for whom major arrhythmic events or death while
asleep is a common feature (Schwartz et al., 2001; Postema and Wilde,
2008; Takigawa et al., 2008). Given that CaM is critical for
NaV1.5 function, we hypothesized that the G114R variant would
specifically interfere with NaV1.5 binding.

The NaV1.5 channel is implicated in both Brugada Syndrome (BrS)
and LQT3, arrhythmic diseases that result from divergent molecular
mechanisms. Intriguingly, both phenotypes can be caused by
NaV1.5 channel mutations that perturb the interaction with and

modulation by CaM (Shah et al., 2006; Yan et al., 2017; Urrutia
et al., 2019; Kang et al., 2021; Wu and Liang, 2021). In some cases,
the same NaV1.5 variant causes both phenotypes, which alludes to the
difficulty in variant genotype-phenotype interpretation (Supplementary
Figure S1).

The gating of NaV1.5 is modulated by CaM in a bi-directional
manner: Both channel activation (peak current), fast inactivation,
and persistent current depend on CaM. Several CaM binding
domains (CaMBDs) have been identified, but their individual
roles in the bi-directional modulation by CaM is still unclear
(Kang et al., 2021). While the primary CaM binding site is an
IQ-motif located in the C-terminal domain (CTD) of NaV1.5
(Chagot and Chazin, 2011; C; Wang et al., 2014; Gabelli et al.,
2014; C; Wang et al., 2012; Gabelli et al., 2016), CaM has also been
shown to interact with a preIQ-domain in the CTD (Yoder et al.,
2019), the “inactivation gate” in the DIII-DIV linker (Potet et al.,
2009; Sarhan, Van Petegem, and Ahern, 2009; Sarhan et al., 2012;
Johnson et al., 2018), and an N-terminal domain (NTD) (Wang
et al., 2020) (Figure2A).

In this study, we illustrate that CaM-G114 is located exactly in
the binding interface between CaM and the IQ-domain of
NaV1.5 and demonstrate that CaM variants G114R and G114W
impair the interaction with the IQ-domain in a Ca2+-dependent
manner with the largest impact occurring at a free Ca2+-
concentration range of 3 nM–4 µM. Thus, the apoCaM
interaction with the NaV1.5-IQ domain is impaired for these
CaM variants and their Ca2+-sensing ability in the CaM/NaV1.5-
IQ complex has markedly changed.

Materials and methods

Materials and methods can be found in the Supplementary
Material.

Results

The CaM-G114 residue is extremely
evolutionarily conserved and located at the
CaM/NaV1.5 IQ-domain interface

CaM-G114 is the terminating residue of the second helix of EF
hand III and it so far constitutes the only amino acid residue known
to harbor a mutation in the loop between EF hands III and IV (L113-
T118) (Figure 1A) (Bycroft et al., 2018; Crotti et al., 2019; Chen et al.,
2022). A protein sequence alignment of CaM from different species
shows that residue 114 is extremely evolutionarily conserved
(Figure1B, blue square). It is a glycine in all species investigated,
including yeast, emphasizing the universal importance of its
integrity.

High resolution structures of CaM (green) in complex with the
NaV1.5-CTD (blue) reveal that CaM-G114 (purple) is located at the
interface between CaM and the channel (Figure 2). In the apo-form,
only the C-lobe of CaM binds to the NaV1.5 IQ-domain (Figure 2B),
whereas in the Mg2+- and Ca2+-bound forms, CaMwraps around the
NaV1.5 CTD with both its lobes (Figure 2C, D). In all cases, the
interaction brings CaM-G114 and the IQ-domain into close
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proximity (Figure 2, insets). We therefore hypothesized that
substitution of residue G114 would affect the binding between
CaM and the NaV1.5 channel.

The G114R and G114W variants impair the
interaction between CaM and the NaV1.5 IQ-
domain

To test the hypothesis that the integrity of CaM-G114 is essential
for the interaction with the NaV1.5 IQ-domain, we monitored the
fluorescence anisotropy (FA) signal of the TAMRA-labeled IQ-
domain during titration with CaM at eight different Ca2+-
concentrations, resulting in eight binding curves for each CaM
variant (Figure 3A). The CaM variant N98S was included as an
arrhythmogenic control, known to cause both LQTS and CPVT

(Nyegaard et al., 2012; Makita et al., 2014; Jiménez-Jáimez et al.,
2016). Another CaM variant, CaM-I10T, identified in the UK
Biobank resource (Bycroft et al., 2018), was included as a non-
arrhythmogenic control.

The interaction between CaM-WT and the NaV1.5 IQ-domain
depends on the level of Ca2+, apparent as a change in FA values for
the CaM-saturated IQ-domain from low (Figure 3A, blue) to high
(Figure 3A, red) Ca2+ concentrations. The assay thus allowed us to
explore the Ca2+-dependency of the interaction, by determining the
maximum FA plateau (FAmax) (Figure 3B, Supplementary Table S1)
and the binding affinity (Figure 3C, Supplementary Table S2) at each
of the eight Ca2+-concentrations.

The FA signal is a measure of the tumbling rate of the TAMRA-
labeled NaV1.5 IQ-domain (Rossi and Taylor, 2011). As more CaM
is added, more CaM/NaV1.5 IQ-domain complex forms, and the FA
signal will increase (due to a reduced tumbling rate of the IQ-

FIGURE 2
(A) Schematic representation of Nav1.5 structural elements and interaction with CaM. (B–D) Visualization of CaM-G114 in NaV1.5/CaM complexes.
CaM (green) and the NaV1.5 CTD (blue) are displayed in cartoon and surface representation with CaM-G114 (purple) displayed in stick representation. The
insets show that G114 is located at the interface between the CaM EF hand III-IV loop and the NaV1.5-IQ domain. (B) apo-CaM, PDB ID 2L53 (Chagot and
Chazin, 2011); (C)Mg2+-boundCaM, PDB ID 4OVN (Gabelli et al., 2014); (D)Ca2+-boundCaM, PDB ID 4JQ0 (Wang et al., 2014). Ca2+ (black) andMg2+

(yellow) ions are shown as spheres. CaM, calmodulin; NaV, voltage-gated sodium channel; CTD, C-terminal domain; FGF, fibroblast growth factor
(orange).
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domain) until reaching FAmax which represents the tumbling rate of
the saturated complex (Figure 3A). The tumbling rate depends on
the conformation of the complex, and a plot of the FAmax value as a
function of [Ca2+]free reveals a Ca

2+-dependent increase in FAmax of
the CaM-WT/NaV1.5 IQ-domain complex, in turn reflecting a Ca2+-
induced conformational change (Figure 3B, black, Supplementary
Table S1). The Ca2+-dependent conformational change is
accompanied by a 10-fold increase in the CaM-WT binding
affinity of the NaV1.5 IQ-domain (Figure 3C, black,
Supplementary Table S2).

Curiously, the Ca2+-dependent development in the FA signal for the
CaM-G114 variants is very different from CaM-WT. First, no FAmax

plateau is reached at free Ca2+ concentrations <4 µM (Figure 3A, B).

Second, the FAmax values ≥4 µM free Ca2+ are significantly different
from those of the CaM-WT/NaV1.5-IQ complex (Figure 3B, red and
blue, Supplementary Table S1). Interestingly, the change in FAmax

imposed by the two G114 substitutions occurs in opposite directions
relative to CaM-WT at saturating Ca2+ (FAmax increases for CaM-
G114R and decreases for CaM-G114W, Supplementary Table S3).

Moreover, the CaM-G114R and -G114W mutations cause a
dramatic reduction in IQ-domain binding affinity compared to
CaM-WT (Figure 3C, red and blue, Supplementary Table S2). At
Ca2+-concentrations below 4 μM, the affinity is reduced to an extent
where the dissociation constant could not be accurately determined
(KD < 5 µM) (Figure 3C, stapled line). However, the data demonstrates
that the affinity is reduced at least 47-fold compared to CaM-WT at

FIGURE 3
(A)CaM binding to theNaV1.5 IQ-domainmonitored by fluorescence anisotropy (FA) as a function of total CaM-concentration ([CaM]tot) at eight free
Ca2+ concentrations ([Ca2+]free). (B) Ca

2+-dependent conformational changes of the CaM/NaV1.5 IQ-domain complex represented by changes in the
maximum FA plateau (FAmax) as a function of [Ca2+]free. (C) Ca

2+-dependent changes in the CaM affinity of the NaV1.5 IQ-domain represented by the
dissociation constant (KD) as a function of [Ca2+]free. Color scheme as in panel B. Each data point represents the mean of three replicates with the
standard deviation shown as error bars. For panel B and C, statistically significant differences between CaM-WT and other variants were determined by a
1-way ANOVA at each Ca2+-concentration with Dunnett’s multiple comparisons test: **** (p-value <0.0001), *** (p-value <0.001), * (p-value <0.05).
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these Ca2+-concentrations and estimates of KD-values could be
determined by assuming an identical FAmax value at all Ca2+

concentrations (Figure 3C, see Methods section for details,
Supplementary Table S2, S4). At free Ca2+-concentrations at and
above 4 μM, the IQ-domain affinity of CaM-G114R and -G114W is
still significantly reduced compared to CaM-WT, but to a smaller extent
(1.4 to 11-fold) (Figure 3C; Supplementary Table S4).

In contrast to the CaM-G114 variants, the Ca2+-dependent increase
in FAmax observed for the CaM-WT/IQ-domain complex is also
apparent for the CaM-I10T/IQ-domain complex (Figure 3B,
orange). Like for CaM-WT, the FAmax value for the CaM-N98S/IQ-
domain complex increases with Ca2+, but the transition is shifted to
higher Ca2+-concentrations (Figure 3B, green, Supplementary Tables S1,
S3). Further, the arrhythmogenic CaM-N98S variant only reduced the
NaV1.5 affinity significantly (1.5-fold compared to CaM-WT) at
intermediate 4 uM free Ca2+ (Figure 3C; Supplementary Tables S2,
S4). This effect is consistent with the observed 4-fold reduction in CaM
C-lobe Ca2+ affinity imposed by the N98S substitution, but different
from theG114R andG114W substitutions, although they have a similar
impact on C-lobe Ca2+ binding (3- and 7-fold reduction compared to
CaM-WT) (Brohus et al., 2021). The non-arrhythmogenic CaM-I10T
variant displayed no difference in IQ-domain affinity compared to
CaM-WT across any of the Ca2+ concentrations tested (Figure3C,
orange). These results are consistent with the observation that both
residue I10 and N98 are located away from the CaM/NaV1.5 IQ-
domain binding interface (Supplementary Figure S2).

The dramatic effect of the G114 variants on NaV1.5 affinity at
low Ca2+ concentrations (≤200 nM) appear specific to the IQ-
domain, as the effect of CaM-G114R and G114W on the
NaV1.5 NTD were much smaller at the corresponding Ca2+

concentrations and comparable in magnitude to the effects of
arrhythmogenic N98S (within a 4-fold difference from CaM-WT)
(Supplementary Figure S3, S4; Supplementary Table S5, S6). As
observed for the IQ-domain, the interaction between the non-
arrhythmogenic CaM-I10T and the NaV1.5 NTD did not differ
from the CaM-WT/NTD interaction.

Discussion

In this study, we use an FA-based assay to investigate the Ca2+-
dependent interactions between CaM-WT and the NaV1.5 IQ-
domain and the recently identified CaM binding domain in the
NaV1.5 NTD, and how these are affected by mutations in CaM.

Intriguingly, the CaM/NaV1.5 IQ-domain interaction displays a
very different Ca2+ sensitivity profile compared to the interactions
between CaM and the NaV1.5 NTD, CaV1.2 IQ-domain, and RyR2-
CaMBD2 (Wang et al., 2018; Brohus et al., 2019; Wang et al., 2020;
Brohus et al., 2021). While the binding affinity increases 10-fold for the
CaM-WT/NaV1.5 IQ-domain complex from low nM to high µM Ca2+-
concentrations, the affinities of the CaM-WT/NaV1.5 NTD, CaM-WT/
CaV1.2 IQ-domain, and CaM-WT/RyR2-CaMBD2 complexes increase
more than 1000-fold across the same Ca2+-range (Supplementary
Figure S5) (Brohus et al., 2021). Moreover, apoCaM binds to the
NaV1.5 IQ-domain with high affinity (117 nM—in good agreement
with affinities determined by others (Shah et al., 2006; Yan et al., 2017)),
much higher than to the NaV1.5 NTD (825-fold), the CaV1.2 IQ-
domain (26-fold), and RyR2 CaMBD2 (7-fold). For Ca2+-saturated

CaM, the interaction with the NaV1.5 IQ-domain is more than 100-fold
weaker than the interaction with the CaM binding domains from RyR2
and CaV1.2 (Brohus et al., 2021). These results corroborate an essential
role of apoCaM in modulating the NaV1.5 channel via the IQ-domain
(Kang et al., 2021).

A potential dysregulation of NaV1.5, caused by human CaM
mutations, has previously been investigated for a handful of LQTS-
causing CaM variants (D96V, D130G, F142L, E141G) (Yin et al., 2014;
Boczek et al., 2016; Rocchetti et al., 2017; Tarasov et al., 2023). However,
the results for these variants have been largely unremarkable. Co-
expression of CaM and human NaV1.5 in tsA102 cells, and subsequent
whole-cell patch clamp recordings, showed no effect on channel
function for any of the CaM variants investigated. Only when
expressing a fetal NaV1.5 splice variant, CaM-D130G caused a 7.5-
fold increase in persistent Na+ current, and only at 1 µM free Ca2+.
Moreover, native Na+ currents from fetal mouse cardiomyocytes were
not affected by CaM-D130G (Yin et al., 2014). Along the same lines, co-
expression of CaM-E141G and NaV1.5 in tsA102 cells, and subsequent
whole-cell patch clamp recordings, caused a 1.7-fold increase in
persistent Na+ current, but the effect was no longer apparent when
co-expressed with CaM-WT (Boczek et al., 2016). Since these studies,
the NaV1.5 channel has been under the radar in terms of studying its
implication in calmodulinopathies. However, and interestingly, Tarasov
and co-workers recently demonstrated that CaM-D96V specifically
increased the late current of the NaV1.6 isoform, but not of NaV1.5,
speculating that this was due to a reduced CaM affinity for the
NaV1.6 IQ-domain (Tarasov et al., 2023).

We have previously shown that CaM-G114R and -G114W reduce
the affinity of CaM for both the CaV1.2 IQ-domain and for RyR2-
CaMBD2 at low to medium Ca2+-concentrations (Brohus et al., 2021).
Here we show that both mutations also reduce CaM’s affinity for the
NaV1.5 IQ-domain, but the effect is dramatically larger than for the
CaMBDs of CaV1.2 and RyR2, particularly at free Ca2+-
concentrations ≤200 nM, the physiological Ca2+ concentration in the
cardiomyocytes at rest, where the CaM/NaV1.5 IQ-domain interaction is
essentially abolished.

The interaction between apoCaM and NaV1.5 is critical for channel
function, by tuning channel activity. ApoCaM binding to the
NaV1.5 CTD causes an increase in peak channel open probability as
well as a decrease in persistent channel open probability, effects that have
divergent implications in disease (Kang et al., 2021). Disruption or
weakening of apoCaM binding reduces peak open probability of the
channel, corresponding to a loss-of-function effect, such as that observed
with the BrS phenotype. However, impaired apoCaM binding can also
lead to an increase in persistent NaV1.5 late current, corresponding to a
gain-of-function effect, such as that observed with the LQT3 phenotype
(Yan et al., 2017; Kang et al., 2021). The dramatic reduction in the affinity
of apoCaM for the NaV1.5 IQ-domain, caused by substitution of CaM-
G114 could thus result in similar divergent effects, and may provide a
mechanistic explanation for the mixed phenotypic pattern observed for
carriers of CaM-G114mutations, and potentially other residues affecting
NaV1.5 binding.

But how can a mutation in one of six CaM-encoding alleles
display a dominant effect through an ion-channel if the affinity for
this channel is dramatically reduced? Several points provide hints
towards a possible explanation. The intracellular pool of CaM is
limited in cardiomyocytes, suggesting a dynamic competition
among CaM target binding sites (Persechini and Stemmer, 2002;
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Wu et al., 2007). In the GTEx transcript database (GTEx
Consortium, 2013), CALM2 represents ~50% of the total CALM
transcript pool in ventricular tissue, and a heterozygous CALM2
missense mutation may thus be present in 25% of the CaM protein
pool. Since the impact of a specific CaM mutation differs between
targets, the available CaM protein will be redistributed accordingly.
Targets affected by a large reduction in CaM binding affinity may
experience a larger deficit in CaM saturation than expected from the
CaM-mutant/CaM-WT protein ratio, thereby increasing the risk of
experiencing a “haploinsufficiency-like” phenotype. This notion is
corroborated by a study investigating LQT3 mutations within the
NaV1.5 IQ-domain (Yan et al., 2017). The study demonstrated that
these variants increase the persistent Na+ current amplitude of
NaV1.5 in whole-cell patch clamp recordings in HEK-cells, and
that IQ-domains containing these mutations reduce the CaM
binding affinity. Overexpression of CaM-WT rescued the
increased current for these LQT3-NaV1.5 channels (Yan et al., 2017).

Another possible explanation for a dominant effect of the CaM-
G114 variants is that CaM binds to other parts of the NaV1.5 channel
than the IQ-domain. One example is binding of apoCaM to the
preIQ-domain with high affinity (~40 nM) (Yoder et al., 2019). Such
binding may anchor the CaM-G114 variant to the channel and
mediate a pathogenic effect through a compromised IQ-domain
binding, induced by the C-lobe mutation.

Intrinsic mutations in NaV1.5 are responsible for BrS and LQTS3,
arrhythmogenic conditions both known for cardiac events to frequently
occur during rest/sleep (Schwartz et al., 2001; Postema andWilde, 2008;
Takigawa et al., 2008). Additionally, for BrS, fever has been established as
a trigger of these events (Adler et al., 2013; Michowitz et al., 2018). Some

of these arrhythmogenic channel mutations occur in the CaM-binding
IQ-domain of theNaV1.5 CTDand perturb the CaM/NaV1.5 interaction
(Supplementary Figure S1) (Shah et al., 2006; Yan et al., 2017; Kang et al.,
2021; Wu and Liang, 2021). This, together with the impaired apoCaM/
NaV1.5 IQ-domain interaction presented in this work, opens a possible
mechanistic explanation for the clinical presentation observed for the
CaM-G114R carriers, who died suddenly at a very young age while
asleep, potentially triggered by a fever from the infections they each had
at the time of death (Brohus et al., 2021). Other intrinsic NaV1.5 BrS/
LQTS mutations occur in the NTD of the channel, a domain for which
the role of CaM has only recently been explored (Wang et al., 2020).
Wang and others demonstrated the ability of CaM to interact with the
NTD of NaV1.5 and discussed the potential implication of altered CaM
binding in the presence of intrinsic channel disease mutations. We find
that the binding of CaM to the NaV1.5-NTD depends dramatically on
Ca2+-concentration (Supplementary Figures S3, S4). When the Ca2+-
concentration approaches µM range, the CaM/NaV1.5-NTD affinity
increases and is comparable to that of the IQ-domain, supporting a
potential Ca2+-triggered role of the NaV1.5 NTD in CaM regulation of
channel activity.

It is not surprising that the phenotypic range of calmodulinopathies
may not yet be fully mapped, as CaM interacts with a myriad of cardiac
target proteins, thatmay ormay not be affected by specific CaMmissense
mutations. In addition to CaM mutation effects on NaV1.5, evidence of
KV7.1 effects are accumulating, further expanding the phenotypic
spectrum of calmodulinopathies. Kato and others described a family
of 14 CaM-N138K carriers who displayed a variably expressed LQTS
phenotype from asymptomatic carriers to carriers experiencing sudden
death as children (Kato et al., 2022). In support of the LQTS phenotype,

FIGURE 4
Schematic overview of the phenotypic spectrum of the main calmodulin (CaM)-regulated cardiac ion-channels responsible for the cardiac action
potential and excitation-contraction coupling. Ion-channels are shown and colored according to the permeating ion: the ryanodine receptor (RyR2,
green) and the voltage-gated calcium (CaV1.2, green), sodium (NaV1.5, red), and potassium (KV7.1, blue) channels. CaM is shown as yellow dumbbells. The
involvement of multiple potassium channels in shaping the cardiac action potential is represented by multiple copies of this channel. Clinical
phenotypes associated with intrinsic channel mutations are given for the CaM-regulated channels.
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the CaM-N138K variant caused an impairment of CaV1.2 inactivation by
whole-cell patch clamp recordings of HEK-cells. However, the variant
also caused an unexpected potentiation of the KV7.1 current by the same
technique in CHO cells, providing a possible explanation for the variably
expressed LQTS phenotype, by countering the CaV1.2 effects (Kato et al.,
2022). Another comprehensive study, involving 13 arrhythmogenic CaM
variants, revealed differential effects of the CaM variants on
KV7.1 binding affinity, channel trafficking, and channel gating
(activation) (Kang et al., 2023). Interestingly, as the only one of the
13 variants, CaM-G114W diminished the interaction with the
KV7.1 channel, both at resting and elevated Ca2+ concentrations, and
induced an increase inKV7.1 trafficking to the cellmembrane (Kang et al.,
2023).

In conclusion, the data presented in this study warrants a potential
expansion of the phenotypic spectrum of calmodulinopathies. Moreover,
these results emphasize our incomplete understanding of the molecular
mechanisms possible for calmodulinopathy-related diseases and point to
the complexity in variant interpreting due to the mixed phenotypes
caused by individual CaM mutations. Molecularly, the multifaceted
effects of CaM mutations may act additively or synergistically, thereby
contributing to compound and mixed phenotypic expressions. Also,
given the high number of CaM-binding targets in cardiomyocytes, the
likelihood of observing variably expressed phenotypes in CaM mutation
carriers increases, compared to carriers of single ion-channel (or single
pathway effecting protein) mutations with pure ‘classical’ phenotypes
(Figure 4). This brings the calmodulinopathies to the forefront of
scientific research into personalized medicine. Careful interrogation of
the CALM genes in large cohorts of sequenced individuals with
unexplained BrS-like or atypical heart arrhythmia phenotypes should
be performed to confirm an expansion of the phenotypic spectrum of
calmodulinopathies to includeCALM-BrS. Such knowledge will allow for
earlier and more accurate diagnosis and treatment of individuals with
calmodulinopathies.
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