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Introduction

Drug development is a complex, risky, expensive and time-consuming process that
requires the accurate execution of multiple stages, from identification and selection of
collections of potentially druggable molecules to proof-of-concept validation. Prior to
embarking on a drug discovery project, a detailed strategic plan must be designed that
includes hundreds of critical considerations such as source of compounds for screening,
feasibility of their synthetic pathways, target selection (molecules, cells, organisms), type of
output (binding, function, phenotype), throughput, nature, layers and iterations of the
screening process, scoring systems, lead optimization approaches or model systems for
validation (biochemical activity, cellular function, organismal properties) and, crucially,
good contingency plans.

The need to discover new drugs rests on practical matters of human progress, rather than
mere market considerations. For example, the global emergence of multidrug resistant
pathogens makes it a research target to find alternative antibiotics; current cancer drugs,
including advanced biologicals, face drug resistance; many parasitic diseases lack effective
drug treatments; highly prevalent neurodegenerative diseases and rare diseases, which
collectively affect significant numbers of people, are essentially drug orphan; vital
agricultural crops are plagued by fungal and parasitic diseases that have evolved to
become increasingly resistant to currently available chemicals. The current COVID-19
pandemic illustrates how pharmaceutically unprepared humanity is (vaccines aside) to
confront the sudden emergence of a novel, deadly and highly transmissible pathogen. To
date, only a handful of repurposed drugs display demonstrable therapeutic efficacy against
infection and disease by the causing agent, SARS-CoV-2 (Lui and Guaraldi, 2023; Sandulescu
et al., 2023). Despite an unprecedented parallel effort by hundreds of thousands of industrial
and academic scientists worldwide, employing leading-edge technologies, no new drugs have
been discovered over the past 3 years to effectively treat this disease.

Natural products as sources of chemical diversity

That some of these targets and diseases may be truly undruggable remains a possibility.
However, the general working hypothesis is that small molecules or biologicals will be
eventually found to match the majority of designated new targets and to significantly
improve upon existing drugs that act on more conventional targets. Although this tenet may
seem like wishful thinking, it is at least partly based on sound estimates of ligand structural

OPEN ACCESS

EDITED BY

Carmenza Spadafora,
Instituto de Investigaciones Científicas y
Servicios de Alta Tecnología, Panama

REVIEWED BY

Alan Hesketh,
Independent Researcher, Gerrards Cross,
United Kingdom
Abraham Madariaga-Mazon,
National Autonomous University of
Mexico, Mexico

*CORRESPONDENCE

Timothy M. Thomson,
titbmc@ibmb.csic.es

RECEIVED 17 April 2023
ACCEPTED 15 June 2023
PUBLISHED 22 June 2023

CITATION

Thomson TM (2023), On the importance
for drug discovery of a transnational Latin
American database of natural
compound structures.
Front. Pharmacol. 14:1207559.
doi: 10.3389/fphar.2023.1207559

COPYRIGHT

© 2023 Thomson. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Opinion
PUBLISHED 22 June 2023
DOI 10.3389/fphar.2023.1207559

https://www.frontiersin.org/articles/10.3389/fphar.2023.1207559/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1207559/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1207559/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1207559/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1207559&domain=pdf&date_stamp=2023-06-22
mailto:titbmc@ibmb.csic.es
mailto:titbmc@ibmb.csic.es
https://doi.org/10.3389/fphar.2023.1207559
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1207559


diversity and druggable chemical space, as well as on the evidence
that combinatorial approaches remain largely untested. As such,
while the largest currently available compound and fragment
libraries, used in ultra-large virtual screenings, contain up to 2 ×
109 unique structures (Lyu et al., 2019; Grygorenko et al., 2020;
Crunkhorn, 2022), the total chemical space of small organic
compounds suitable for drug discovery is estimated as more than
1060 molecules (Bohacek et al., 1996). The underlying concept is that
the more compounds are screened, the higher the likelihood of
finding true positives (Lyu et al., 2019; Gorgulla et al., 2020).

The above considerations suggest that there is still ample margin
to finding new structures to be used as ligands for drug discovery
screening efforts, which begs the question: Where will new chemical
entities (NCEs) likely come from? Because of their special features as
compared to currently available synthetic molecules, natural
products (NPs) offer advantages as sources of future NCEs. As
such, NPs provide large scaffold diversity and structural complexity
accompanied with generally higher molecular rigidity, more chiral
centers, higher fraction of sp3 atoms, more oxygen atoms and
hydrogen bond acceptors and donors, lower octanol–water
partition coefficients (cLog) indicating higher hydrophilicity, low
ratio of aromatic ring atoms or diversity of ring systems (Koehn and
Carter, 2005; Atanasov et al., 2021; Najmi et al., 2022).

A major limitation for expanding the ligand chemical space
with NPs is the laborious nature of NP isolation and structural
characterization towards drug discovery. Traditionally, this is
done through producing crude extracts with a variety of solvents,
screened and fractionated guided by biological activity, and hit
compounds purified and structurally characterized. Given the
availability of large compound structural databases, a virtual
screening-centric strategy may afford to reverse conventional
drug discovery schemes. As such, compounds can be structurally
characterized after minimal purification or fractionation from
crude extracts, by means of NMR spectroscopy, high-resolution
mass spectrometry (HRMS), liquid chromatography HRMS
(LC–HRMS) (Giavalisco et al., 2008; Wolfender et al., 2019;
Garcia-Perez et al., 2020; Stavrianidi, 2020). These methods
enable routine acquisition of accurate molecular mass
information and unambiguous assignment of formulae for
hundreds to thousands of metabolites in a single extract over
a broad dynamic range (Fontana et al., 2020), thus facilitating
chemical entity dereplication (Arora and Banerjee, 2019). In
turn, dereplication is aided by accessing databases such as the
Dictionary of Natural Products (https://dnp.chemnetbase.com/),
which encompasses all NP structures reported with links to their
biological sources, the Global Natural Products Social (GNPS)
molecular networking platform (https://gnps.ucsd.edu/) (Wang
M. et al., 2016), in which thousands of sets of MS/MS data are
recorded from a given set of extracts, clustering compounds by
their structural relationships (Allard et al., 2016; Zhou et al.,
2017; da Silva et al., 2018), Compound Structure Identification
(CSI) (Aksenov et al., 2017) or METLIN (Guijas et al., 2018),
containing fragment ion spectra that can be used for the
identification of unknown compounds. In summary,
quantitative NMR and LC–MS approaches can yield novel
structures to populate screening-ready databases at early
stages in virtual screening drug discovery strategies, thus

avoiding futile downstream development efforts (Wohlgemuth
et al., 2016).

In spite of these technological advances that facilitate the
expansion of the known chemical space, NPs may contain only a
fraction of the theoretical space and scaffold diversity (Pye et al.,
2017). In order to further expand chemical space and structural
diversity, several strategies have been used to create new biologically
active compounds by adding appendages on NP core scaffolds
(Grigalunas et al., 2022), such as diversity-oriented synthesis
(DOS) (Schreiber, 2009), DNA encoded libraries (DEL) (Franzini
and Randolph, 2016) or biology-oriented synthesis (BOS) (van
Hattum and Waldmann, 2014). Other strategies go beyond the
available NP scaffolds by resorting to ring distortion reactions
(Motika and Hergenrother, 2020), albeit still relying on the
original scaffolds. The pseudo-NP strategy deconstructs NPs into
fragments and recombines them into novel scaffolds that are not
possible to attain through known biosynthetic pathways but retain
the chemical and biological relevance of NPs (Grigalunas et al., 2020;
Karageorgis et al., 2020).

Additional efforts to expand the NP chemical space include
engineering biosynthetic pathways aimed at yielding new NP
analogues with potentially improved pharmacological properties
(Atanasov et al., 2021). Such strategies include the activation of
cryptic or occult biosynthetic gene clusters that remain otherwise
silent (Macheleidt et al., 2016), which can be achieved through the
manipulation of culture conditions (Pan et al., 2019), micro-
organism co-cultures (Bertrand et al., 2014) or exposure to small
molecule epigenetic modulators (Pillay et al., 2022), among other
approaches. The expansion of chemical space through various
strategies entails the parallel development of new chemical
methods capable of solving previously untested synthetic paths,
so as to produce compounds corresponding to the newly designed
structures and in cost-effective yields (Cai et al., 2023).

Further to approaching theoretical ligand chemical space limits
and structural characterization of NP and NP-like molecules, a
major challenge is to make them available as large screening-ready
libraries. Several databases provide information on NPs and their
structures (Table 1). Compared to these databases, the currently
accessible databases of chemical entities with focus on NPs of Latin
American origin contain information on relatively few compounds
(reviewed in (Medina-Franco, 2020; Nunez et al., 2021; Gomez-
Garcia and Medina-Franco, 2022)) (Table 2). As such, given the
estimated share of Latin American biodiversity in global biodiversity
(Raven et al., 2020), it is apparent that NPs of Latin American origin
are heavily underrepresented in databases of NP physicochemical
properties and structures.

Large chemical structure databases are necessary for next-
generation virtual drug discovery efforts, but they are not
sufficient. Open-source, robust platforms are also needed that can
integrate tasks in virtual screening and provide smooth connectivity
to docking tools, such as VirtualFlow (Gorgulla et al., 2020), which
can dock 1 billion compounds in about 2 weeks when run on
10,000 CPU cores, or V-SYNTHES (Sadybekov et al., 2022), which
performs iterative steps of library preparation, enumeration,
docking and hit selection, handling fragment-like libraries
representing all possible scaffold–synthon combinations for all
reactions in the 11 billion compound REAL Space library.
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Novel approaches to unbiased high-
throughput target identification

Experimental approaches for target identification require
molecular and biochemical studies of disease pathophysiology
(McFedries et al., 2013; Shaker et al., 2021; Zecha et al., 2023),
which can be costly, labor-intensive and time-consuming.
Conventional virtual screening approaches for target selection
focus on a preferred molecular target to conduct structure-directed
screenings. For better outcomes, such targets need to be structurally
resolved at the highest possible atomic resolution. Until recently, that
entailed “one target at a time” strategies. For decades, conventional
approaches to the resolution of macromolecular structures have relied
on techniques such X-ray crystallography or NMR, which are labor-
intensive and low-throughput. The advent to fruition of cryoelectron
microscopy (Baumeister, 2022) has enormously speeded up this
process. As a result of these collective efforts, there are currently
over 200,000 experimentally resolved structures deposited in Protein
Data Bank (https://www.rcsb.org/), as unique entries corresponding
to full-length proteins, fragments and complexes (protein-protein,
protein-DNA, protein-ligand). This volume of structural information
has laid the foundation for, and enabled, the use of machine learning
tools, such as AlphaFold2 (Jumper et al., 2021) or RoseTTA fold (Baek
et al., 2021), to accurately predict the structures ofmillions of proteins.

As such, the AlphaFold protein structure database (https://alphafold.
ebi.ac.uk) currently contains 214,683,829 predicted structures,
including 48 complete proteomes. An added bonus to these
predictive tools is that targets for which the experimentally
determined structures are incomplete or ambiguous at specific
regions can be completed or “polished” for subsequent use in
virtual screening. For virtual drug discovery, potential binding sites
must be defined on target proteins. To this end, a number of tools have
been developed to predict pockets amenable to blocking by small
drug-like molecules on proteins with known (Bhagavat et al., 2018) or
predicted (Wang et al., 2022; Sim et al., 2023) structures.

While the availability of large ligand structural libraries
improves hit rates on pre-determined targets, the availability of
large target structural libraries covering complete proteomes allows
to perform near-complete screenings of hit and lead compounds for
target selectivity. A major reason for candidate compound failure in
drug discovery schemes is undesired or adverse effects, which is why
characterization of absorption, distribution, metabolism, excretion
and toxicity (ADMET) properties of candidate molecules at the
earliest possible stage is relevant (Selick et al., 2002; Caldwell et al.,
2009; Wu et al., 2020). Traditional ADMET prediction methods,
such as quantitative structure activity relationship (QSAR) models,
require costly and time-consuming data generation and are
generally used relatively late in drug discovery programs. The

TABLE 1 Natural Product databases containing NP structural information.

Database URL/References Number of NPs

PubChem https://pubchem.ncbi.nlm.nih.gov/(Wang et al., 2009) 1 × 108 (synthetic and NP)

SuperNatural https://bioinf-applied.charite.de/supernatural_3/Dunkel et al. (2006); Banerjee et al. (2015); Gallo et al. (2023) 4.5 × 105

COCONUT https://coconut.naturalproducts.net/ Sorokina et al. (2021) 4.0 × 105

Dictionary of Natural Products https://dnp.chemnetbase.com/ 3 × 105

ChEMBL https://www.ebi.ac.uk/chembl/(Gaulton et al., 2017) 2.4 × 106

Natural Products Atlas https://www.npatlas.org/ Wang et al. (2016a) 2.4 × 105

NAPRALERT https://napralert.org/ 3.0 × 105

MarinLit http://pubs.rsc.org/marinlit/) Blunt et al. (2018) 2.7 × 104

TCM Database@Taiwan https://tcm.cmu.edu.tw/ Chen (2011) 6.4 × 104

TABLE 2 Databases of chemical entities with focus on NPs of Latin American origin.

Database URL/References Number of NPs

LNMol http://lnmol.iq.usp.br/ >5,000

ChEMBL-NTD https://www.ebi.ac.uk/chemblntd/ >10,000

NuBBE DB http://nubbe.iq.unesp.br/ >1,500

BRENDA NPAtlas https://www.brenda-enzymes.org/npatlas/index.php >3,000

UEFS http://zinc12.docking.org/catalogs/uefsnp 503

BIOFACQUIM Sánchez-Cruz et al. (2020) 553

CIFLORPAN Olmedo et al. (2017) 450
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increasing availability of data and resources enables ADMET
predictions earlier in the process, with the use of machine
learning tools to predict drug-target interactions, the blood-
brain-barrier permeability of compounds, or toxic properties of
drug candidates (reviewed in (Shaker et al., 2021)). The availability
of predicted structures for complete proteomes should represent a
paradigm shift in ADMET predictions, by affording approaches
such as large-scale reverse docking, by which small molecules are
simultaneously docked on many protein and cavity targets. This
provides information on selectivity and thus potential off-target
effects of the small molecules. For example, Wong et al. (2022)
docked 319 compounds, of which 218 had antibacterial activity, on
296 essential E. coli proteins with structures predicted with
AlphaFold2, finding unexpectedly promiscuous interactions and
demonstrating the feasibility of the approach, albeit also
highlighting the need to improve the performance of machine
learning-based protein-ligand modeling methods.

Target-agnostic approaches have been applied as exploratory
efforts to identify activities of interest prior to targeted drug
discovery (Wang Y. et al., 2016). As such, metabolomics data can
be integrated with data obtained by other omics techniques such as
transcriptomics, proteomics or functional genomics with imaging-
based or phenotypic screens (Kasap et al., 2014; Kurita et al., 2015;
Bray et al., 2016; Subramanian et al., 2017; Earl et al., 2018; Setten
et al., 2019; Ziegler et al., 2021). Eventually, as current criteria
followed by drug approval agencies require the identification of
molecular mechanisms, these exploratory approaches need to be
followed up by biochemical, molecular and structural studies for a
precise mechanistic characterizations of candidate drug activities.

Perspectives and proposal

Significant constraints for the implementation of effective drug
discovery programs in Latin America include relatively limited
funding and failure to assemble coordinated transnational efforts.
To date, scarce numbers of virtual screening projects in Latin
America have led to the discovery of NP or NP-inspired
compounds from isolation to proof-of-concept experimental
activities of identified compounds (Fernandes et al., 2019;
Rodrigues et al., 2019; Belgamo et al., 2020; Fernandez et al.,
2020; Battini et al., 2021; Ferreira et al., 2021; Vargas et al., 2021;
Valera-Vera et al., 2022; Adessi et al., 2023; Almeida et al., 2023;
Araujo et al., 2023; Llanos et al., 2023; Peralta-Moreno et al., 2023).
With the increasing availability and accessibility of advanced virtual
screening tools that facilitate many stages in drug discovery pipelines
(Daina and Zoete, 2019; Gentile et al., 2020; Ghislat et al., 2021;
Singh et al., 2021; Arul Murugan et al., 2022; Blanes-Mira et al., 2022;
Gorgulla et al., 2022; Muller et al., 2022; Sarkar et al., 2023; Thomas
et al., 2023), which under conventional schemes are costly, labor
intensive and time-consuming, a window of opportunity opens to
change the tide towards NP-inspired drug discovery in less affluent
economies.

Although less costly than conventional approaches, large next-
generation virtual screening-centric drug discovery efforts based on
NPs still require expertise and equipment for modern compound
isolation and structural characterization, chemical synthetic and
biosynthetic capabilities and, most importantly, ample computing

power and connectivity. A further practical issue is the availability
and cost of NPs and NP-inspired compounds for experimental
validation of candidate molecules identified by virtual screening.
The cost of NPs through conventional commercial channels can be
relatively high, particularly for those with low yields in standard
isolation procedures. As argued above, current technology enables
early structural characterization of individual compounds, even as
part of relatively complex mixtures, thus affording to bypass
purification prior to structural characterization. In this scheme,
NPs provide structures of interest, while experimental activity
validation is performed with synthetic compounds that
recapitulate NP structural features of pharmacological interest.
This approach reduces the problem of yield, but does not totally
solve the issue of cost per compound to be tested, particularly for
those that may require difficult synthetic paths. New, more cost-
effective synthetic strategies are expected to mitigate cost issues, as
will entrusting non-profit institutions with on-demand synthesis of
NP-inspired compounds for drug discovery. Together with
building strong computational capabilities, this requires a
concerted effort by individual teams, academic and industry
organizations, transnational societies, institutional instances and
public and private funding agencies, to design long-term, outcome-
oriented plans coupled to commensurate multi-year funding
schemes.
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