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Despite significant advances in the development of therapeutics for hearing loss,
drug delivery to themiddle and inner ear remains a challenge. As conventional oral
or intravascular administration are ineffective due to poor bioavailability and
impermeability of the blood-labyrinth-barrier, localized delivery is becoming a
preferable approach for certain drugs. Even then, localized delivery to the ear
precludes continual drug delivery due to the invasive and potentially traumatic
procedures required to access the middle and inner ear. To address this, the
preclinical development of controlled release therapeutics and drug delivery
devices have greatly advanced, with some now showing promise clinically. This
review will discuss the existing challenges in drug development for treating the
most prevalent and damaging hearing disorders, in particular otitis media,
perforation of the tympanic membrane, cholesteatoma and sensorineural
hearing loss. We will then address novel developments in drug delivery that
address these including novel controlled release therapeutics such as hydrogel
and nanotechnology and finally, novel device delivery approaches such as
microfluidic systems and cochlear prosthesis-mediated delivery. The aim of
this review is to investigate how drugs can reach the middle and inner ear
more efficiently and how recent innovations could be applied in aiding drug
delivery in certain pathologic contexts.
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1 Introduction

Hearing loss is one of the most common sensory disabilities, with the World Health
Organization estimating over 1.5 billion people worldwide to currently experience some
form of hearing impairment (Chadha et al., 2021). The ear is a highly compartmentalized
organ with anatomical barriers that preclude conventional drug delivery both locally to
affected sites or systemically due to the blood labyrinth barrier (BLB; Figure 1). Systemically
administered drugs additionally risk being poorly bioavailable or having unwanted effects in
other organs. Local administration is preferred to solve both issues, however the procedures
involved are significantly more invasive. This presents a clinical challenge for the
administration of multiple doses and some newer technologies such as gene therapy,
which shows great promise in the treatment of hereditary conditions and the
regeneration of hair cells (Nyberg et al., 2019; Szeto et al., 2019; French et al., 2020). We
will briefly discuss the etiology of otitis media, perforation of the tympanic membrane and
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FIGURE 1
Anatomical barriers to drug penetration in the middle and inner ear, and routes of local delivery. (A) Tympanic membrane. The TM consists of a
stratified outer epithelium, a lamina propria (radial and circular fibrous) containing fibroblasts and a thin layer of mucosal epithelium. Intratympanic and
topical drugs are administered here. (B) Round window membrane. The RWM consists of an outer epithelium, a connective tissue layer containing
fibroblasts, collagen and elastic fibers and an inner epithelium. Intratympanic drugs are administered here. (C) Biofilm. Biofilm forms an encapsulated
layer of extracellular proteins to protect pathogenic microorganisms against antibiotics. (D) Blood labyrinth barrier. The stria vascularis contains 3 cell
layers: themarginal, intermediate and basal cell layers. The BLB consists of pericytes, endothelial cells andmacrophages and surrounds the capillaries that
are embedded within the intermediate cell layers of the stria vascularis. As shown in the inset in (D), an enlarged view is shown to illustrate the cellular
component of the BLB system. Systemically administered drugs would need to cross the BLB to access the inner ear.
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cholesteatoma of the middle ear and sensorineural hearing loss of
the cochlea; then discuss current and emerging treatments and
recent progress in improving drug delivery to the middle and
inner ear for these diseases.

2 Diseases of the middle ear

Otitis media (OM), perforation of the tympanic membrane
(TM), and cholesteatoma are the most commonly reported
middle ear diseases in clinical practice. Common signs and
symptoms such as pain, fever, sudden hearing loss, and the
sensation of fullness in the ear may help identify middle ear
diseases, but additional approaches such as otoscopy and
magnetic resonance imaging (MRI) are often required to confirm
the diagnosis (Trojanowska et al., 2012; Lo and Nemec, 2015).

2.1 Otitis media

OM represents a spectrum of middle ear inflammatory diseases
which can be classified into acute otitis media (AOM), otitis media
with effusion (OME, also known as glue ear), and chronic
suppurative otitis media (CSOM), which is one of the most
severe middle ear diseases. The common symptoms for AOM
and OME include earache, hearing loss, swelling and bulging of
the TM, and the accumulation of fluid behind the TM. Meanwhile,
CSOM is characterized by chronic inflammation and recurrent
purulent discharge through a perforated TM (Leach et al., 2021).

OM is one of the leading causes of permanent hearing loss in
children and a significant disease burden in developing countries
and several OM-prone populations such as Australian Aboriginals
(Li et al., 2015; DeAntonio et al., 2016; DeLacy et al., 2020). Children
and adolescents are particularly susceptible to OM, and two of the
most accepted theories are an immature Eustachian tube (structural
and functional) that is prone to blockage; and underdeveloped
innate and adaptive immune systems (Bluestone, 2008;
Pichichero, 2020).

Bacterial pathogens such as Streptococcus pneumoniae,
Haemophilus influenzae, Moraxella catarrhalis and Pseudomonas
aeruginosa are the most common cause of OM, but it can also be
caused by Influenza viruses or fungal species such as Aspergillus
(Mittal et al., 2015; Bhutta et al., 2017; Rowe et al., 2019). There is
increasing evidence that biofilm, a microhabitat of microorganisms
entrapped in self-produced extracellular proteins, contributes to the
pathogenesis of OM. Biofilms are difficult to eradicate as they are
resistant to antibiotics and firmly adhered to the middle ear
epithelium, ossicles and tympanostomy tube (Mittal et al., 2015;
Mittal et al., 2018; Silva and Sillankorva, 2019).

2.2 Tympanic membrane perforations

Perforations can occur due to OM or trauma to the TM, such as
the piercing of the TM by a sharp object or a sudden change in
pressure (barotrauma) (Spandow et al., 1996; Wang et al., 2014a).
Most traumatic or acute TM perforations heal spontaneously within
1–2 weeks, but those that fail to heal within 3 months are considered

chronic TM perforations which require surgical intervention (Tan
et al., 2016). The mechanism that underlies the development of
chronic TM perforation is unknown, but studies have identified risk
factors that are linked to delayed healing of TM perforations,
including perforation size and location (Lou et al., 2011; Tan
et al., 2016), Eustachian tube dysfunction (Varsak and Santa
Maria, 2016; Paltura et al., 2017) and long-term tympanostomy
tube usage (Kay et al., 2001; Alrwisan et al., 2016; Knutsson et al.,
2018).

2.3 Cholesteatoma

Cholesteatoma is described as an inflammatory, non-malignant
(and pearl-like) epithelial lesion in the middle ear cavity that can
lead to conductive hearing loss, erosion of the ossicles, and other
intracranial complications. Congenital cholesteatoma is rare and
contributes to 1%–5% of all cholesteatoma cases; and is often
detected within the first decade of life (Mansour et al., 2018;
Jenks et al., 2022). The development of congenital cholesteatoma
is thought to be due to the entrapment of epithelial remnants during
embryogenesis, but the actual mechanism that drives this process
remains under debate (Gilberto et al., 2020). Meanwhile, the more
common acquired cholesteatoma is categorized into either primary
acquired, which is caused by a retraction pocket in the TM; or
secondary acquired, which is thought to be caused by an abnormal
growth of the TM epithelial layer in the middle ear through a
perforation (Cho et al., 2016; Clark et al., 2016). The pathogenesis of
acquired cholesteatoma can be grouped into four theories: retraction
pocket or invagination theory; epithelial invasion theory; squamous
metaplasia theory and basal cell hyperplasia theory (Kuo et al., 2015;
Hamed et al., 2016). More recently, the dysregulation of cell
signaling and immunological pathways such as EGF; IL-6/JAK/
STAT3, MicroRNA-21, Notch and TNF signaling have been
identified as additional potential contributors (Hilton et al., 2011;
Liu et al., 2014; Chen et al., 2016; Xie et al., 2016; Fukuda et al., 2021).

3 Sensorineural hearing loss

The most common type of hearing impairment is sensorineural
hearing loss (SNHL). Patients with SNHL perceive sound as muted
and distorted when compared to other forms of hearing loss, and it is
caused by the degeneration or malfunction of cochlear hair cells or
spiral ganglion nerves of the inner ear. This can be caused by a wide
variety of environmental insults such as excessive noise, which is the
second largest cause of SNHL, the administration of ototoxic drugs,
exposure to ototoxic chemicals including certain solvents and
metals, intrauterine infections including toxoplasmosis,
cytomegalovirus and human immunodeficiency virus, birth
asphyxia and hyperbilirubinemia. Genetics also play a role in
more sporadic, yet highly severe forms of SNHL where aspects of
cochlear development or structure are crippled by mutations to
certain genes. These mutations can be inherited or, less commonly,
arise de novo in the developing cochlea. In the following subsections,
we summarize the etiology of the more characterized common or
severe forms of SNHL: hereditary, noise-induced, age-related, drug-
induced and idiopathic.
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3.1 Hereditary sensorineural hearing loss

Hereditary SNHL is caused by the inheritance of one or more
gene mutations from biological parents that carry defective alleles,
and affects about 1 per 1,000 newborns with profound deafness
(Gettelfinger and Dahl, 2018). Mutations cause the translation of
malfunctional proteins that can no longer fulfil their native function
and cohesively work with other components of the auditory system.
Most hereditary-related deafness is monogenic, with approximately
80% of cases being autosomal recessive, although other modes of
transmission such as autosomal dominant and X-linked can also
occur (Schrujver, 2004). There have been 124 deafness-associated
genes identified to date and some of the most prevalent include
MYO7A and USH2A which are associated with Usher syndrome,
PAX3 and SOX10 which are associated with Waardenburg
syndrome, and PDS which is associated with Pendred syndrome
(Nishio et al., 2015; Van Camp and Smith, 2023).

3.2 Noise-induced hearing loss

Noise-induced hearing loss (NIHL) is caused by progressive over-
exposure to noise. NIHL affects all ages, however there is an increasing
prevalence of NIHL occurring in younger populations from recreational
noise exposure, for example from listening to music using headphones
for prolonged periods, with over 50% of those aged 12–35 being
estimated to risk developing NIHL (Chadha et al., 2021).
Occupational NIHL from jobs involving prolonged exposure to loud
noise, including from power tools, automotive, gunfire and music, has
been attributed to 16% of worldwide severe hearing loss, with men
shown to be more susceptible than women (Nelson et al., 2005). Long-
term noise exposure can risk damage to the auditory structures which
deteriorates cochlear hair cells and spiral ganglion nerves. Moreover,
certain genetic variants have been identified clinically and experimentally
to increase susceptibility to NIHL (Beaulac et al., 2021; Jiang et al., 2021).
The early signs of NIHL are the loss of high frequency hearing and
decreased ability to distinguish speech over background noises, and is
often accompanied by tinnitus (Le et al., 2017).

3.3 Age-related hearing loss

Age-related hearing loss (ARHL), or presbycusis, affects the
elderly as they gradually lose hearing in both ears and over 65% of
adults over 60 years of age have been shown to be affected
(Cunningham and Tucci, 2017; Chadha et al., 2021). ARHL
usually has a complex etiology which encompasses lifestyle aspects
such as noise, but does have some other defined risk factors such as
smoking, ototoxic drug use and hypertension (Gates and Mills, 2005;
Bowl andDawson, 2019). Moreover, ARHL has been shown to cluster
in families with prevalent cases (Gates et al., 1999). In terms of
pathological features, four classifications of ARHL have been
proposed from post-mortem human tissue examination, including
ARHL from progressive hair cell loss, sensory and neural
degeneration, loss of stria vascularis integrity and stiffening of the
basilar membrane (Schuknecht, 1964; Schuknecht and Gacek, 1993).
Additional etiologies have been proposed based on post-mortem
human tissue analyses and animal models, involving oxidative

stress, chronic inflammation, and loss of lateral wall fibrocytes
(Ohlemiller and Gagnon, 2004; Suzuki et al., 2006; Tawfik et al.,
2020), but it is likely that the clinical presentation will involve more
than one of these causes.

3.4 Drug-induced hearing loss

Drug-induced hearing loss occurs when patients take drugs that
have ototoxic side effects. Aminoglycoside and macrolide antibiotics in
particular, such as gentamicin and azithromycin, are commonly used in
the treatment of Meniere’s disease and in developing countries for other
diseases, however they are highly ototoxic (Rauch et al., 2011; Rybak
et al., 2021). Aminoglycosides can permeate through the BLB or round/
oval window (when administered intratympanically for Meniere’s
disease) due to their small molecular size, and accumulate in the
apical side of hair cells through mechanoelectrical transduction
(MET) channels or by endocytosis (Nyberg et al., 2019). When MET
channels are stimulated by sound, antibiotics can enter them and exert
cytotoxicity on hair cells through a yet unclear mechanism (Alharazneh
et al., 2011; Zimmerman and Lahav, 2013). For ototoxic chemotherapies,
cisplatin is perhaps the most widely prescribed example (Greene et al.,
2015; Frisina et al., 2016). Cisplatin increases the generation of reactive
oxygen species by inhibiting peroxidase enzymes which progressively
damages hair cells over time, leading to SNHL (Sheth et al., 2017). Other
ototoxic drugs include the antimalarial drug quinine and loop diuretics
such as furosemide and acetylsalicylic acid (Tange et al., 1997; Ding et al.,
2016). Furthermore, ototoxicity can be exacerbated by interactions with
certain drugs, genetic polymorphisms and cochlear inflammation
(Barbieri et al., 2019; Coffin et al., 2021).

3.5 Idiopathic sudden sensorineural hearing
loss

Sudden sensorineural hearing loss (SSNHL) is characterized by
the presentation of patients with at least 30 dB hearing loss
occurring within 72 h. The incidence in the United States was
reported to be 5 to 20 per 100,000 people with the vast majority
of cases being unilateral and having an unknown etiology, being
termed idiopathic (Kuhn et al., 2011). Bilateral SSNHL is less
prevalent, comprising an estimated 4.9% of SSNHL cases,
however is not usually idiopathic and is secondary to other
complications including cancer, vascular disorders and
autoimmune disease (Sara et al., 2013). Idiopathic SSNHL does
spontaneously resolve in 45%–65% of patients, however controversy
remains on potential etiologies and best course of treatment (Conlin
and Parnes, 2007; Kuhn et al., 2011).

4 Current and emerging therapeutic
options

4.1 Current interventions for middle ear
diseases

Middle ear diseases such AOM and OME are most commonly
managed with supportive care such as painkillers or oral antibiotics
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such as Amoxicillin, but vaccination against common middle ear
pathogens such as S. pneunomiae and H. influenzae has become
standard practice in some countries (Martinovich et al., 2021; Clark
et al., 2022; Izurieta et al., 2022). The treatment of CSOM remains a
clinical challenge and often requires the combination of oral
antibiotics, eardrops, and surgery due to the presence of
antibiotic-resistant bacteria and bacterial biofilm (Mittal et al.,
2018; Leach et al., 2021). Moreover, recurrence of the infection
can occur from the presence of persister cells, a phenotype of
bacteria within biofilms that exhibit low metabolic activity
(Tolker-Nielsen, 2014; Fisher et al., 2017). Persister cells have
been shown to escape the initial course of antibiotics and resume
growth and metabolism once the administration is halted
(Khomtchouk et al., 2020; Santa Maria et al., 2021).

Acute or traumatic TM perforations are most often treated with
supportive care as with OM, to minimize pain and prevent infection
(Orji and Agu, 2008; Lieberthal et al., 2013). Surgery is only
indicated for chronic TM perforations (over 3 months) and this
procedure is called myringoplasty (or tympanoplasty if ossicles are
involved), which involves the placement of an autologous graft
(typically temporalis fascia or auricular cartilage) over or under
the defect to encourage wound healing and restore hearing. The
success rate for such surgery is approximately 87% (Tan et al., 2016),
but the harvesting of autologous grafts is associated with donor site
morbidity (infection and pain) and higher operation cost (Villar-
Fernandez and Lopez-Escamez, 2015; Sainsbury et al., 2022).

For cholesteatoma, surgical excision remains the only curative
approach and this is often performed in conjunction with
reconstruction surgeries (e.g., mastoid wall reconstruction) to
repair damage caused by the lesion and surgical procedure
(Mansour et al., 2018). Unfortunately, the recurrence rate for
cholesteatoma is high with 10%–40% of patients requiring
repeated surgery (Britze et al., 2017; Angeli et al., 2020;
Bächinger et al., 2021). The recurrence of cholesteatoma may be
affected by the type of surgical procedure and is thought to vary
between congenital and acquired disease (Edfeldt et al., 2012; Morita
et al., 2017; van der Toom et al., 2021; Adriaansens et al., 2022).

4.2 Emerging interventions for middle ear
diseases

Bacteriophage or viral-based treatment has emerged as an
alternative strategy to counteract the increasing threat of
antibiotic resistance (Gordillo Altamirano and Barr, 2019).
Wright et al. (2009) conducted the first clinical trial on the safety
of a bacteriophage preparation against P. aeruginosa in patients with
chronic OM. Overall, the treatment did not cause any severe side
effects, significantly lowered the bacteria count (CFU per gram) and
improved the clinical scores of patients. In a later clinical trial,
bacteriophage therapy was conducted in burns patients infected with
P. aeruginosa (Jault et al., 2019). Unlike the previous trial, a daily
topical application of a cocktail of 12 bacteriophages suspended in
saline solution was compared to the standard of care (1%
sulfadiazine silver emulsion cream) over 7 days. Overall, the
treatment was well tolerated, but there was no significant clinical
improvement or reduction in bacterial load when compared to
standard of care. This study also highlighted a few challenges

associated with bacteriophage treatment, including the stability
and titer of bacteriophage after manufacturing and concerns
about bacterial resistance to bacteriophages. Overall,
bacteriophage-based treatment remains an exciting and
promising therapeutic approach for the treatment of OM and
warrants further investigation.

There has been an increased interest in the development of
effective anti-biofilm technology as a preventative and treatment
approach. One of the most promising treatment targets is Type IV
pili (Tfp), a type of proteinous appendage on the surface of most
bacterial species, which plays a critical role in mechanosensing,
motility, and the formation of biofilm (Lee et al., 2018; Horna et al.,
2019). Novotny and colleagues have successfully developed a
transcutaneous immunization strategy against Tfp and showed
both in vitro and in animal studies the efficacy of anti-Tfp
antibodies in destabilization of H. Influenzae biofilm and the
eradication of the pathogen (Novotny et al., 2013; Novotny et al.,
2015; Novotny et al., 2016; Novotny et al., 2021). Anti-Tfp treatment
has also been shown to be effective against other middle ear
pathogens such as M. catarrhalis (Mokrzan et al., 2018). More
importantly, the antibody-mediated release bacteria (from the
biofilm) were found to be more susceptible to antibiotic killing as
compared to their planktonic (free-living) counterparts (Mokrzan
et al., 2018; Mokrzan et al., 2020). Other promising strategies to
tackle problems associated with biofilm include antibody treatment
against bacterial DNABII protein, a key structural component of the
biofilm (Barron et al., 2020; Novotny et al., 2021). Dornase alfa, a
recombinant human deoxyribonuclease that breaks down DNA, has
also been shown to reduce the development of otorrhea in pediatric
patients undergoing tympanostomy (Thornton et al., 2013; Chan
et al., 2018).

For the repair of TM, much research has been focused on
developing biocompatible scaffolds using natural or synthetic
materials such as collagen, chitosan, decellularized tissue and
polylactic acid (PLA) (Hussain and Pei, 2021; Sainsbury et al.,
2022). Some of the current commercially available scaffolding
materials indicated for myringoplasty are EpiFilm® (Medtronic,
Ireland), which is a hyaluronic acid-derived implantable device,
and acellular dermal allografts such as Alloderm (Allergan, Ireland)
(Vos et al., 2005; Sayin et al., 2013).

Otherwise, adjuvant therapies using topical application of
biomolecules are becoming popular in addition to myringoplasty
to enhance the healing of perforations. The most commonly used
biomolecules are growth factors such as epidermal growth factor
(EGF), basic fibroblast growth factor (bFGF) (Hong et al., 2013;
Sainsbury et al., 2022). The efficacy of EGF on the closure of TM
perforations has been investigated predominantly in acute/
traumatic perforations. (Lou et al., 2016; Lou and Lou, 2017; Lou
and Lou, 2018b). Despite the positive outcomes, the benefits of EGF
on the repair of chronic TM perforation remain unclear due to the
lack of well-controlled clinical studies.

Multiple clinical trials have been conducted to study the effects
of bFGF on both acute and chronic TM perforations. For acute TM
perforations, topical drops administration is the most commonly
used approach and is associated with improved healing outcomes
when compared to untreated controls (Huang et al., 2020). For
chronic perforations, the most widely used approach for bFGF
therapy was developed by Kanemaru and colleagues in which a
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bFGF-impregnated scaffold (Gelfoam) is applied over the
perforation, which is then sealed with fibrin glue (Kanemaru
et al., 2011). Clinical trials conducted in Japan have reported
closure rates of 62%–100% in chronic perforations treated with
bFGF (Hakuba et al., 2003; Hakuba et al., 2010; Hakuba et al., 2013;
Hakuba et al., 2015). In contrast, a recent Phase 2 clinical trial
comparing chronic TM perforations treated with bFGF or placebo
(water) reported no statistical difference in closure rates between the
two treatment groups (Santos et al., 2020). Besides that, there have
been concerns about the safety of bFGF as it was found to lead to
other middle ear disorders such as myringitis and cholesteatoma
(Hakuba et al., 2013; Lou and Lou, 2018a).

Platelet-rich-plasma (PRP), a type of blood product that is rich
in platelets and bioactive molecules, has been shown to be a
promising alternative treatment option for tissue repair and
regeneration (Amable et al., 2013; Everts et al., 2020; Huang
et al., 2021). PRP has also emerged as a promising treatment for
chronic TM perforations with 8 clinical trials conducted in the past
10 years (El-Anwar et al., 2015; Fawzy et al., 2018; Fouad et al., 2018;
Yadav et al., 2018; Mandour et al., 2019; Anwar et al., 2020; Ersözlü
and Gultekin, 2020; Taneja, 2020). The closure rate ranged from
85.7% to 100% in the PRP treatment group while a 55%–92% closure
rate was reported in the control group. It is noteworthy that PRP was
used in conjunction with a scaffolding material including a fat graft,
temporalis fascia, or conchal perichondrium. Therefore, the real
therapeutic benefit of PRP as a stand-alone treatment remains
unclear.

Overall, adjuvant therapy using biomolecules with or without
myringoplasty remains an attractive avenue for the management of
TM perforations with research expanded beyond the traditional
growth factors (Shen et al., 2014; Araujo et al., 2016). More recently,
a Phase 1 clinical trial investigating the effect of a recombinant
heparin-binding epidermal growth factor-like growth factor (HB-
EGF) (dubbed ASP0598 Otic Solution) on the healing of chronic TM
perforations has started patient recruitment in multiple locations in
the United States (NCT04305184, clinicaltrials.gov).

4.3 Current interventions for sensorineural
hearing loss

Auditory rehabilitation with hearing devices or cochlear
implants remains the primary treatment approach for SNHL.
These technologies can significantly aid in communication, yet
they are still unable to mimic the quality of natural hearing and,
more importantly, they do not treat the underlying cause of the
hearing loss (Beck and Le Goff, 2018; Solheim et al., 2018).

Hearing aid technology has advanced greatly over the past
decade, with innovations allowing customization of every device
to fit the unique hearing needs of each patient. These devices are
designed to amplify sounds and restore hearing, however no
currently available devices can provide sound quality comparable
to that of a healthy cochlea. Some hearing aids are capable of
selectively reducing background noise while maintaining access
to all distinct speech sounds, but this typically requires the user
to select the voice they wish to focus on and are usually ineffective in
group settings. Moreover, hearing aids still rely on functional hair
cells for sound transduction (Geleoc and Holt, 2014).

In contrast, cochlear implants have proven to be a successful
therapeutic approach for patients, even for those with abnormal hair
cells and severe hearing impairment. There is clear evidence
showing rapid development in oral communication and auditory
skills in infants and children with SNHL with cochlear implants
(Mok et al., 2010; Dettman et al., 2016; Hoff et al., 2019; Dettman
et al., 2021). Moreover, adult patients with cochlear implants were
shown to have improved speech outcomes and quality of life (Santa
Maria et al., 2013; Völter et al., 2020). However, evidence in patients
and animal models show the surgical installation procedure risks
chronic cochlear inflammation or fibrosis, which reduces the
effectiveness of the implant over time (Wilk et al., 2016; Foggia
et al., 2019).

4.4 Emerging interventions for sensorineural
hearing loss

There is currently a wide spectrum of drug types undergoing
clinical trials for different types of SNHL, which has been recently
comprehensively summarized by Isherwood et al. (2022). In recent
years, strategies aiming to manipulate hair cell differentiation
pathways have garnered significant interest. For example, hair
cell differentiation is shown to be accompanied by ATOH1 gene
expression, crucial for progenitor cells residing in the organ of Corti
to be directed to differentiate into a non-sensory or sensory lineage
(Cai et al., 2013; Driver et al., 2013). Currently, the
CGF166 adenoviral vector contains ATOH1 cDNA transcript to
replace absent hair cells has completed Phase 2 investigation
(NCT02132130, clinicaltrials.gov). However, most recently
reported novel otoprotective, regenerative and gene replacement
treatments remain too early in their stage of development to be
applied clinically.

For cisplatin-induced hearing loss, sodium thiosulfate has
recently been approved by the US Food and Drug
Administration as an otoprotective drug. As mentioned, cisplatin
is a highly ototoxic drug, with children and adolescents undergoing
cisplatin treatment being particularly vulnerable to cisplatin-
induced hearing loss (Orgel et al., 2022). Sodium thiosulfate has
been demonstrated in animal models and clinical trials to abrogate
cisplatin-induced ototoxicity, thought to occur by directly chelating
cisplatin (Videhult et al., 2006; Brock et al., 2018). However, as
sodium thiosulfate directly binds cisplatin and is currently
intravenously injected, this may risk decreasing the efficacy of the
chemotherapy on the cancer itself. Methods of locally administering
sodium thiosulfate to the inner ear are currently being investigated
to reduce this risk and will be discussed in later sections.

Another developing approach to treating inner ear disorders is
the application of exosomes. Exosomes are a subset of extracellular
vesicle derived from the budding of endosomes from the plasma
membrane, incorporating transmembrane proteins and lipids, and
range from ~30 to 160 nm in diameter. The precise physiological
role of exosomes is unclear, however they have been demonstrated
to have pleiotropic roles in cell-cell communication, signaling,
proliferation, angiogenesis, immune response and metabolism
and have been shown to carry proteins, nucleic acids and
metabolites (Kalluri and LeBleu, 2020; Warnecke et al., 2022).
Exosomes have been recently identified, isolated and
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characterized from the perilymph of adult patients with various
forms of SNHL or mixed hearing loss, with the study suggesting a
hair cell origin of the exosomes by their expression of MYO7A
(Zhuang et al., 2021). On the therapeutic side, a study from
Athanasia Warnecke and colleagues demonstrated protective
effects of bone marrow mesenchymal stromal cell-derived
extracellular vesicles on a mouse model of NIHL, which
additionally promoted neurite outgrowth in vitro (Warnecke
et al., 2020). This was followed up by a study demonstrating the
safety of implanted extracellular vesicles in a Meniere’s disease
patient that had undergone cochlear implantation 24 months
post-operation (Warnecke et al., 2021). Exosomes thus represent
an interesting potential avenue of biological, yet cell-free treatment
of inner ear disorders.

5 Challenges in drug delivery to the
middle and inner ear

Oral or intravenous delivery of antibiotics are the standard
approach for treating middle ear disorders, but this has been
shown to risk poor bioavailability and side effects such as
diarrhea (Chee et al., 2016). Topical treatments such as
ciprofloxacin/dexamethasone ear drops or Otiprio® are efficacious
for OM, however they are indicated exclusively for OM with
perforated TM (e.g., post tympanostomy or CSOM) (van Dongen
et al., 2014). While animal and human cadaveric studies have
showed that intact TMs are readily permeable to ciprofloxacin
(Yang et al., 2016; Yang et al., 2018b; Early et al., 2021), it
remains unclear whether such results can be achieved in a
clinical setting. Apart from this physical barrier, bacterial biofilm
formed during OM creates a second physical-chemical barrier that
hinders treatment (Silva and Sillankorva, 2019).

Similarly, the cochlea is among the most difficult organs to
deliver drugs to by conventional systemic routes. It is encased by the
petrous bone, which is the densest bone in the human body, and is
only accessible to the circulation via the BLB. As with the treatment
of OM, drugs administered systemically generally accumulate poorly
in the inner ear and can exert unwanted effects elsewhere due to the
aforementioned barriers (Rauch et al., 2011). Therefore, to
effectively deliver drugs to the cochlea, more invasive localized
delivery procedures are required to ensure bioavailability and
avoid unwanted systemic effects. These are injections by
intratympanic and intracochlear routes (Figure 1). While being
more invasive and potentially traumatic, these injections allow
more direct administration of drug to the inner ear.
Intratympanic injection generally relies on the permeation of the
therapeutic agent across the round window (RWM) or oval window
membrane, which are more permeable than the BLB or TM.
However, it still presents a delivery challenge as most drugs
remain poorly bioavailable in the inner ear due to clearance
across the BLB or Eustachian canal (Salt and Plontke, 2018).
Non-specific binding or aggregation can also occur due to the
positively-charged perilymph if the molecule is negatively
charged, for example DNA or RNA. A recent study comparing
intratympanic and intracochlear delivery of a novel supraparticle
encapsulated neurotrophin-3 has showed the latter to be a superior
approach, but may not be practical for drugs that require multiple

doses due to the risk of scarring or inner ear fibrosis (Gunewardene
et al., 2022). Another alternative injection method that has become
more prevalent is postauricular or retroauricular injection which
delivers drug to the postauricular region of the ear without
perforating the tympanic membrane. This has the advantage of
avoiding potential side effects of intratympanic injection such as
persistent pain, otitis media or acute or chronic tympanic
perforation. (Li et al., 2021; Chen et al., 2022c; Xie et al., 2023).
However, it is currently not performed worldwide and it remains
unclear how drugs reach the inner ear from the postauricular region
(Qiu et al., 2022).

To counteract these physiological challenges, there has
recently been considerable progress in the use of biomaterials
such as hydrogels and nanotechnology. Formulations involving
these biomaterials are aimed at enhancing drug bioavailability
and providing controlled and sustained release. Sustained release
can be triggered either upon temperature change, phase change,
implantation, pH changes or administration of a secondary agent
(You and Auguste, 2009; Lajud et al., 2015; Li and Mooney, 2016;
Dai et al., 2018). The following sections will address how
hydrogels and nanotechnology are being employed to aid drug
delivery and facilitate the delivery of novel and repurposed
therapeutics into the middle and inner ear. We additionally
have summarized examples of biomaterial-based drug delivery
platforms in Table 1.

6 Novel drug delivery systems

6.1 Hydrogels

Hydrogel delivery systems allow for the controlled release of a
variety of therapeutic compounds. They can be manipulated into
virtually any shape or size to facilitate controlled drug release and
delivery to various locations in the body (Li and Mooney, 2016;
Rathnam et al., 2019). For hearing-based therapies, the most
common form tested preclinically is direct application of a liquid
in situ gelling hydrogel. The hydrogel is administered to the TM or
round window niche via intratympanic injection, which solidifies
upon contact with the RWM (Rathnam et al., 2019). This allows for
the continual and controlled release of drugs which diffuse across
the RWM to the inner ear, without a need for highly invasive surgery
(Paulson et al., 2008; Hütten et al., 2014; Lajud et al., 2015; Chen
et al., 2022d).

Most hydrogel systems are advantageous due to their
biocompatibility. For example, gelatin methacryloyl (GelMA) is
highly biocompatible and has been extensively studied in the
laboratory as a substrate for three-dimensional mammalian cell
culture due to its inert nature, tunability, and higher batch-to-batch
reproducibility over other commonly used substrates (Zhu et al.,
2019). In an interesting recent approach for clinical application,
GelMA hydrospheres were conjugated with polydopamine (PDA)
for cell adhesion. The delivery of ebselen via these GelMA
hydrospheres recovered hearing loss at some frequencies in a
mouse model of NIHL (Chen et al., 2022d). Another
biocompatible hydrogel composed of modified polyethylene
glycol (PEG) was used to deliver a hydrophilic form of
dexamethasone to a guinea pig cochlear trauma model, resulting
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in sustained drug delivery over several weeks, causing the recovery of
hearing loss and reduced fibrosis (Hütten et al., 2014).

Additional classes of hydrogel include poloxamers, with a recent
approach using the commercially available Poloxamer 407 to deliver
a small molecule inhibitor of the apoptosome, LPT99. This approach
was shown to preserve cell viability and auditory function in
cisplatin-treated rats (Murillo-Cuesta et al., 2021). Finally,
polylactic-co-glycolic acid (PLGA) hydrogels have shown promise
due to their biodegradable nature and have potential to deliver a
wide variety of drugs, including large molecules such as proteins
(Dai et al., 2018; Kim et al., 2021). However high doses of a PLGA-
PEG-PLGA copolymer were observed to affect hearing in guinea
pigs (Feng et al., 2014).

Otiprio® is an FDA-approved ciprofloxacin solution suspended
in a thermosensitive Poloxamer 407 gel and has been indicated
primarily for the treatment of pediatric otitis externa and OME
associated with tympanostomy tube placement (Edmunds, 2017).
Otiprio® is thought to be superior to conventional ciprofloxacin
eardrops (which usually requires three drops thrice a day) as it has
been shown to reduce the occurrence of OM after a single

intratympanic injection (Renukananda et al., 2014; Dohar et al.,
2018).While Otriprio® is not currently approved for the treatment of
CSOM, it is a promising “off-label” treatment due to the similarity of
the two disease subtypes.

There are several hydrogel-based therapies for SNHL that are
currently undergoing or have completed clinical trials. One of the
earliest was developed by Otonomy termed “OTO-104”, a
poloxamer gel injected intratympanically to deliver
dexamethasone across the RWM to the inner ear (Piu et al.,
2011). This therapy underwent Phase 2 and 3 clinical trials for
vertigo in cisplatin-induced hearing loss and Meniere’s disease
respectively, however both were terminated once no significant
difference was observed compared to placebo for the former trial.
This has been postulated to be due to accelerated clearance of the
drug, as dexamethasone can readily cross the BLB and may be
eliminated prior to affecting the more apical regions of the cochlea
(Salt and Plontke, 2018). More recent developments include DB-020
and FX-322 from Decibel Therapeutics and Frequency Therapeutics
respectively. DB-020 is a hyaluronic acid-based gel containing
sodium thiosulfate for the inactivation of cisplatin, an ototoxic

TABLE 1 Examples of proposed biomaterial-based therapies for sensorineural hearing loss undergoing preclinical studies.

Biomaterial
type

Formulation Administration
route(s) tested

Example of proposed intervention Model References

Hydrogel Chitosan Intratympanic RWM
application

CGP/chitosan hydrogel used to deliver PEG
nanoparticles containing JNK inhibitor
functionalized with prestin-targeting peptide for
outer hair cell targeting

Mouse Kayyali et al. (2018)

GelMA Intratympanic RWM
application

Hydrogel microspheres containing ebselen
liposomes, functionalized with polydopamine for
cell adhesion

Mouse Chen et al. (2022d)

Hyaluronic acid Intratympanic RWM
application

Hyaluronic acid hydrogel containing brimapitide,
an inhibitor of JNK

Chinchillla (Eshraghi et al., 2018)

PEG Silicone tubes linking
middle to inner ear

NCOsP(EO-stat-PO) hydrogel containing
dexamethasone 21-phosphate disodium salt

Guinea pig Hütten et al. (2014)

PLGA Intratympanic RWM
application

PLGA-PEG-PLGA hydrogel containing cidofovir Guinea pig Feng et al. (2014)

Poloxamer Intratympanic RWM
application

Poloxamer 407/cyclodextrin hydrogel containing
apoptasome inhibitor LPT99

Rat Murillo-Cuesta et al. (2021)

Lipid Liposomes Intratympanic Liposome nanocarriers containing gadolinium for
MRI contrast imaging

Rat Zou et al. (2017)

Solid-lipid Intratympanic, systemic Solid-lipid nanoparticles containing clozapine or
edavarone

Guinea pig Gao et al. (2015), Wang et al.
(2020)

Polymeric Lipid polymer RWM application PEG/DMPC phospholipid nanoparticle
containing astaxanthin

Guinea pig,
zebrafish

Gu et al. (2020)

PEG Intradermal mPEG-PCL nanoparticles containing artemisinin Guinea pig Li et al. (2020)

Inorganic Iron oxide Pore induction in RWM Delivery of iron oxide nanoparticles using micro-
shotgun induced pores in the RWM

Guinea pig Liang et al. (2020)

Dendrimer Intratympanic Polyamidoamine dendrimers containing
Atoh1 plasmid gene therapy

Rat Wu et al. (2013)

Gold Pore induction in RWM Delivery of chitosan-coated gold nanoparticles
using ultrasound microbubble-induced pores in
the RWM

Mouse Lin et al. (2021)

Silica Intracochlear, RWM
administration

Mesoporous silica supraparticles containing
neurotrophins, brain-derived neurotrophic factor

Guinea pig Wang et al. (2014b), Wise et al.
(2016), Gunewardene et al.
(2022)
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chemotherapy. Phase 1 clinical trials showed DB-020 was well
tolerated and that 13 of 17 patients treated displayed partial or
complete otoprotection (Viglietta et al., 2020). The progression and
further studies of DB-020 will be useful to determine if the hydrogel
confers additional otoprotection or higher tolerability in patients
than the intravenously injected formulation recently approved by
the U.S. Food and Drug Administration (Brock et al., 2018). FX-322
is a poloxamer-based gel containing the glycogen synthase kinase
inhibitor, CHIR99021 and the histone deacetylase inhibitor, valproic
acid. Both have been shown to promote the differentiation of stem
cells into an otic lineage (Koehler et al., 2017). FX-322 showed a
significant improvement in patients with chronic SNHL compared
to the placebo in Phase 1b clinical trials (McLean et al., 2021).
Unfortunately, Frequency Therapeutics reported that FX-322
showed no statistically significant difference from placebo at day
90 of a Phase 2b trial in February 2023 and development of the drug
was halted.

Hydrogels have great potential to facilitate controlled delivery of
a wide variety of drugs, including nanoparticles which will be
discussed in the next section, and are an appealing avenue based
on their ever-expanding tunability and composition. Despite these
advantages, some precluding factors remain in their progression to
more prevalent clinical usage. Namely, sterilization and storage
could be challenging given their hydrated nature (Li and
Mooney, 2016). Nevertheless, the degree of controlled release
afforded by hydrogel drug delivery remains a promising factor in
their applicability to treat hearing loss.

6.2 Nanoparticles

Due to their small size and theoretically endless possibilities for
customization, nanoparticles have become an attractive option for
drug delivery (Table 1). The ability to customize nanoparticles is
advantageous as size, charge, lipid solubility and membrane
thickness strictly govern molecular passage across the RWM and
these properties cannot be readily modified in most drugs
(Goycoolea and Lundman, 1997; Valente et al., 2017; Xu et al.,
2021a; Xu et al., 2021b). Nanoparticles of sizes between 10 and
640 nm have been demonstrated to diffuse across the RWM,
however most studies concur that sizes below 200 nm display the
greatest permeation (Valente et al., 2017; Xu et al., 2021a; Chester
et al., 2021).

Regarding charge, positively-charged nanoparticles display
higher diffusion and greater distribution in the apical region of
the cochlea, which is likely due to the ability of more positively
charged nanoparticles to cross the lipid membranes and plasma
membranes into cells (Liu et al., 2013; Yang et al., 2018a). A study
using nanoparticles coated with a positively-charged arginine
8 peptide shell exploited this to deliver connexin 26 siRNA and
plasmids containing green fluorescent protein or brain-derived
neurotrophic factor (BDNF), along with dexamethasone, which
induced nuclear pore opening (Yoon et al., 2016). Another study
demonstrated greater distribution of cationic lipid nanoparticles in an
in vitro RWMmodel, over neutrally charged or anionic nanoparticles
of the same type. This nanoparticle also mitigated against an induced
inflammatory reaction in vivo (Yang et al., 2018b).

Moreover, like hydrogels, nanoparticles can provide a means of
controlled drug release in the middle and inner ear. This could
decrease the need for surgical intervention for routine application of
therapeutics and decrease potential systemic toxicity. Thus,
nanotechnology has become of great recent interest in drug
delivery to the inner ear.

6.2.1 Lipid nanoparticles
Lipid nanoparticles are generally composed of amphipathic

lipids, such as phospholipids. Phospholipids confer
biocompatibility by allowing incorporation of the lipid
nanoparticle into the cell membranes via endocytosis,
micropinocytosis or degradation (Zou et al., 2017; Xu et al.,
2021b; Chester et al., 2021; Lu et al., 2021). Furthermore, except
for micelles, most lipid nanoparticle types can simultaneously
encapsulate hydrophilic and lipophilic drugs in their aqueous
region and lipid tail regions, respectively.

One of the original types of lipid nanoparticle are liposomes,
which comprise an amphipathic lipid bilayer encapsulating a
therapeutic payload. Liposomes were one of the first lipid
nanoparticles to be clinically tested, however this class of
nanoparticle has only been tested in the inner ear relatively
recently in preclinical models. In a recent example by Zou et al.
(2017), the biocompatibility of a liposome nanoparticle in rats was
assessed through gadolinium MRI imaging which revealed no
structural change to the inner ear and histology, which showed
no cell death or inflammation, aside from a slight increase in the
secretion of the extracellular matrix protein, hyaluronan. Another
pre-clinical application of liposomes, delivered CRISPR Cas9-guide
RNA complexes to target the pathogenic allele in the Bth mouse
model of DFNA36 autosomal dominant deafness, using the
commercially available Lipofectamine 2000 (Gao et al., 2018a).
Lipofectamine 2000 is a liposome comprised of cationic lipids,
but is more commonly used as a transfection reagent in
laboratory settings (Dalby et al., 2004). Moreover it is slightly
cytotoxic, so ideally a more biocompatible vector would be
suitable for CRISPR-Cas or gene delivery (György et al., 2019).
Nevertheless, this demonstrates the applicability of lipid
nanoparticles for the delivery of a wide variety of therapeutics.

Other types of lipid nanoparticles include nanoemulsions, lipid
core nanoparticles which have a lipid core enclosed by a shell of
biocompatible polymers for stability, and solid-lipid nanoparticles
(Figure 2). Solid-lipid nanoparticles (SLN) are composed of solid
lipids, emulsifiers and water, and are of the most recently
investigated for use in hearing loss. SLNs offer many
advantages over other nanoparticle types. These include
controlled drug release, stability at room temperature, higher
payload, low toxicity and the ability to be functionalized and
sterilized (Mehnert and Mäder, 2012). Recently, steric acid-
based SLNs containing dexamethasone or hydrocortisone were
shown to internalize in HEI-OC1 cells without compromising cell
viability and additionally were otoprotective against cisplatin
treatment (Cervantes et al., 2019). Other preclinical reports of
SLN-mediated cochlear protection include the delivery of the
antioxidant edaravone (Gao et al., 2015) and the antipsychotic
clozapine (Wang et al., 2020), where both were shown to protect
against NIHL in guinea pigs.
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6.2.2 Polymeric and inorganic nanoparticles
There is much larger variety in polymeric nanoparticles, which

are composed of long and branched or linear networks. These can be
manufactured structurally similar to lipid nanoparticles, allowing
for the encapsulation of both hydrophilic and lipophilic payloads.
Polymeric nanoparticles have also been more widely investigated in
inner ear therapy, offering better reproducibility and easier surface
functionalization than most lipid nanoparticles. However, the large
molecular weight of their polymer components carries higher risks
in immunogenicity and clearance, and may decrease the amount of
payload that can be delivered (Xu et al., 2021b; Lu et al., 2021).

Many hydrogel components can also constitute polymeric
nanoparticles and in some instances, the terms “nanoparticle”
and “nanogel” are interchangeable (Rathnam et al., 2019). For
example, nanoparticles comprised of PLGA were shown to have
increased RWM diffusion and cochlear penetration when
polymerized with Poloxamer 407, PEG or chitosan, all of which
are well-characterized hydrogel components (Cai et al., 2017).
Moreover, PEG-based nanoparticles, loaded with artemisinin as
an antioxidant, were shown to provide some protection against
gentamicin-induced ototoxicity (Li et al., 2020). Another recent
approach involved the polymerization of PEG and the commercially
available DMPC phospholipid. The resulting lipid polymer

nanoparticle was used to deliver the antioxidant astaxanthin,
which alleviated the toxic effects of cisplatin on HEI-OC1 cells,
as well as guinea pig and zebrafish outer hair cells (Gu et al., 2020).
Finally, another PEG nanoparticle-based strategy used a
bifunctionalized nanoparticle incorporating poly (propylene
sulfide)120, a scavenger of reactive oxygen species, and an outer
hair cell targeting peptide to deliver the Chinese herbal medicine
berberine into a guinea pig model of NIHL (Zhao et al., 2021).

Dendrimers have been of recent interest for delivery of non-viral
gene therapy in many areas, including SNHL. Dendrimers are
nanoparticles characterized by long, branched polymer chains
and are readily customizable in terms of their molecular
architecture, which confers the ability to carry a wider variety of
drugs and allows surface functionalization, for example for
conjugating permeation or targeting moieties (Kheiriabad et al.,
2021). One study demonstrated greater gene transfection efficiency
of a polyamidoamine dendrimer over the commercially available
transfection reagent, Lipofectamine 2000, a lipid nanoparticle (Gao
et al., 2018b). Another polyamindoamine-based dendrimer was used
to deliver an ATOH1-containing plasmid to the rat inner ear. The
dendrimer was shown to permeate across the RWM and transfer the
plasmid to hair cells (Wu et al., 2013). Moreover, dendrimers have
shown promise in delivering CRISPR-Cas systems in other

FIGURE 2
Schematic of nanoparticle types for drug delivery. (A) Micelles. Micelles consist of a single layer of amphipathic lipids surrounding a lipophilic
payload. (B) Liposomes. Liposomes consist of an amphipathic lipid bilayer encapsulating either or both a hydrophilic payload in the core and/or a
lipophilic payload inside the lipid bilayer (latter not depicted in cartoon). (C,D) Lipid core nanoparticle. Characterized by an outer shell of polymers (C) or
other lipids (D) surrounding a lipid droplet core containing the therapeutic payload. (E). Polymeric nanoparticle. Made entirely of polymers and can
carry both hydrophilic and lipophilic payloads depending on the polymer used. This particular depiction represents dendrimers, which consist of long,
branched chains of polymers encapsulating the therapeutic payload.
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applications, demonstrating their future potential in gene therapy
for the inner ear (Kretzmann et al., 2019).

Nanoparticles have additionally shown promise for the
treatment of chronic middle ear disorders. Two recent studies
using gold nanoclusters has shown specific targeting of
antibiotic-resistant persister cells. The first used the
nanoclusters as an adjuvant therapy with ofloxacin. The
combination therapy sterilized in vitro biofilms and
significantly reduced P. aeruginosa numbers in a mouse
model of CSOM without inducing ofloxacin resistance (Cao
et al., 2022). The second study functionalized the gold
nanoclusters with adenosine triphosphate and showed
significant lethal effect on metabolically inactive bacteria
(Bekale et al., 2023). Both approaches showed the
nanoclusters induced cell death through disruption of outer
membrane integrity by various mechanisms and were well
tolerated in vivo.

One interesting approach for cholesteatoma used indocyanine
green nanocapsules to target cholesteatoma-derived keratinocytes.
This approach is designed as an adjuvant therapy to eradicate
residual cells left behind after surgery. The nanocapsules were
coated with an antibody against epidermal growth factor receptor
(EGFR) to selectively target the keratinocytes. In vitro results
showed selective targeting and killing of keratinocytes, but not
mucosal cells after activation of the nanocapsules with infrared
light (Gluth et al., 2015).

6.2.3 Nanoparticle delivery to the inner ear
While nanoparticles address controlled release of drugs in the

inner ear, ultimately they must themselves be delivered to the inner
ear. We have addressed a subset of nanoparticles that have
demonstrated ability to cross the RWM, however there are many
other classes of nanoparticle that have shown therapeutic potential
for the treatment of hearing loss. These are usually larger
nanoparticles with larger payloads or those that can be externally
directed once implanted.

Nanoparticles can be engineered with inherently magnetic
properties. Superparamagnetic iron oxide nanoparticles are
already used in the clinic, with many applications in imaging,
such as MRI (Dadfar et al., 2020). While it may be difficult to
precisely deliver magnetic nanoparticles to the inner ear via the
circulation, magnetic approaches have been proposed to deliver
drugs to the inner ear locally. This is an advantageous approach as
the drugs would be actively delivered into the inner ear, rather than
through passive diffusion. One study demonstrated this by showing
penetration of superparamagnetic nanoparticles into the scala
tympani and apex of the cochlea, when magnetically directed
after application onto the RWM in a hyaluronic acid gel
(Leterme et al., 2019). Another approach used magnetic
nanoparticles to deliver prednisolone into the cochlea of
cisplatin-treated mice, which showed significant otoprotection
compared to control or intratympanic injection (Ramaswamy
et al., 2017).

As previously discussed, limitations on drugs and nanoparticles
administered on the RWM include size, charge, lipophilicity and
membrane thickness. However, as nanoparticles can allow for
controlled release of drugs once injected, invasive surgeries such
as intracochlear injection, would not be repeatedly required once the

nanoparticle is delivered. Intracochlear injection would additionally
allow the delivery of larger drugs, including large nanoparticles,
microparticles and therapeutic peptides.

An example of intracochlear injection for large therapeutic
delivery involves the administration of mesoporous silica
supraparticles (MS-SP) containing neurotrophins. These MS-SPs
are comprised of MS nanoparticles which self-assemble into larger
SPs capable of delivering larger payloads, with pore sizes of
15–30 nm for neurotrophins (Wang et al., 2014b). Intracochlear
injections of MS-SPs containing BDNF (Wise et al., 2016) or
neurotrophin-3 (Gunewardene et al., 2022) were shown to
recover damage to auditory nerves and the organ of Corti in
deafened guinea pigs, while eliciting minimal inflammatory
response. Furthermore, the use of MS-SPs achieved controlled
release of the neurotrophins up to a month post-injection,
though the authors noted some loss of hearing at higher
frequencies caused by intracochlear injection when compared
with RWM administration (Gunewardene et al., 2022). These
studies highlight the advantages and risks associated with
intracochlear injection.

The delivery of nanoparticles can additionally be enhanced
through hydrogel-mediated release. As discussed previously,
drugs contained in hydrogels that are implanted on the RWM
reach the inner ear by passive diffusion through the membrane.
Nano-encapsulation could provide an extra layer of controlled
release and ensure these drugs are not compromised after RWM
diffusion. For example, PEG-based nanoparticles containing
a JNK inhibitor were delivered using a chitosan/glycero-2-
phosphate (CGP) hydrogel implanted through intratympanic
injection. These nanoparticles were functionalized by adding a
peptide targeting prestin, a protein exclusively expressed by outer
hair cells, and was shown to provide protection against NIHL
(Kayyali et al., 2018). A previous study by this group showed the
ability to abrogate drug delivery of the hydrogel upon treatment
with chitosanase, which digests the CGP hydrogel (Lajud et al.,
2013).

Some creative methods of introducing transient pores in the
RWM have been designed for the delivery of nanoparticles into the
inner ear. A “micro-shotgun” was developed to transport iron
oxide and chitosan-based nanoparticles through the RWM. Briefly,
this was constructed by loading nanoparticles and sodium
carbonate/citric acid “fuel” into a microtube which was guided
using a magnetic field and iron oxide nanoparticles in the
microtube. The addition of water to the loaded tube causes a
reaction generating a large amount of carbon dioxide, which
launches the nanoparticle. Pores in the guinea pig RWM
created by the launch closed 24 h after with no injury to the
stria vascularis, organ of Corti or spiral ganglion neurons observed
(Liang et al., 2020). Another vastly different approach used
ultrasound microbubbles to deliver chitosan-coated gold
nanoparticles. These microbubbles caused a transient disruption
of tight junctions in the RWM upon light sonication, which
facilitated the entry of chitosan-coated gold nanoparticles
through the RWM (Lin et al., 2021).

Nanoparticle-based treatment is an emerging area with a
multitude of new preclinical studies being reported.
Nanoparticles address many challenges in therapeutic delivery to
the inner ear, with some formulations having the ability to traverse
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the RWM and effectively distribute along the cochlea. However, key
areas need be addressed, including drug release kinetics and
clearance, with many studies cited in this review focusing on
penetration into the inner ear without the nanoparticle
necessarily carrying a therapeutic payload. There are additionally
some cell-protective mechanisms by which nanoparticles can be
prevented from reaching their therapeutic target, most notably
endosomal escape (Smith et al., 2019). Furthermore, challenges in
large scale production and sterilization remain depending on the
type of nanoparticle. Nevertheless, advances in nanoparticle
technology have created the possibility of the transport of drugs
that cannot penetrate the RWM, such as proteins and nucleic acid-
based therapies for hearing loss. The field continues to rapidly
expand, increasing our understanding of how to deliver
nanoparticles and new forms of drugs into the inner ear.

6.3 Homing peptides

Homing peptides are widely used to deliver therapeutic payloads
to tumors, diseased blood vessels and to treat neurological disorders.
These peptides use “molecular zip codes” or cell/extracellular matrix
recognition motifs to selectively identify cell surface markers and
extracellular matrix, which permit accumulation of the peptide in
not only specific tissues, but specific cells (Ruoslahti, 2022). Homing
peptides additionally can be conjugated to a therapeutic cargo to
guide the payload to the site of pathology (Mann et al., 2016; Yeow
et al., 2019). They are commonly generated from ex vivo/in vivo
phage display screening, where bacteriophages are incubated with
cells from target tissue, generating a library of potential homing
peptides on the phage surface. These peptides are generally small,
usually up to 20–30 amino acids in length, which allows greater
permeation across membranes than larger targeting moieties such as
antibodies.

Recently, Allen Ryan’s group at the University of California, San
Diego used this technique to identify homing peptides that could
cross the TM. The ex vivo study used TM from rats with induced
OM as the substrate for peptide identification, which produced
candidate peptides which were able to transport the phage across the
TM in vivo (Kurabi et al., 2018a). A follow up ex vivo study showed
the homing peptides were able to cross human TM both as isolated
peptides and connected to phage at the same rate (Kurabi et al.,
2018b). The mechanism of transport was eventually implicated to be
via transcytosis (Kurabi et al., 2022). Based on the relatively large
size of bacteriophages (900 nm-1 µm in length), these would make
homing peptides a highly promising approach for the delivery of
larger drugs and nanoparticles to the middle and potentially
inner ear.

7 Microdevice-mediated delivery

The aforementioned intratympanic approach generally relies on
passive diffusion for the drug to cross the RWM and reach its target.
This may not be sufficient to achieve an adequate therapeutic
concentration for some drugs and approaches designed to allow
reloading of drug to a surgically-implanted device are under
development. These devices would be relatively easy to access or

“reload” from the outside and be directly connected to a
compartment within the middle or inner ear. One of the earliest
examples of such a device in clinical use is the Silverstein
MicroWick, which was developed by Herbert Silverstein and
colleagues. The MicroWick is a polyvinyl acetate catheter
threaded through a ventilation tube which is surgically-installed
in the TM. The catheter contacts the RWM and drugs such as
gentamicin and dexamethasone can be self-administered as
eardrops up to three times daily for treatment of Meniere’s
disease and sudden deafness respectively (Silverstein et al., 2004).
More complex solutions involving continual delivery have since
been envisioned to cater for a greater variety of therapeutics, as the
MicroWick must be removed after 4 weeks and may not be able to
deliver larger or more sensitive drugs, such as therapeutic peptides
or gene therapies.

7.1 Micropumps, direct perfusion and
reciprocating systems

Miniaturized perfusion systems have been trialed in animal
models as a possible delivery device for drugs. Directed
intracochlear delivery overcomes many limitations of
intratympanic RWM administration. Larger and more unstable
drugs such as RNA therapeutics or proteins can be continuously
delivered andmultiple doses can be accounted for with the continual
delivery. However, introducing more fluid must be precise and
delivered in small volumes to not risk increasing intracochlear
pressure and damaging sensory tissue. Moreover, the design of
the preclinical systems thus far suggests a direct translation of a
wearable or implanted pump for human use. Such systems would
necessitate the highest practical degree of miniaturization to avoid
inconveniencing the patient and reduce any possible stigma if the
device is visible, as those with hearing aids may experience
(Wallhagen, 2009).

Jeffrey Borenstein’s group has been extensively involved in the
design of micropumps for inner ear delivery. In 2015, they reported
the design of a head-mounted micropump (using guinea pigs for
demonstration), with infuse-withdraw capabilities. This functioned
through the infusion-withdrawal of perilymph so as to not disturb
intracochlear pressure and was used to deliver the glutamate
receptor antagonist DNQX (Tandon et al., 2015). The group also
created a device with a reciprocating pump and drug reservoir to
ensure no net volume change in the cochlea (Kim et al., 2014).
Another group was able to recently create an implantable
micropump for mice (Forouzandeh et al., 2019).

7.2 Cochlear prosthesis-mediated delivery
and mitigation of cochlear fibrosis

Cochleostomy is a highly invasive process, which itself may risk
affecting hearing. This procedure is usually employed to install
cochlear implants and there is growing in vivo evidence in
animal models and humans of a fibro-inflammatory response to
implants (Wilk et al., 2016; Foggia et al., 2019). The resulting fibrosis
interferes with the implant electrode array, and is thought to
contribute to impedance, which hampers the effectiveness of the
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cochlear implant over time. To counteract the proliferation of
fibrotic tissue, anti-inflammatory drugs, commonly
dexamethasone, incorporated into the implant electrode array
have shown effectiveness at preventing fibrosis and additionally
trauma-induced hair cell and neural damage (Chang et al., 2009;
Eastwood et al., 2010; Bas et al., 2016; Wilk et al., 2016; Plontke et al.,
2017; Qnouch et al., 2021). Coating the surface of the implant with
less adsorbing and immunogenic biomaterials has also shown
benefit in inhibiting the inflammatory response (Chen et al., 2022a).

As discussed in previous sections however, certain drugs,
especially dexamethasone and other glucocorticoids, risk being
cleared prior to achieving sufficient bioavailability (Salt and
Plontke, 2018). A study by Liebau et al. (2020) demonstrated this
by implanting silicone dummy rods with different concentrations of
dexamethasone, showing a dose-dependent relationship between
drug loading amount and perilymph concentration over 7 weeks in
guinea pigs. To ensure continual release of drugs, some compelling
controlled release strategies have been developed. One study used
Pluronic-coated gold nanoparticles to deliver dexamethasone in the
round window niche after cochleostomy and demonstrated modest
improvement in ABR threshold at 8 kHz, but no difference at other
ranges (Blebea et al., 2022). Another study from Chen et al. (2022b)
presented an interesting strategy using mesoporous silica
nanoparticles containing siRNA against the pro-fibrotic cytokine,
TGFβ, which were adsorbed onto the surface of the electrode array.
In vivo results from animal studies from this group are highly
anticipated.

8 Conclusion

We have reviewed existing clinical problems and recent
innovations in drug delivery to the middle and inner ear. While
drug delivery to the middle and inner ear remains a significant
clinical problem, great advances have been made recently. As the
anatomical barriers to the middle and inner ears preclude
straightforward local delivery, it will likely require a
combinatorial approach of the techniques mentioned to ensure
effectiveness of these novel technologies. For example,
intratympanic hydrogel administration of many drugs, including
corticosteroids by themselves, is insufficient due to rapid clearance
from the cochlea (Salt and Plontke, 2018). However, a dual-delivery
system that utilizes a hydrogel and nanoencapsulation of drugs
could counteract the rapid clearance rates in the middle and inner
ear. Also targeting moieties, such as homing peptides, could ensure
the administered drug reaches its cellular or molecular target once
administered in the relatively static cochlear fluids (Kayyali et al.,
2018; Ruoslahti, 2022).

An additional challenge for the field is how the development of
drug delivery systems keep up with the development of novel
treatment types. Many gene therapies for example, are relatively
unstable molecules and must be kept in a medium whereby they
remain viable once they reach the inner ear. Conventional gene
therapies, for example the delivery of whole genes, may present a
problem based on molecular size. This is common and reasonably
expected for those replacing the large multidomain proteins of the
cochlear stereocilia bundles, and already challenges the limited

capacity of the more conventional gene delivery system of adeno-
associated viruses (French et al., 2020). This presents an opportunity
for non-viral gene delivery systems such as nanoparticles, however
nanoparticles themselves are also constrained by their own size
when considering intratympanic RWM delivery and passage
(Mehnert and Mäder, 2012). Furthermore, technical
considerations such as sterility and dosage consistency between
nanocapsules of these more sensitive therapies need to be
considered.

The emergence of biomaterial-based delivery systems,
particularly hydrogels, in mid-late stage clinical trials
demonstrates the potential for these novel systems to become
mainstream options for local middle and inner ear drug delivery.
Future studies should continue to address drug release and
pharmacokinetics of encapsulated drugs in animal models of
hearing loss in terms of tissue penetration and clearance.
Moreover, the development of reliable in vitro RWM models
would additionally be useful for large scale assessment of drug
penetration. These types of studies would ensure the
maintenance of drug safety and efficacy as other promising
delivery systems are developed.
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