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Various chemicals, including pharmaceuticals, pesticides, microparticles, and heavy
metals, are persistent in the environment (Brack et al., 2022). Predicting the toxicities of these
chemicals is critical for human health and assessment of environmental risk (Michelangeli
et al., 2022; Pognan et al., 2023). Next-generation technologies have developed novel in silico
and in vitro approaches for risk assessments (Cavasotto and Scardino, 2022; Jeong et al.,
2022). However, in vivo phenotypic assessments using model organisms, including fishes,
rodents, and monkeys, are still indispensable for predicting toxicology and elucidating
adverse outcome pathways (Komada et al., 2017; Donovan et al., 2018; Alsakran and Kudoh,
2021; Hoffmann et al., 2021; Khabib et al., 2022; Nishimura and Kurosawa, 2022).

Wang et al. demonstrated that ibrutinib, a clinical drug used in patients with B-cell
malignancies, caused impairment of vascular development in zebrafish larvae. It reduced the
proliferation and increased the apoptosis of vascular endothelial cells in zebrafish larvae.
Additionally, ibrutinib decreased the expression of vascular endothelial cell growth factor
receptors, which may have a possible role in the impairment of vascular development.
Although ibrutinib has been used as a selective inhibitor of Bruton’s kinase (BTK), its
toxicological effect on vascular development may not be mediated via the inhibition of BTK,
since vascular development is not impaired by other BTK inhibitors or knockdown of BTK in
zebrafish. Furthermore, zebrafish has also been used to develop selective BTK inhibitors
(Sousa et al., 2022).

Komoike et al. showed that exposure of zebrafish embryos from 6 to 72 h post
fertilization (hpf) stage to lead (Pb) at 100 ppb, which is below the occupational
regulatory standard concentrations, increased the expression of oxidative stress related
genes at 72 hpf. This resulted in edema and inflation defects in the swim bladder at 7 days
post fertilization. These results corroborated with those of previous studies (Park et al., 2020;
Wang et al., 2022), thereby, suggesting that zebrafish are useful for investigating the adverse
developmental effects of trace pollutants such as Pb. As Pb easily binds to oxygen and sulfur
atoms in proteins to form a stable complex and accumulates in the zebrafish body, the
developmental effects of Pb at concentrations lower than 100 ppm need to be analyzed.

Using rainbow trout, Mallik et al. performed a pharmacokinetic analysis and biosafety
evaluation of florfenicol, a synthetic veterinary antimicrobial agent approved by the Food
and Agriculture Organization. Florfenicol has been widely used in veterinary medicine to
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treat and prevent diseases, and residues in food from animals treated
with florfenicol can adversely affect human health (Guidi et al.,
2017). In Atlantic salmon aquaculture, florfenicol is typically
administered at 10 mg/kg body weight for 10 consecutive days
(Horsberg et al., 1996). Mallik et al. analyzed the
pharmacokinetics and biosafety of rainbow trout treated with
various doses of florfenicol and recommended the use of
10 mg/kg body weight. Further in vivo studies are required to
determine the dose of veterinary antimicrobial substances that
have positive effects on animals but no adverse effects on both
animals and humans who consume food products from the animals.

The antioxidant system plays a critical role in the body’s
response to chemical exposure (Espinosa-Diez et al., 2015).
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key
transcription factor that regulates antioxidant genes (Bellezza
et al., 2018). Mice have been successfully used in studies to
analyze the role of Nrf2 in regard to the toxicity of many
chemicals (Mutter et al., 2015).

Wang et al. examined the role of Nrf2 in the nephrotoxicity of
colistin, an antibiotic known as polymyxin E. Although colistin is
effective against multidrug-resistant gram-negative bacteria, its
nephrotoxicity limits its use (Ordooei Javan et al., 2015; Trimble
et al., 2016). Using mice, Wang et al. revealed that colistin-induced
nephrotoxicity via suppression of Nrf2 was mediated by the
activation of histone deacetylase 1 (Hdac1). Furthermore, co-
treatment with 7-hydroxycoumarin ameliorated colistin-induced
nephrotoxicity via the inhibition of Hdac1 activity. However, the
mechanisms by which colistin and 7-hydroxycoumarin regulate
Hdac1 warrant further investigation.

Ding et al. analyzed the role of Nrf2 in lung damage in mice
exposed to ambient fine particulate matter (PM2.5) and found that
lung damage was ameliorated inNrf2 knockout mice. In the study, it
was demonstrated that endoplasmic reticulum stress caused by
exposure to PM2.5, was decreased in Nrf2 knockout mice,
possibly through the suppression of Cyp2e1. The role of Nrf2 in
chemical exposure and disease varies depending on the context
(Menegon et al., 2016; Cheryl et al., 2021). Further studies are
required to elucidate the molecular mechanisms underlying the
context-dependent roles of Nrf2.

Assessment of drug-induced QT interval prolongation is a
critical step in drug development (Komatsu et al., 2019).

Monkeys have been widely used to assess drug-induced QT
interval prolongation because they are more sensitive than dogs
in this assessment, and the concentration-QT relationship is
transferable to humans (Holzgrefe et al., 2014; Dubois et al.,
2016). Izumi-Nakaseko et al. analyzed the effect of
atrioventricular block on dl-sotalol-induced QT interval
prolongation. They revealed that monkeys with chronic
atrioventricular block could be used as a proarrhythmic model to
detect drug-induced QT interval prolongation, although it takes
several months to complete pathological remodeling after the onset
of atrioventricular block in monkeys.

The integration of in vivo, in vitro, and in silicomodels with new
methodologies is fundamental for accurately predicting chemical
toxicity (Knudsen et al., 2021). Considering the different physiology,
body size and sensitivities to different toxicants, it is important to
investigate chemical toxicities using a variety of model organisms.
Therefore, the development of novel approaches to predict
toxicology using model organisms warrants further investigation.
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