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Immunogenic cell death (ICD) is a novel cell death mechanism that activates and
regulates the immune system against cancer. However, its prognostic value in liver
cancer remains unclear. Here, several algorithms such as correlation analysis, Cox
regression analysis, and Lasso regression analysis were carried out to evaluate the
prognostic value of ICD-related genes in patients with liver cancer. Three ICD-
related prognostic genes, the prion protein gene (PRNP), dynamin 1-like gene
(DNM1L), and caspase-8 (CASP8), were identified and used to construct a risk
signature. Patients with liver cancer were categorized into high- and low-risk
groups using the ICD-related signature. Subsequently, a multivariate regression
analysis revealed that the signature was an independent risk factor in liver cancer
[hazard ratio (HR) = 6.839; 95% confidence interval (CI) = 1.625–78.785]. Patient
survival was also predicted using the risk model, with area under the curve values
of 0.75, 0.70, and 0.69 for 1-, 3-, and 5-year survival, respectively. Finally, a
prognostic nomogram containing the clinical characteristics and risk scores of
patients was constructed. The constructed ICD-related signature could serve as a
prognostic and immunotherapeutic biomarker in liver cancer.
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Introduction

Liver cancer is extremely malignant, and its onset is frequently concealed, with most
patients being diagnosed at a late stage. The fatality rate from liver cell cancer has risen
steadily over the last few decades (Xu et al., 2022). With the advancement of medical
technology, the emergence of novel approaches such as targeted therapy and
immunotherapy has considerably increased the survival time of patients with liver
cancer (Kalasekar et al., 2021). Sorafenib, for example, remains the only medicine
approved for the systemic treatment of advanced hepatocellular carcinoma (HCC), but
its efficacy is limited (Li et al., 2021; Wu et al., 2022). As a result, new biological indicators
and prediction models are required to accurately predict the immunotherapy response of
patients with liver cancer.
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Immunogenic cell death (ICD) is a new cell death mechanism
that involves the activation and regulation of the immune system
against cancer (Zhang et al., 2021). During ICD, dead cells release
various substances and antigens to interact with antigen-presenting
cells or other immune cells. These immunogenic molecules are
called damage-associated molecular patterns (DAMPs). ICD kills
cancer cells by triggering specific tumor immune responses (Kim
et al., 2021). Notably, Food and Drug Administration-approved
ICD-based drugs have been used in treating melanoma and small-
cell lung cancer (Markham, 2020; Tzogani et al., 2021). A study
demonstrated that disulfiram and copper can synergistically induce
ICD in HCC cells by promoting dendritic cell maturation and CD8+

T cell cytotoxicity (Gao et al., 2022). However, there are currently
few studies on the prognostic and therapeutic value of ICD signaling
in patients with liver cancer. Moreover, a deeper comprehension and
investigation of ICD-related molecules can yield novel perspectives
and insights regarding the occurrence, treatment, and prognosis of
liver cancer.

In this study, we constructed a risk model for liver cancer prognosis
based on the differential expression of ICD-related genes. Based on the
median cut-off risk score, we divided samples into high-risk and low-
risk groups. We also evaluated the risk model’s prognostic prediction
capacity using an external cohort. The immune status of the two groups
was then assessed. Finally, we combined clinicopathological variables
with risk score to develop an effective nomogram for predicting samples
survival rates. The detailed flowchart can be seen in Supplementary
Figure S1. This model could be useful for predicting the
immunotherapy response of patients with liver cancer.

Materials and methods

Identification of ICD-related genes

The Cancer Genome Atlas (TCGA, http://cancergenome.nih.
gov/), the University of California Santa Cruz (UCSC, http://xena.
ucsc.edu), and Xena Browser (TCGA database version: Data Release
31.0, 29 October 2021) served as the primary sources of patients’
information in this study. Patients with complete clinical and
survival information were included in the study, whereas those
with incomplete information were excluded. A total of 39 normal
samples and 377 liver cancer samples in the TCGA-HCC datasets
were extracted from UCSC databases. The GSE65372 (Zhao et al.,
2021a) and GSE25097 (Sung et al., 2012) from Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/go/) were used to
screen the different genes associated with liver cancer. In addition,
138 ICD-related genes were acquired from Zhang’s report (Zhang
and Chen, 2022). The overlap of differentially expressed ICD-related
genes in TCGA, GSE65372, and GSE25097 datasets was identified.

Construction of the prognostic signature
based on ICD-related genes

Lasso regression analysis was performed to select the prognostic
ICD-related genes. The risk score was calculated using the formula:
risk score = expression of (ICD-related genes 1) × (β1 of ICD-related
genes 1) + expression of (ICD-related genes 2) × (β2 of ICD-related

genes 2) + expression of (ICD-related genes 3) × (β3 of ICD-related
genes 3) (Tibshirani, 1997). To evaluate the diagnostic and
predictive value of the signature, the “survminer” and
“TimeROC” R packages were used to plot the receiver operating
characteristic (ROC) and the Kaplan-Meier curves (Blanche et al.,
2013). Univariate and multivariate regression analyses were also
used to verify the predictive value of this risk model. The nomogram
for estimating the 1-, 3-, and 5-year survival probability of patients
with liver cancer was constructed using the “rms” R package. An
alluvial plot was used to confirm the predictive value of the signature
in patients with clinical and pathological characteristics of liver
cancer. In addition, decision curve analysis (DCA) was performed
using the “rmda” R package to confirm the clinical significance of the
signature.

Immune analysis

To evaluate the effectiveness of immunotherapy, immune
checkpoint blockade was predicted using ImmuCellAI (http://bioinfo.
life.hust.edu.cn/ImmuCellAI#!/) (Miao et al., 2020). The tumor purity
and proportion of infiltrating stromal/immune cells in the high- and low-
risk groups were also determined using the CIBERSOFT (Newman et al.,
2015) and TIMER (Li et al., 2016) methods.

Gene set enrichment and functional
enrichment analyses

Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://
metascape.org/gp/index.html#/main/step1) and Gene Ontology
(GO) (https://proteomaps.net/) (Subramanian et al., 2005) were
used for signaling pathway enrichment and functional annotation
analyses, respectively.

Statistical analysis

All statistical evaluations were performed using the R software
(version 4.0.1). Nonparametric tests and one-way analysis of
variance were used when necessary. Statistical significance was
defined as a p-value < 0.05.

Results

Differential expression and gene ontology
analysis of ICD-related genes

Due to the lack of additional datasets containing survival
information, we included multiple GEO datasets for the analysis
of differential genes to improve the robustness of the study findings.
We conducted a differential analysis of ICD-related genes using
datasets from three databases: GEO65372, GEO25097, and TCGA-
HCC. The results were further intersected, and the resulting Venn
diagram is shown in Figure 1A. Supplementary Table S1; Figure 1A
present detailed information for the Venn diagram. Five ICD-
related genes were preliminarily identified. Next, we performed a
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correlation analysis and found that the genes CASP8 and DNM1L
had the strongest correlation (Figure 1B). The results of differential
expression between tumor and normal tissues are shown in
Figure 1C. In the TCGA database, all five genes exhibited
significant differences. The GO enrichment analysis indicated
that these differentially expressed genes were mainly enriched in
cellular transition metal ion homeostasis (Figure 1D).

Establishment and verification of the ICD-
related risk signature

Lasso-Cox regression analysis was used to further analyze the
differentially expressed genes, and three genes, PRNP, DNM1L, and
CASP8 were found to be statistically significant enough to be used to
construct a risk model. The results of the Lasso-Cox regression analysis

FIGURE 1
Differential expression of ICD-related genes between normal and liver cancer tissues. (A) The Venn diagram in GSE65372, GSE25097 and TCGA. (B)
The heatmap of 5 ICD-related genes in normal and liver cancer tissues. (C) The expression of 5 ICD-related genes in normal and liver cancer tissues. (D)
The GO functional analyses in the 5 ICD-related genes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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were also used to generate the risk score for each sample. Because the λ
value was 0.04, the three ICD-related genes were used to build a risk
model. The risk score was calculated as follows: (PRNP) *
(0.007391448) + (DNM1L) * (0.172040796) + (CASP8) *
(0.100560488) (Figures 2A, B). The distribution of risk scores and
overall survival status (Figure 2C) and Kaplan-Meier curve (Figure 2D)

demonstrated that the prognosis of patients in the high-risk group was
poorer than that of those in the low-risk group. Table 1 displays the
clinicopathological characteristics of patients in the high- and low-risk
groups. The ROC curve revealed that the risk score had a strong
predictive ability, with area under the curve values of 0.71, 0.66, and
0.61 for predicting 1-, 3-, and 5-year survival, respectively (Figure 2E).

FIGURE 2
Establishment and verification of a risk signature related to ICD-related genes. (A, B) The Lasso-Cox regression analysis in ICD-related genes. (C)
Distribution of risk scores and overall survival status. (D) Kaplan-Meier curves for the overall survival of patients in the high- and low-risk groups. (E) The
time-dependent ROC curves supporting prognostic accuracy of the risk score.
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To increase the application of the risk model, clinicopathological
patient data and risk scores were integrated to construct a
nomogram. The multivariate and univariate Cox regression
analyses revealed the M stage, T stage, and risk scores were
significantly related to prognosis (Table 2). After merging these
parameters, a nomogramwas developed, and scores were awarded to

each patient (Figure 3A). For example, the clinical information of a
patient with HCC was stage M1, T3, approximately 30 years of age,
and female. Including the risk score, this patient’s overall score was
161.04. Figure 3A depicts the 1-, 3-, and 5-year patient survival rates.
The calibration curves showed that the nomogram accurately
predicted the prognosis of the patients (Figure 3B). In addition,

TABLE1 Associations between the signature and patient characteristics in high and low risk groups cohort.

Characteristics High (N = 170) Low (N = 171) Total (N = 341) p-value

Age

Mean ± SD 57.78 ± 14.33 60.40 ± 12.08 59.10 ± 13.30

Median [min-max] 59.00 [16.00,85.00] 62.00 [20.00,82.00] 61.00 [16.00,85.00]

gender 0.02

female 64 (18.77%) 44 (12.90%) 108 (31.67%)

Male 106 (31.09%) 127 (37.24%) 233 (68.33%)

tumor_stage 0.01

stage i 76 (22.29%) 94 (27.57%) 170 (49.85%)

stage ii 42 (12.32%) 42 (12.32%) 84 (24.63%)

stage iii 52 (15.25%) 31 (9.09%) 83 (24.34%)

stage iv 0 (0.0e+0%) 4 (1.17%) 4 (1.17%)

pathologic_M 0.25

M0 170 (49.85%) 168 (49.27%) 338 (99.12%)

M1 0 (0.0e+0%) 3 (0.88%) 3 (0.88%)

pathologic_N 0.61

N0 167 (48.97%) 170 (49.85%) 337 (98.83%)

N1 3 (0.88%) 1 (0.29%) 4 (1.17%)

pathologic_T 0.1

T1+T2 120 (35.19%) 137 (40.18%) 257 (75.37%)

T3 45 (13.20%) 29 (8.50%) 74 (21.70%)

T4 5 (1.47%) 5 (1.47%) 10 (2.93%)

TABLE2 Univariate and multivariate analyses of risk factors in the cohort.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Age (years) 1.011 (0.997–1.026) 0.134

Gender

Female 1 (ref)

Male 0.753 (0.517 1.096) 0.138

T stage

T1+T2 1 (ref)

T3 2.357 (1.592 3.490) <0.001 2.271 (1.531 3.367) <0.001
T4 4.675 (2.124 10.290) <0.001 3.881 (1.459 10.328) 0.007

N stage

N0 1 (ref)

N1 2.008 (0.494 8.161) 0.330

M stage

M0 1 (ref)

M1 3.894 (1.231 12.320) 0.021 1.536 (0.364 6.486) 0.559

Risk score 8.130 (1.982 33.360) 0.004 6.839 (1.625 28.784) 0.009
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FIGURE 3
Developing a newnomogramwith clinicopathological information (A) The nomogramof the riskmodel. (B) The calibration curves of the nomogram
of risk model. (C) Kaplan-Meier curves for the overall survival of patients in the high- and low-risk groups based on risk model. (D) The time-dependent
ROC curves supporting prognostic accuracy of the risk score based on risk model. (E) Sankey diagram showing the connection degree between the
clinicopathological information and survival status. (F) The DCA curves of clinical practicability of the nomogram. (G) The nomogram provided
greater net benefit (NB) than a conventional single clinicopathological characteristic.
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FIGURE 4
Risk model based on immune cell infiltration and clinicopathological factors. (A) The correlation hot map between immune check point and risk
score. (B) The TIMER scores between the low- and high-risk immune cell group. (C) The CIBERSOFT scores between the low- and high-risk immune cell
group. (D, E) The immune cell infiltration between the low- and high-risk group. (F) The immune check point of difference expresses between the low-
and high-risk group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 3C depicts the 1-, 3-, and 5-year OS of the patients (HR =
2.34, 95% CI = 1.59–3.46). Figure 3D presents the ROC curve for the
nomogram. A high score signified an unfavorable prognosis.
Figure 3E depicts the prognosis of patients combined with
various influencing factors. DCA curves (Figure 3F) further
confirmed the nomogram’s clinical applicability. The nomogram
provided greater net benefit than a conventional single
clinicopathological characteristic (Figure 3G).

The relationship between the ICD-related
risk signature and tumor microenvironment

Immunological ICD treatments have yielded favorable clinical
outcomes in recent years (Zhu et al., 2020; Dong et al., 2022).
Resultantly, we analyzed immunotherapy checkpoints in the high-
and low-risk groups. Figure 4A depicts the correlation between
various immunotherapy checkpoints. The link between CD27 and

FIGURE 5
Biological pathways associated with ICD-related genes. (A) The GSEA functional analyses in the high- and low-risk groups. (B) The KEGG functional
analyses in the high- and low-risk groups.
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CD48 was the strongest, with a correlation coefficient of 0.89. We
analyzed the immune states using several immune scoring methods,
such as the TIMER (Figure 4B) and CIBERSOFT algorithm
(Figure 4C). The results showed that the expression of multiple
immune cells was significantly different between the high- and low-
risk groups. Then, we found significant differences in the infiltration of
monocytes, CD4-T cells, and NKT (Natural killer T) cells between the
high- and low-risk groups (Figure 4D). Similarly, we discovered that
there were significant differences in the infiltration of CD4 naive, Trl,
nTreg, Th1, Th2, Th17, Tfh, CD8 naive, and central memory cells
(Figure 4E). By studying the expression of immunotherapy checkpoints
in the patients (Figure 4F), we discovered that the majority of
immunotherapy checkpoints were significantly expressed at higher
levels in the high-risk group than in the low-risk group, suggesting
that the patients in the high-risk group might be more responsive to
immunotherapy checkpoint-based therapies.

Biological pathways associated with ICD-
related genes

GSEA and KEGG functional analyses were performed to explore
the biological mechanisms of the ICD-related genes in the high- and
low-risk groups (Figures 5A, B). The top GSEA terms indicated the
roles of the ICD-related genes in the regulation of primary bile acid
production, ubiquitin-mediated proteolysis, endocytosis, cancer
pathway, and RNA degradation. The top KEGG terms indicated
the roles of ICD-related genes in the regulation of genetic, metabolic,
environmental, and organismal systems.

Discussion

The treatment and prognosis of liver cancer have been a major
concern for physicians. Despite the development of new antitumor
medications, the survival rate of patients with liver cancer remains
poor. With the development of the ICD concept, an increasing
number of researchers have attempted to induce ICD in liver cancer
cells using pharmaceuticals in an effort to treat liver cancer, bringing
promise to liver cancer treatment. Several studies have demonstrated that
the combination of oxaliplatin and immune checkpoint therapy increases
the immunological death of liver cancer cells, resulting in favorable
outcomes (Zhu et al., 2020). Other studies have also revealed that
cabozantinib induces the death of immune cells and has beneficial
therapeutic benefits for patients with liver cancer (Scirocchi et al.,
2021). Consequently, computer analysis of the differential expression of
ICD-related genes in liver cancer and the development of a prognostic
model for liver cancer based on the results of the differential analysis is
advantageous in liver cancer treatment and prognosis. In this study, we
selected three datasets (GSE65372, GSE25097, and TCGA-HCC) from the
GEO and TCGA databases, performed differential analysis, and identified
five ICD-related genes with differential expression using a Venn diagram.
Then, using the TCGA dataset for validation, we built a prognostic model
with three prognosis-related genes. The risk model predicted that the
prognosis of patients in the low-risk group was favorable relative to that of
patients in the high-risk group. We also found that this model accurately
predicted the 1-, 3-, and 5-year survival rates of patients with HCC who
underwent surgery. Moreover, the distinct infiltration of immune cells in

the high- and low-risk groupsmay be indicative of distinct immunological
microenvironments for various risk models. We then validated the model
using the immunohistochemistry public database, further showing the
model’s usefulness.We expect that themodel will have a broader scope for
future applications.

We constructed the risk signature using three mRNAs. PRNP serves
as an ICD-related gene as well as an autophagy-related gene.
Bioinformatics studies have demonstrated that PRNP contributes to
the establishment of an HCC-related prognostic signature, which
accurately predicts the prognosis of patients with HCC, thereby
shedding light on the potential autophagy mechanisms in liver cell
cancer (Chen et al., 2021).Kim et al. (2022) found that cellular prion
protein encoded by the PRNP gene increases the risk of recurrence and
decreases the survival rate of patients with liver cancer after surgery, as was
predicted by themodel in our study. There have beennumerous studies on
liver cell cancer andDNM1L. The liver-specific dynamin-related protein 1
(DRP1; gene name: DNM1L) is a key gene that regulates mitochondrial
fission. The high expression of DNM1L is indicative of a poor prognosis
for patients with HCC. DNM1L overexpression enhances mitochondrial
fission in HCC cells, hence promoting the proliferation of HCC cells
(Huang et al., 2016). Similarly, studies onmice have indicated that aerobic
exercise decreases the expression of DNM1L in liver cell cancer, influences
mitochondrial fission, and inhibits the development of liver cell cancer via
the PI3K/AKT pathway (Zhao et al., 2021b). Despite the unsatisfactory
efficacy of chemotherapy in the treatment of liver cell cancer, studies have
demonstrated that inhibitingDNM1L-mediatedmitochondrial fission can
further promote apoptosis of liver carcinoma cells, thereby providing
strong preclinical evidence for the development of mitochondrial
autophagy-based combination therapies (Ma et al., 2020). Consistent
with our findings, a study discovered that CASP8, a gene associated
with pyroptosis, can contribute to the building of a prognostic signature,
and themodel can be used to predict the survival of patients with liver cell
cancer and their response to immunotherapy (Zheng et al., 2021).
Similarly, Boege et al. (2017) found that liver cancer cells with low
levels of CASP8 expression had lower invasiveness and poor
proliferation ability. Resultantly, patients had favorable overall survival
performance, which was the same as predicted by the model in our study.

ICD is a specific type of cell death that can interfere with the
antitumor functions of the immune system (Ladoire et al., 2016;
Deng et al., 2020; Galluzzi et al., 2020). Discovering ICD-related
gene biomarkers may be of benefit to patients with HCC. In our
study, we developed a risk model based on ICD and predicted
patients’ prognoses. The risk signature classified all patients into
high- and low-risk groups, and we discovered that the prognosis of
the patients in the high-risk group was considerably poorer than that
of those in the low-risk group. The GO and GSEA and GO analysis
revealed that genetic information processing had the highest impact
in the low-risk group, whereas metabolism had the highest impact in
the high-risk group. The GSEA revealed that the primary bile acid
production pathway was significantly enriched, and this may serve
as a theoretical foundation for the development of ICD-related
therapeutic strategies. In addition, recent studies (Dong et al.,
2022) have demonstrated that the combination of immune
checkpoint therapy plus ICD treatment is one of the most
successful treatment strategies available. Additionally, we
discovered significant differences in immune checkpoint markers
such as PD-1 and PD-L1 between the high- and low-risk groups,
indicating that immune checkpoint therapy combined with ICD
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treatment has considerable potential in the development of
treatment strategies for liver cell cancer.

Despite major advances in its treatment, the prognosis for liver
cancer remains poor due to drug resistance, recurrence, and
metastasis. Combination therapy with immune checkpoint
inhibitors and vascular endothelial growth factor inhibitors are
currently used as first-line treatment for advanced liver cancer.
With the development of immune checkpoint inhibitors-based
therapies, there is renewed optimism for patients with liver cancer.
Due to the dependence of these treatments on the immune milieu of
the tumor, it is vital to study the immunological environment of liver
cancer to select the most effective treatment (Hao et al., 2021; Oura
et al., 2021). Studies have shown that increased levels of infiltrating
immune cells in the tumor microenvironment are associated with
higher risks (Ding et al., 2022). Consequently, we studied the
immunological microenvironment and the infiltration of diverse
immune cells. The high-risk group exhibited a greater infiltration
of immune cells relative to the low-risk group. A single-cell
sequencing study associated elevated levels of Treg cells with liver
cell cancer, providing a new direction for the immunological
treatment of liver cell cancer based on its immune
microenvironment (Zheng et al., 2017). Our data indicate that
immune cell infiltration is positively correlated with risk, and the
high-risk group had greater immune cell infiltration. This findingmay
suggest that immunotherapy may be more effective for patients with
liver cell cancer who are at high risk for disease progression. Next, we
will verify the validity of the three genes through in vivo and vitro
experiments. More clinical and experimental research are required to
increase the generalizability of our survival prediction model in
clinical practice in the future.

Conclusion

A risk model based on the ICD-related genes PRNP, DNM1L,
and CASP8 was developed to predict the prognosis of liver cancer.
This risk model can also predict the immunotherapy response of
patients with liver cancer.
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