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Cantharidin (CTD), a natural compound derived from Mylabris, is widely used in
traditional Oriental medicine for its potent anticancer properties. However, its
clinical application is restricted due to its high toxicity, particularly towards the
liver. This review provides a concise understanding of the hepatotoxic
mechanisms of CTD and highlights novel therapeutic strategies to mitigate its
toxicity while enhancing its anticancer efficacy. We systematically explore the
molecular mechanisms underlying CTD-induced hepatotoxicity, focusing on the
involvement of apoptotic and autophagic processes in hepatocyte injury. We
further discuss the endogenous and exogenous pathways implicated in CTD-
induced liver damage and potential therapeutic targets. This review also
summarizes the structural modifications of CTD derivatives and their impact on
anticancer activity. Additionally, we delve into the advancements in nanoparticle-
based drug delivery systems that hold promise in overcoming the limitations of
CTD derivatives. By offering valuable insights into the hepatotoxic mechanisms of
CTD and outlining potential avenues for future research, this review contributes to
the ongoing efforts to develop safer and more effective CTD-based therapies.
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1 Introduction

Cancer continues to be the leading cause of death worldwide, significantly impacting
human health, with an estimated 10 million fatalities expected in 2020 (Sung et al., 2021).
Current clinical treatments for tumors, such as surgical resection, chemotherapy, and
radiotherapy, often inflict considerable harm and pain on patients due to side effects
(Nussbaumer et al., 2011). As a result, there is a pressing need for highly effective, targeted
therapies with fewer side effects (Saad, 2022; Staudt et al., 2022; Zhang et al., 2022). Natural
products have proven to be a valuable source for antitumor drug discovery, with
approximately 50% of antitumor drugs in use today being derived directly or indirectly
from plants, animals, and microorganisms (Harvey et al., 2015; Sznarkowska et al., 2017;
Newman, 2020). Promising compounds for tumor treatment include alkaloids, flavonoids,
terpenoids, polyphenols, quinones, and saponins. There has been growing interest in recent
years in the use of toxic traditional Oriental medicine to treat malignant tumors. Long-term
clinical practice in the Asia has shown that toxic traditional Oriental medicine, such as
Mylabris, Aconiti lateralis Radix Praeparata, Strychni semen, and Bufonis venenum, possess
significant antitumor effects. Active ingredients in these toxic compounds, including
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cantharidin (Wang et al., 2021), aconitine (Wang et al., 2020; Luan
et al., 2022), and toadstool (Pan et al., 2019), exhibit unique
pharmacology, offering promising therapeutic options for cancer
treatment despite their toxicity.

Mylabris (Chinese: Banmao), a renowned TCM derived from
the dried bodies of Mylabris phalerata Pallas or Mylabris sichorii
Linnaeus, used for over 2000 years and is included in Sheng Nong’s
Herbal Classic (Commission, 2020). CTD, a mono-terpene
phosphoprotein phosphatase inhibitor, is the primary active
ingredient of Mylabris, primarily used for the topical treatment
of warts (Cotton, 2021; Guenthner et al., 2021). Recent studies have
shown that CTD induces apoptosis in tumor cells, positioning it as a
promising treatment for various malignancies, particularly
hepatocellular carcinoma (Zeng et al., 2020). CTD demonstrates
a unique advantage over first-line chemotherapeutic drugs by
elevating leukocytes and cytokines, thus improving immune
function (Wang, 1989; Florea and Büsselberg, 2011; Shou et al.,
2013). CTD also exerts its antitumor effects by blocking the cell
cycle, inducing apoptosis, and reversing multidrug resistance
through various mechanisms (Zheng et al., 2008). Several
Mylabris-/CTD-based drug formulations are available in the
Chinese market, including Aidi injection, disodium cantharidinate
injection, and compound Mylabris capsules, which have shown
effective anti-tumor effects against liver cancer, lung cancer,
rectal cancer, and malignant lymphoma (Liu et al., 2021; Wang
et al., 2021; Wei et al., 2021; Yang et al., 2022). However, the
therapeutic dose of CTD is very close to its toxic dose, with a
lethal oral dose ranging from 10–60 mg and a median lethal dose
(LD50) of 1.71 mg/kg in mice (Li et al., 2017).

Despite its potential as an antitumor agent (Shaoting et al.,
2023), the low bioavailability, intestinal irritation, and significant
hepatotoxicity of CTD limit its clinical application (Youyou et al.,
2020). The current lack of a comprehensive understanding of CTD
toxicity complicates effective clinical prevention and treatment.
Consequently, developing an efficient delivery system for CTD or
reducing its toxicity through structural modification may provide a
solution. This review aims to summarize the hepatotoxicity
mechanism of CTD and briefly introduce the progress in
developing delivery systems for CTD and its derivatives,
providing a reference for researchers and clinicians.

2 Hepatotoxicity of cantharidin

CTD poisoning has been associated with multi-organ damage,
with acute circulatory failure and acute renal failure as leading
causes of death in affected patients. Following oral administration,
Mylabris initially stimulates the stomach, intestines, and other
digestive organs, resulting in multi-organ damage with
inflammation of the digestive tract, mucosal necrosis, and
hepatocyte damage, including turbidity, steatosis, and necrosis
(Bagatell et al., 1969; Zhang et al., 2020b; He et al., 2022). Toxic
substances such as CTD in Mylabris can cause glomerular
degeneration, tubular epithelial edema, and hemorrhage, leading
to renal impairment and a significant increase in serum blood urea
nitrogen and creatinine levels (Massicot et al., 2005; Cotovio et al.,
2013). At the same time, toxic substances excreted from the kidneys
can stimulate the urinary tract, ultimately causing symptoms such as

urinary urgency, painful urination, and urinary abnormalities like
hematuria and proteinuria. Stimulation of the urethra can also cause
abnormal penile erection (Peng, 2014). Consequently, Mylabris is
used as an aphrodisiac in some parts of the world but is deadly (Diaz
et al., 2020). The absorption of toxic substances can directly damage
capillary endothelial cells, leading to cell gap dilation and increased
vascular permeability, resulting in the extravasation of plasma
components. CTD can also cause turbid swelling of
cardiomyocytes and myocardial hemorrhage (Knapp et al., 1997;
Knapp et al., 1998; Zhang et al., 2020a).

Various degrees of liver injury have been observed in reported
cases of CTD poisoning or death (Zhang et al., 2018). As the primary
organ involved in drug metabolism and detoxification, the liver is
more vulnerable to drug damage than other organs (He et al., 2019).
Studies have shown that the liver is the main target organ of CTD-
induced toxicity (Wu et al., 2015; Zhang J. Y. et al., 2020; Liu et al.,
2020c). Inflammatory cell infiltration, hepatocyte injury,
degeneration, and necrosis are the primary pathological
manifestations of CTD hepatotoxicity (Xu et al., 2013).
Biochemical markers of liver injury, such as bilirubin, aspartate
aminotransferase (AST), alanine aminotransferase (ALT), and
alkaline phosphatase (ALP), were significantly upregulated in
models with varying degrees of liver injury and cases of toxicity.
CTD-mediated hepatotoxicity is mainly associated with
endoplasmic reticulum stress (ERS), autophagy, activation of the
cysteine signaling pathway, mitochondrial dysfunction, and bile acid
cycle (Wu et al., 2015; Zhang J. Y. et al., 2020; Liu et al., 2020c; Liu
et al., 2020; Yu et al., 2020) (Figure 1, Table 1).

2.1 Endoplasmic reticulum stress

The endoplasmic reticulum (ER) is an essential organelle in
hepatocytes, serving as the primary site of drug metabolism and
responsible for proper folding and post-translational modification of
membrane and secreted proteins (Wang and Kaufman, 2016).
Unfavorable internal and external factors, such as drug-induced
toxicity, hypoxia, and nutrient deprivation, can cause ERmisfolding,
unfolded protein accumulation, and calcium ion imbalance (Tabas
and Ron, 2011). To counteract these disruptions, the ER initiates a
signaling cascade called the ERS response, which aims to re-establish
intracellular homeostasis and promote cell survival (Westrate et al.,
2015). The ERS response activates through three transmembrane
proteins: Protein kinase R-like ER kinase (PERK), inositol-requiring
enzyme 1, and activating transcription factor 6 (ATF6). This
response, known as the unfolded protein response, is triggered by
the accumulation of misfolded or unfolded proteins and excessive
calcium release due to membrane leakage (Di Conza and Ho, 2020).
ERS and autophagy-related signaling pathways interact, playing a
crucial role in acute liver injury. Under mild stress, hepatocytes
activate ERS and autophagy mechanisms to protect cells from stress
injury while inhibiting apoptosis. However, when stress levels
increase and persist, apoptotic pathways are activated. Under
severe stress, hepatocytes undergo complete necrosis, leading to
tissue destruction (Liu et al., 2020).

A significant hallmark of ERS pathway-mediated apoptosis is
the activation of CHOP, a member of the CCAAT/enhancer-
binding proteins family encoded by the DDIT3 gene (Gu et al.,
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2017). CHOP can also act as a pro-apoptotic factor, promoting the
expression of pro-apoptotic proteins such as BAK/BAX. Under
normal physiological conditions, CHOP protein expression is
extremely low. However, under various pathological conditions,
including ERS, CHOP expression increases dramatically,
activating apoptosis (Shah and Kumar, 2016; Yang et al., 2020).
Liu et al. (2020) established an in vitro study model using LO2 cells
and found that CTD mediates CHOP protein expression, leading to
cell damage and apoptosis. Continuous treatment of LO2 cells with
low concentrations of CTD activates the ATF6 and PERK pathways,
initiating downstream signaling pathways and continuous
accumulation of CHOP proteins, thereby inducing apoptosis.
High concentrations of CTD (50 μM) inhibit ERS, promoting
autophagy and apoptosis, and inducing toxicity in LO2 cells.
Additionally, ERS causes an imbalance in calcium homeostasis,
allowing calcium ions to escape from the ER to the cytoplasm,
activating calpain and ultimately pro-apoptotic proteins caspase-4/
7/12 (Kurokawa and Kornbluth, 2009; Hsia et al., 2014).

2.2 Autophagy

Autophagy is a conserved catabolic process in eukaryotic cells
that maintains intracellular homeostasis and prevents various
diseases (White, 2015). Although nutritional deficiencies typically
activate autophagy, it is also associated with numerous physiological
and pathological processes, including development, differentiation,
neurodegenerative diseases, stress, infection, and cancer (Codogno
et al., 2011). Induction of autophagy requires a class III PI3K
complex containing hVps34, Beclin-1, p150, and Atg14-like
proteins (Papinski and Kraft, 2014; Schneider and Cuervo, 2014).
Atg genes regulate autophagosome formation through the Atg12-
Atg5 and LC3-II complexes. Atg12 binds to Atg5 via a ubiquitin-like
reaction requiring Atg7 and Atg10 (corresponding to E1 and E2-like
enzymes, respectively). The Atg12-Atg5 complex non-covalently
interacts with Atg16, forming a larger complex. Atg4 protease
cleaves LC3/Atg8 at the carboxyl terminus, producing
cytoplasmic LC3-I. LC3-I then binds to
phosphatidylethanolamine through a ubiquitin-like reaction
requiring Atg7 and Atg3 (corresponding to E1 and E2-like
enzymes, respectively). The lipidated form of LC3, also known as
LC3-II, attaches to the autophagosome membrane (Papinski and
Kraft, 2014). Autophagy and apoptosis can be positively or
negatively linked, with numerous interactions between the two
processes. Bcl-2 inhibits Beclin-1-dependent autophagy,
functioning as both a pro-survival and anti-autophagy regulatory
molecule. Several pro-apoptotic signals, such as TNF, TRAIL, and
FADD, can also induce autophagy. Liu et al. (2020) reported that
treating LO2 cells with high concentrations of CTD in vitro
significantly upregulated the expression of LC3, Beclin-1, Atg3,
Atg4A, Atg4B, and Atg7, proteins associated with activated
autophagy.

2.3 Caspase

Caspases, a group of cysteine proteases, play a critical and
synergistic role in apoptotic signaling cascades. These enzymes can

be activated via both exogenous and endogenous apoptotic
pathways (Van Opdenbosch and Lamkanfi, 2019; Ketelut-
Carneiro and Fitzgerald, 2022). Apoptosis is triggered by the
activation of death receptors, such as Fas, TNFαR, DR3, DR4,
and DR5, upon binding to their respective ligands. DNA damage,
Ca2+ homeostatic imbalance, and ERS can also initiate apoptosis
(Chao et al., 2022). Upon activation of pro-apoptotic factor
receptors, caspases cleave and activate downstream effector
caspases, including caspase-3, -6, and -7 (Swanton et al., 1999).
Fas ligand binding results in Fas trimerization, which recruits the
initiator caspase-8 through the adaptor protein FADD. Caspase-8
then undergoes oligomerization and autocatalytic activation
(Pirnia et al., 2002). Subsequently, caspase-8 cleaves BID into
truncated BID (tBID), which disrupts the outer mitochondrial
membrane (Kaufmann et al., 2012). This disruption leads to the
release of the pro-apoptotic factor cytochrome c (Cyto C), a crucial
component for pro-caspase-9 activation (Kantari and Walczak,
2011). Cyto C, released from the membrane gap, binds to APAF1
(apoptosis protease activator-1), which recruits and activates
caspase-9, ultimately leading to caspase-3 activation (Srinivasula
et al., 1998; Pirnia et al., 2002). The activation of caspase-3 signifies
the irreversible phase of apoptosis. During apoptosis, pro-
apoptotic factors such as AIF, SMAC (mitochondrial-derived
caspase activator), and DIABLO are released from the
mitochondria alongside Cyto C. These factors promote caspase
activation by inhibiting IAP (inhibitor of apoptosis) family
proteins (Kaufmann et al., 2012). ERS induces Ca2+-mediated
activation of caspase-12. TNF-α interaction with TNFαR
activates the NF-κB pathways through NIK/IKKα/β/γ. The
activation of NF-κB triggers the expression of pro-survival
genes, including Bcl-2 and FLIP, which directly inhibit caspase-
8 activation (Swanton et al., 1999; Pinkoski et al., 2000; Pirnia et al.,
2002). According to Yu et al. (2020), male Sprague-Dawley rats
exposed to low (1.34 mg/kg) and high (2.67 mg/kg) doses of CTD
displayed increased expression levels of TNF-α protein and IKK-α
genes as CTD doses increased. Wu et al. (2015) observed that
CTD-induced chronic liver injury was associated with
inflammatory cell infiltration and abnormal upregulation of
TNF-α. Inhibition of the Toll-like receptor 4/NF-κB pathway
attenuated CTD-induced hepatotoxicity.

2.4 Mitochondrial dysfunction

Mitochondria function as the center of cellular energy
metabolism and play vital roles in cellular processes such as cell
proliferation, genetic information transfer, immune regulation, cell
cycle control, and apoptosis. Additionally, they are a major site for
reactive oxygen species (ROS) production. Damage or dysfunction
of mitochondria leads to metabolic abnormalities and functional
organ decline in the body (Rustin et al., 1994), making it a potential
contributor to liver toxicity. For example, in rats treated with CTD,
liver mitochondria exhibited swelling and disappearance of cristae,
potentially due to increased production of ROS free radicals causing
organ dysfunction (Blajszczak and Bonini, 2017). Furthermore, the
activation of BAK and BAX, two crucial apoptosis effectors, results
in mitochondrial outer membrane permeabilization and Cyto C
release (Bock and Tait, 2020).
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2.5 Bile acid cycle

Glutathione plays a critical role in defending against oxidative
damage and promoting integrated detoxification by scavenging

nitrogen radicals and ROS, as well as reducing hydrogen
peroxide. A decrease in glutathione levels is considered a
potential early activation signal for apoptosis (Calabrese et al.,
2017). Studies have demonstrated that CTD interferes with

TABLE 1 The mechanism of CTD’s hepatotoxicity.

Type of
study

Cell lines and/or animal
models

Concentration and
duration

The specifific molecular mechanisms References

In vivo Male albino rats of the Simonson strain 10 mg/275 g for 35 min Cell membrane, endoplasmic reticulum and
mitochondrial damage in hepatocytes

Bagatell et al.
(1969)

In vivo Male Swiss-Webster mice 1 mg, 3 mg and 10 mg/kg for
30 min

- Graziano et al.
(1987)

In vivo Mice 10 mg/kg Liver enlargement and congestion; increased hepatic
glycogenolysis

Graziano and
Casida (1987)

In vitro Partially purified PP2A (heterotrimeric
complex ABC type) isolated from mouse
brain

0.001, 0.01, 0.1, 1, 10, 100,
1,000 μΜ for 10 min

Inhibition of PP2A McCluskey et al.
(1996)

In vitro Normal Chang liver cells; Hep 3B cells 0.5–25 μΜ for 36 h Presence of lipid droplets; swelling of the mitochondria;
accumulation of glycogen particles

Wang et al. (2000)

In vivo Male Sprague–Dawley rats 0.5 mL/kg (cantharidinate
injection) for 7 d

Inhibition of CYP2D6 and CYP3A4 Zhou et al. (2015)

In vivo Kun Ming (KM) mice 1.5 mg/kg for 14 d Deformed liver lobule and sinus hepaticus; deposited
cytonecrosis, and inflammatory infiltration; elevated
serum concentrations of glutamic-pyruvic transaminase
(GPT) and glutamic oxaloacetic transaminase (GOT);
upregulation of intrahepatic TNF-α, NF-κB, p-IκB, and
toll-like receptor 4

Wu et al. (2015)

In vivo Kun Ming (KM) mice; Human liver
LO2 cells

0.5 mg/kg and 1.5 mg/kg for
14 days; 2 μΜ and 4 μΜ

Hepatocytes swelling, fine cytoplasmic vacuoles and
necrosis; over-expression of caspase-3, caspase-8 and
caspase-9 proteins in mice liver tissue and LO2 cells;
increased levels of oxidized glutathione and/or
glutathione in mice liver tissue

Zhu et al. (2019)

In vitro Human liver LO2 cells 6.25 μΜ and 25 μΜ for 12 h Elevated levels of ALT, AST and lactate
dehydrogenase (LDH)

Liu et al. (2020c)

In vitro Human liver LO2 cells 6.25, 12.5, 24, 50, and 100 μM
for 24 h

Increase ALT, AST, LDH, and malondialdehyde levels;
reduce glutathione peroxidase and superoxide dismutase
activities; low concentrations of CTD induced the
expressions of ERS-related proteins (GRP78, ATF4,
PERK, p-PERK, XBP1–1s, and CHOP), but high
concentrations of CTD inhibited their expressions; high
concentrations of CTD activated autophagy (LC3, Beclin-
1, Atg3, Atg4A, Atg4B, and Atg7), induced the
expressions of apoptotic proteins (Bax/Bcl-2 and
caspase-3)

Liu et al. (2020)

In vivo Male Sprague-Dawley rats 1.34 mg/kg and
2.67 mg/kg 24 h

Elevated levels of TNF-α, IKK-α and caspase-3; raised
IKK-α mRNA and caspase-3 mRNA levels; the ratio of
Bcl-2/Bax increased in the low-dose group but decreased
in the high-dose group

Yu et al. (2020)

In vivo Sprague–Dawley rats 0.75 mg/kg and 1.5 mg/kg for
15 days

Increased liver weight; elevated liver index; sinusoidal
cellularity was increased, the nuclei of the HCs were
densely stained and varied in size, with the HCs exhibiting
punctate necrosis, and vacuole change, partial cell edema,
and disordered arrangement of HCs; increase ALT, AST,
and total bilirubin (T-BIL) levels

Zhang J. Y. et al.
(2020)

In vivo Sprague–Dawley rats 1 mg/kg for 28 days Increased levels of ALT, AST, and T-BIL; hyocholic acid
(HCA), tauroursodeoxycholic acid (TUDCA) and tauro-
β-muricholic acid (TβMCA) levels increased

Cheng W. et al.
(2021)

In vivo Male Sprague–Dawley rats 1 mg/kg for 14 days Liver cell swelling or necrosis, and inflammatory cell
infiltration, increase ALT, AST, ALP and LDH levels,
upregulates the expression of lysoPE, lysoPC and
triglyceride

Huang et al. (2021)
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TABLE 2 Potential anticancer effects and related mechanisms of CTD.

Type of
study

Cell lines and/or animal
models

Concentration and duration
and/or inhibition IC50 (μM)

Anticancer effects References

In vitro A2780, ADDP, 143B, HCT116 and
HT29 cell lines

10 ± 2, 11 ± 1.2, 10 ± 1.2, 9 ± 1 and
6.4 ± 0.7 μM for 72 h

↓AA2P McCluskey et al. (2000a)

In vitro L1210, HL60, A2780, ADDP, 143B,
HCT116, HT29, WiDr and
SW480 cell lines

15 ± 2, 10 ± 2, 10 ± 2, 11 ± 1, 10 ± 1,
9 ± 1.1, 6.5 ± 0.5, 6.1 ± 0.5, 13 ± 5 and
7.8 ± 1 μM for 72 h

↑Cell cycle G2/M arrest, ↑apoptosis Sakoff et al. (2002), McCluskey
et al. (2003a)

In vitro U937 cell lines 5, 10, 20 and 40 μM for 24 h ↓Cell viability, ↑p38, ↑caspase-3,
↑JNK MAP pathways

Huh et al. (2004)

In vitro HL-60 cell lines 25 μM for 24 h ↓DNA replication, ↓DNA repair,
↓energy metabolism, ↑ATL-derived
PMA-responsive peptide (Noxa),
↑Bcl-10, ↑TNF-α and ↑TGF-βIIR

Zhang et al. (2004)

In vitro CCRF-CEM cell lines,
lymphoblastoid TK6 cell lines with
wild-type p53 and lymphoblastic
WTK1 cells with a
p53Ile273 mutation cell lines

0.625, 1.25, 2.5 and 5 μM for 24 h ↑Oxidative stress, ↑p53-dependent
apoptosis, ↑DNA strand breaks,
and ↑ROS

Efferth et al. (2005)

In vitro T-24, RT4 and HT-29 cells 1.57, 3.13, 6.25, 12.5 and 25 μM
for 24 h

↓Cell viability, ↑p38, ↑caspase-3,
↑caspase-7, ↑caspase-9, ↑Cell cycle
G2/M arrest, ↑p21Cip1/Waf1,
↓PARP, ↓cyclin A/B1, ↓CDK1, ↑COX
2, ↑TNF-α, ↑PEG2, ↑phospho-eIF2α
and ↑Grp78

Huan et al. (2006), Su et al. (2015)

In vitro KB-3–1, MGC803, HepG3, HL-60
and Glc82 cell lines

2.7, 2.8 ± 0.6, 19.1, 2.7 and 1.2 μM
for 72 h

↓Cell viability, ↑TNF-α and ↓ AA2P Shan et al. (2006)

In vitro HEK293T, LO2, HepG2/ADM and
HepG2 cell lines

0.5, 1 and 2 μg/mL ↓MDR1, ↓P-glycoprotei and ↓mRNA
transcription

Zheng et al. (2008)

In vitro U266, RPMI-8226 and IM9 cells
(Human myeloma cell lines)

5 μM for 24 h ↓JAK/STAT pathway, ↑apoptosis,
↓bcl-xL, ↑caspase-3, ↑caspase–8 and
↑caspase–9

Sagawa et al. (2008)

In vitro HepG2, SK-Hep1 and Rat hepatocyte
cell lines

11, 34 and 21 μM for 24 h ↓Cell viability Yeh et al. (2010)

In vitro PANC-1, CFPAC-1, BxPC-3 and
Capan-1 cell lines

2, 4, 6, 8 and 10 μM for 24,
48 and 72 h

↓Cell viability, ↑apoptosis, ↑Oxidative
stress, ↑cell cycle G2/M arrest, ↑TNF-
α, ↑caspase-8 and ↑caspase-9

Li et al. (2010)

In vitro TSGH 8301 cells 5, 10, 15, 20 and 25 μM for 24 h ↑Apoptosis, ↓mitochondrial
membrane potential (Δψm), ↑cell
cycle G0/G1 arrest, ↑caspase-3,
↑caspase-8, ↑caspase-9, ↑ROS,
↓cyclin E, ↓Cdc25c, ↑Endo G, ↑TNF-
α, ↑AIF, ↑p21, ↑p-p53, ↓Bcl-2, ↑Bax
and ↑PARP

Kuo et al. (2010)

In vitro HeLa, ATCC CRL 5946, ATCC CRL
5915, ATCC CRL 1469 and ATCC
CRL 1687 cell lines

2 and 5 μM for 24 h at pH 7.7 or 6.7 ↓JAK/STAT pathway and ↑apoptosis Fukamachi et al. (2010)

In vitro Colo 205 cell lines 10, 20 and 40 µM for 24, 48 and 72 h ↑Cell cycle G2/M arrest, ↑ROS,
↑apoptosis, ↓CDK1, ↓Cyclin A,
↓Cyclin B, ↑CHK1, ↑p21 and
↓mitochondrial membrane potential
(Δψm), ↓Bcl-2, ↑Fas/CD95, ↑caspase-
3, ↑Cyto C and ↑Bax

Huang et al. (2011)

In vitro PANC-1 and CFPAC-1cell lines 5, 10 and 20 µM for 24, 48 and 72 h ↓PP2A/IKKα/IκBα/p65 NF-κB
pathway, ↓Wnt/β-catenin pathway,
↑TNF-α, ↑TRAILR1, ↑TRAILR2,
↑degradation of MMP2 mRNA,
↓ERK, ↓JNK, ↓PKC and ↓NF-κB

Li et al. (2011), Wu et al. (2014),
Shen et al. (2015), Wang et al.
(2015)

In vivo Inbred Swiss albino mice by serial
intraperitoneal (i.p.) transplantations

0.5, 1, 1.5 and 2 mg/kg for 5 d Verma and Prasad, 2012 (2013)

(Continued on following page)
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TABLE 2 (Continued) Potential anticancer effects and related mechanisms of CTD.

Type of
study

Cell lines and/or animal
models

Concentration and duration
and/or inhibition IC50 (μM)

Anticancer effects References

of 1 × 106 viable EAC (Ehrlich ascites
carcinoma) cells

↓Proliferation, ↑apoptosis, ↑necrosis,
↑autophagy, ↑caspase-3/7, ↑caspase-
9, ↓LDH activity

In vitro MCF-7 cells 1.25, 2.5, 5, 10 and 20 µM for 24,
48 and 72 h

↑Apoptosis, ↓α2 integrin, ↓adhesion,
↓protein kinase C pathway and E2F1/
MCM7-miR-106b-93/p21-PTEN
signaling

Shou et al. (2013), Zhang and Yan
(2015)

In vivo Dalton’s lymphoma (DL) bearing
mice

0.5 mg/kg for 5 d ↑Apoptosis, ↑necrosis,
↓mitochondrial membrane potential
(Δψm), ↓glutathione, ↓succinate
dehydrogenase activity, ↑caspase-3,
↑caspase-9 and ↑Cyto C

Prasad and Verma (2013)

In vitro TSGH-8301 cells 1 and 2.5 µM for 24 and 48 h ↓Proliferation, ↑DNA damage,
↑apoptosis, ↓Matrix
Metalloproteinase (MMP)-2/-
9 Signaling, ↓p-p38 and ↓p-JNK1/2

Huang et al. (2013), Kuo et al.
(2015)

In vitro HCT-116, A549, PC-3and DU-145
cell lines

1, 5, 10 and 30 µM for 24 h ↑Apoptosis, ↓heat shock protein 70,
↓Bcl-2-associated Athanogene
Domain 3, ↓Bcl-2, ↓Bcl-xL, and
↓Mcl-1

Kim et al. (2013)

In vitro NCI-H460 cells 2.5, 5, 10, 15 and 30 µM for 48 h ↑DNA damage, ↑apoptosis, ↓4-3-
3 proteins sigma (14-3-3r), ↓DNA-
dependent serine/threonine protein
kinase, ↓O6methylguanine-DNA
methyltransferase and ↓mediator of
DNA damage checkpoint protein 1

Hsia et al. (2015a), Hsia et al.
(2015b)

In vitro CHO-K1, UMSCC23, UMSCC10A
and UMSCC10B cells

0–33 µM for 4, 8 and 12 h ↑ERS, ↑unfolded protein response Xi et al. (2015)

In vitro SGC-7901 and BGC-823 cells 2.5, 5, 10, 20, 40 and 80 µM for 24,
48 and 72 h

↑Cell cycle G2/M arrest, ↑caspase-7,
↑caspase-8, ↑caspase-9, ↑p21,
↓CDK1, ↓cyclin A, ↓cyclin B, ↓Bcl-2
and ↓Bid

Zhang et al. (2014)

In vitro A375.S2 cells 1, 2, 3, 4 and 5 µM for 48 h ↑Cell cycle G2/M arrest, ↓Cdc25c,
↓Cyclin A, ↓PI3K/NF-ĸB Signaling
Pathways, ↓ERK1/2, ↓PI3K, ↓FAK,
↓MMP-2, -9, ↓COX-2, ↓NF-ĸB p65,
↓TIMP 1, ↓TIMP 2, ↓VEFG, ↓uPA,
↓Rho A, ↓GRB2, ↓ROCK-1, ↓Ras,
↑p38, ↑JNK, ↑p-c-jun and ↑PKC

Hsiao et al. (2014), Ji et al. (2015),
Mu and Sun (2018)

In vitro H460 cells 5, 7.5, 10, 15 and 30 µM for 24 h ↓Cell viability, ↑ROS, ↑Ca2+-
productions, ↓mitochondrial
membrane potential (Δψm),
↑GRP78, ↑IRE1α, ↑IRE1β, ↑TNF-α,
↑ATF6α, ↑calpain 2, ↑XBP-1,
↓calpain 1, ↑Cyto C, ↑Bax, ↑caspase-
3, ↑caspase-4, ↑caspase-8, ↑Cyto C,
↑Bax and ↑AIF

Hsia et al. (2014)

In vitro QBC939 cells 2, 6 and 10 µM for 24 h ↑Apoptosis, ↑ROS and ↑IKKα/IκBα/
NF-κB pathway

Zhou et al. (2018)

In vitro TCA8113 cells 10, 20 and 40 µM for 48 h ↓Proliferation, ↑apoptosis, ↓miR-214,
↑p53, ↓Bcl2/Bax

Tian et al. (2015)

In vitro MG-63, MNNG/HOS, U-2 OS, 143B
and Saos-2 cells

0.5, 1, 2, 3 and 4 μg/mL for
24 and 48 h

↓Proliferation, ↑apoptosis, ↑Bax,
↓LEF1, ↑PARP, ↓Bcl-2, ↓p-Akt, ↓p-
Cdc2, ↑DKK3, ↓miR-214-3p and ↓p-
GSK-3β

Feng S. M. et al. (2018), Hu et al.
(2021)

In vitro HepG2, MHCC-97H, Hep3B,
MHCC-97L, SMMC-7721 and Huh-7
cells

↓EphB4/PI3K/Akt signaling, ↓Bcl-2,
↓Mcl-1, ↑Bad, ↑Bax, ↑Bak, ↑TNF-α,
↑Cyto C, ↑caspase-7, ↑caspase −9 and
↑caspase −3

Zhu M. et al. (2020)
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several biometabolic processes in mouse liver, causing significant
disruptions in glutathione metabolism, taurine and hypotaurine
metabolism, and the interconversion of pentose and glucuronide
(Zhu et al., 2019). Specifically, oxidized glutathione, glutathione, 3-
sulfoalanine, and deoxycholic acid 3-glucosylate are involved in
three significantly disordered metabolic pathways (Zhu et al., 2019).

The bile acid cycle may play a crucial role in CTD-mediated
hepatotoxicity, as disruption of BA homeostasis can lead to the
accumulation of toxic BAs, resulting in cholestasis, bile duct
infarction, liver fibrosis, and cirrhosis (Yang et al., 2017). Several
studies have reported that BAs play an essential role in the
hepatotoxicity of various drugs. For example, impaired BA
homeostasis has been associated with milliporeline-induced
hepatotoxicity and increased intracellular bile acid levels (Xiong
et al., 2014). Taurine β-muricholic acid (TβMCA), taurocholic acid,
and taurodeoxycholic acid (TDCA) are potential biomarkers of
oleanolic acid-induced hepatotoxicity (Feng et al., 2020). Cheng
W. et al. (2021) demonstrated that TβMCA levels significantly
increased in rat liver following CTD (1.0 mg/kg) intervention.
TβMCA is a competitive and reversible antagonist of the ligand-
activated farnesoid X receptor, and elevated TβMCA levels can
inhibit farnesoid X receptor activation and disrupt BA homeostasis.
HCA, TUDCA, and TβMCA can serve as biomarkers for CTD-
induced hepatotoxicity in rats (Cheng W. et al., 2021). However, the

specific mechanisms underlying the roles of HCA, TUDCA, and
TβMCA in CTD-induced hepatotoxicity warrant further
investigation.

2.6 Other signaling pathway

In addition to causing severe hepatotoxicity, research on CTD
poisoning has revealed that CTD can induce cardiotoxicity and
nephrotoxicity (Zhang et al., 2018). CTD has been demonstrated to
induce non-endothelium-dependent vasoconstriction in bovine
coronary artery rings in a time- and concentration-dependent
manner (Knapp et al., 1997; Knapp et al., 1998). Furthermore,
exposure of erythrocytes to CTD results in erythrocyte shrinkage
and membrane disorders, eventually leading to suicidal erythrocyte
death (Alzoubi et al., 2015). In vitro exposure of HK-2 cells to CTD
elevates levels of intracellular pro-apoptotic protein caspase-3
expression and the BAX/Bcl-2 ratio (He et al., 2020). CTD also
activates the ERS-dependent PERK/CHOP pathway, inducing
macroautophagy and apoptosis, which contributes to toxic effects
on rat and HK-2 cells (He et al., 2022). Results from in vivo and
in vitro experiments have shown that the expression levels of ERS
regulatory genes, such as PERK, eIF2α, CHOP, and ATF4, are
elevated alongside pro-apoptotic proteins, including GRP78,

FIGURE 1
Summary of the mechanism of hepatotoxicity of cantharidin. In hepatocytes, cantharidin inhibits proliferation, promotes apoptosis and autophagy,
and exacerbates the inflammatory response. These effects are associated with the inhibition of protein phosphatase (PP) 1, PP2A, Toll-like receptor (TIL)-
4, nuclear factor-κB (NF-κB), ERK, and DFF45, and the promotion of the tumor necrosis factor (TNF)-α, FASL, ROS, caspase-4, caspase-6, caspase-8,
caspase-9, caspase-12, protein kinase R-like ER kinase (PERK), inositol-requiring enzyme 1, transcription factor 6 (ATF6), BID, BAK, BAX, Cyto C, LC3-
I, p150, Atg7, P13K Ⅲ, eIF2α, ATF-4, and CCAAT/enhancer-binding proteins-homologous protein (CHOP) pathways.
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ATF4, LC3, Beclin-1, Atg3, Atg7, caspase-3, and the BAX/Bcl-2 ratio
(He et al., 2022). Similar to CTD-mediated hepatotoxicity, CTD
induces autophagy and apoptosis through ERS, leading to
cardiotoxicity and nephrotoxicity.

3 Anticancer activity of cantharidin

Numerous clinical and experimental studies have evidenced the
potent and wide-ranging antitumor properties of CTD on diverse
cancer cell types. A comprehensive overview of these studies is
provided in Table 2. These include investigations into cancers such
as leukemia (Huh et al., 2004; Zhang et al., 2004; Dorn et al., 2009;
Sun et al., 2016), bladder cancer (Huan et al., 2006; Kuo et al., 2010;
Huang et al., 2013), rectal cancer (Huang et al., 2011; Han et al.,
2014; Sheng et al., 2015), Ehrlich ascites cancer (Verma and Prasad,
2012; 2013), Dalton’s lymphoma (Prasad and Verma, 2013), oral
cancer (Xi et al., 2015), pancreatic cancer (Wu et al., 2014; Xie et al.,
2015), lung cancer (Hsia et al., 2014; Hsia et al., 2015a; Hsia et al.,
2015b; Hsia et al., 2016), gastric cancer (Zhang et al., 2014), breast
cancer (Zhang and Yan, 2015; Gu et al., 2017), renal cell carcinoma
(Ren et al., 2016), skin cancer (Li et al., 2017), bile duct cancer (Zhou
et al., 2018), and notably, liver cancer (Lu et al., 2014; Le et al., 2016;
Zhang et al., 2017; Ma et al., 2018).

CTD primarily exerts its antitumor functions via multiple
pathways, which include the inhibition of cell growth and
proliferation, restriction of migration and invasion, along with
the induction of apoptosis and autophagy. Succinctly, CTD
obstructs the cell cycle, curbs cell migration, and triggers
apoptosis in tumor cells through the regulation of an array of
factors. These factors comprise apoptotic proteins (e.g., caspase-
3/7/8, BAX, Bcl-2, Bcl-10, Fas/FasL, Beclin-1, Atg3/7), transcription
factors (e.g., PPARα, NF-κB, Nrf2, STAT3), enzymes (e.g., AST,
COX-2, SOD, eNOS), protein kinases (e.g., ERK, JAK2, p38, p53,
P13K/Akt, mTOR), growth factors (e.g., TGF-β1, VEGAF, PDGF),
and inflammatory cytokines (e.g., TNF-α, IL-1, IL-6, MCP-1). For a
more in-depth exploration of the specific signaling pathways
involved, a review of the antitumor effects of norcantharidin (a
derivative of CTD) by Zhou et al. (2020) is recommended.

4 Potential solutions to cantharidin-
mediated toxicity

Given the potent anticancer properties of CTD, alongside its
severe side effects, it is crucial to develop approaches that reduce
toxicity while preserving its activity. Although CTD demonstrates
potent inhibition of protein phosphatase 2A and cytotoxic activity in

FIGURE 2
Structure of CTD and its derivatives.
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cancer cells, its preclinical development might be hindered by its
toxicity. To tackle this issue, chemists have synthesized various CTD
derivatives (Figure 2) and developed several nano-precision delivery
systems, some of which have shown promising antitumor potential.

4.1 Structural modification of cantharidin

Cantharidin is a natural protein phosphatase monoterpene
anhydride inhibitor (Ren and Kinghorn, 2021), primarily composed
of a six-membered carbon ring with an oxygen bridge and a five-
membered anhydride ring. The activity of CTD is highly dependent on
retaining the 1-O group (McCluskey et al., 1996; McCluskey et al.,
2003b; Baba et al., 2005; Dong et al., 2007; Deng et al., 2013). Although
the 1-O of CTD can be replaced by N, S, or -CH2- using the isostere
principle, structural modification at the 1-position may significantly
reduce or even eliminate the pharmacological activity of CTD
derivatives. It is speculated that the 1-O can form a hydrogen bond
with the receptor, facilitating proper binding between CTD and the
receptor. Consequently, CTD derivatives with other atoms or groups
replacing the oxygen atom might not bind effectively to the receptor,
resulting in a loss of activity (Dong et al., 2007). Studies suggest that
eliminating the bridging ether oxygen on the ring can decrease
cytotoxicity (Yeh et al., 2010). Moreover, the presence of 2-C and
5-C substituents eliminates the inhibitory activity of CTD derivatives
on all protein phosphatase 2A, even those with minimal steric
hindrance (McCluskey et al., 1996; McCluskey et al., 2000b).
Substitutions at 3-C and 4-C also significantly impact the toxicity
and efficacy of CTD. For instance, norcantharidin, a derivative of CTD
with comparable anti-tumor efficacy but fewer side effects than CTD, is

primarily used for hepatocellular carcinoma treatment. It retains
functions of raising leukocytes, protecting liver cells, and regulating
immune function (Zhou et al., 2020). Substitutions at 6-C and 7-C
increase the molecule’s spatial resistance, leading to decreased activity
or selectivity. The transformation into carbon-carbon double bonds is
an effective means of modification (Tatlock et al., 1997; Dong et al.,
2007).

Modifying the CTD anhydride site has proven effective in
enhancing its anti-hepatocarcinogenic activity. Cantharidic acid, a
binary carboxylic acid formed by the ring-opening of CTD’s five-
membered carboxylic anhydride ring, exhibits the same inhibitory
activity against PPA as CTD (McCluskey et al., 2000b). Carboxylate
derivatives of CTD are significant modifications, and sodium
cantharidinate, which has been clinically applied, has a
substantially superior antitumor effect compared to CTD, with
lower toxicity and irritation (McCluskey et al., 2000b; Feng I. C.
et al., 2018; Ji and He, 2019). The inhibitory activities of carboxylate
derivatives of CTD against PPA1, PPA2A, and PPA2B vary
depending on their structures. It has been reported that an
amination reaction at the CTD anhydride site or the introduction
of basic groups into the structure can effectively improve its anti-
hepatocarcinoma activity (Dong et al., 2007; Wang et al., 2018; Zhou
et al., 2020). The activity of imide derivatives varies significantly
depending on the substituents attached to the nitrogen atom.

4.2 Cantharidin targeted delivery system

In clinical practice, CTD is typically administered at a dose range
of 0.5–4 mg/d (Dang and Zhu, 2013). To address issues related to

TABLE 3 Summary of CTD and its derivatives targeted delivery systems.

Dosage form Drugs Excipients Advantage References

Nanoparticles CTD Folic acid Targeting, low toxicity Sheng et al.
(2015)

Conjugates Norcantharidin Carboxymethyl chitosan Hepatic-targeting, long retention time in the blood
circulation, low cardiac and renal toxicity

Chi et al. (2019)

Solid lipid
nanoparticles

CTD Glyceryl monostearate Highly orally bioavailable, hepatic-targeting, slow-
release in vivo, low toxicity

Dang and Zhu
(2013)

Nanoparticles CTD, cisplatin,
artesunate

Methoxy poly (ethylene glycol)5000-b-poly
(lactide-co-glycolide)7600 (mPEG5000-PLGA7600)

Synergistic effect, targeting, biosecurity, low toxicity Xie et al. (2021)

Nano-lipid carrier CTD Hyaluronic acid (HA)-decorated copolymer
(mPEG-NH2), hyaluronic acid

Tumor-targeting, slow-release in vivo, high
bioavailability, low toxicity

Sun et al. (2021)

Nano-lipid carrier CTD 3-succinyl-30-stearyl glycyrrhetinic acid Hepatic-targeting, biosecurity, high bioavailability Zhu K. et al.
(2020)

Nanoparticles Norcantharidin Galactosylated chitosan Hepatic-targeting, sustained and pH-sensitive
release, strong cytotoxicity against hepatocellular
carcinoma cells

Wang et al.
(2010)

Nanoparticles Norcantharidin Soybean phosphatidylcholine Hepatic-targeting, pH-sensitive, high bioavailability Qiao-Ling et al.
(2012)

Metal-organic
framework
nanoparticle

CTD Polypyrrole, macrophage cell membranes,
FeCl3·6H2O, Polyvinylpyrrolidone, MIL-100

Photothermal therapy, hepatic-targeting, pH-
sensitive

Cheng W. et al.
(2021)

Biomimetic
nanoparticles

CTD Polyvinylpyrrolidone, Na2TeO3 Photothermal therapy, homologous targeting, good
biocompatibility

Guo et al. (2020)
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membrane irritation, in vivo release control, and limited
bioavailability, it is essential to develop an effective drug delivery
system. Nanoparticle-based drug delivery systems show promise in
overcoming the limitations of conventional anticancer drug therapy.
Sheng et al. developed folic acid-targeted nanoparticles loaded with
CTD, which effectively killed colorectal cancer cells via a PP2A-
dependent mechanism (Sheng et al., 2015). Chi et al. (2019) reported
on norcantharidin-conjugated carboxymethyl chitosan conjugates
for hepatocellular carcinoma treatment, which significantly
inhibited the proliferation and migration of BEL-7402 cells. Dang
and Zhu (2013) developed CTD-loaded solid lipid nanoparticles
(CA-SLNs) with an oral bioavailability and sustained release profile
after oral administration. Xie et al. (2021) designed a TriPt prodrug,
combining cisplatin, artesunate, and CTD in equimolar ratios. TriPt
NPs exhibited substantial antitumor effects in 7404DDP tumor-
bearing mice and significantly improved drug efficacy compared to
free drug combination therapy. Sun et al. (2021) developed a
hepatic-targeting hyaluronic acid-mPEG-modified CTD
nanostructured liposome (HA-mPEG-CTD-NLC) that inhibited
hepatoma carcinoma cell growth and prolonged survival in
tumor-bearing mice. Zhu K. et al. (2020) developed a novel

CTD-loaded nanoliposome 18-GA-Suc-CTD-Lip, modified with
3-succinyl-30-stearyl glycyrrhetinic acid, which showed high
toxicity against hepatocellular carcinoma cells. Cheng X. et al.
(2021) developed a CTD-loaded biomimetic metal-organic
framework nanoparticle cascade, PPy-CTD@MIL-100@MPCM
nanoparticles (PCMM NPs), which accumulated in tumor tissue
through encapsulated macrophage cell membranes (MPCMs)
targeting inflamed tissue. This study suggested that PCMM NPs
could serve as a combined treatment platform to enhance the Fenton
reaction-based amplified photothermal therapy. Finally, Guo et al.
(2020) developed a cell membrane-coated biomimetic nanoparticle
(m-CTD@Te) with strong homologous targeting capabilities that
effectively suppressed cancer through synergistic treatment.
Encapsulated Te in m-CTD@Te triggered PDT and PPT by NIR
laser irradiation, and PTT further triggered the release of CTD. Due
to the outer cell membrane coating of m-CTD@Te, these
nanoparticles exhibited good biocompatibility with healthy cells.

In brief, the advanced delivery systems discussed above have
shown potential to reduce the toxicity of CTD and their derivatives
by precise delivery to target cells, avoiding the potential side effects
(Table 3). However, these systems do not fully meet the high clinical

TABLE 4 Marketed products containing Mylabris/Cantharidin or its related bioactive ingredients.

Marketed product Drug
dosage
form

Composition Indications Specification Usage References

Aidi Injection Injection Mylabris, Panax ginseng, Astragali
Radix, Acanthopanax senticosus

For primary liver cancer, lung
cancer, rectal cancer, etc.

10 mL each Intravenous
drip

An et al. (2022)

Delisheng Injection Injection Mylabris, Red ginseng, Astragali
Radix, Bufonis Venenum

For middle and advanced
primary liver cancer with Qi
deficiency and blood stasis
syndrome

10 mL each Intravenous
drip

Dong et al.
(2014)

Demethylcantharidin
Tablets

Tablet Norcantharidin For hepatocellular carcinoma,
esophageal cancer, gastric
cancer, cardia cancer,
leukopenia, hepatitis, cirrhosis,
and hepatitis B virus carriers

5–15 mg Oral Zhou et al.
(2020)

Ganning Tablets Tablet Mylabris, Arnebiae Radix,
Glutinous rice

For treating a variety of acute
and chronic hepatitis, especially
abnormal liver function and
hepatitis B patients with positive
surface antigen, can prevent
hepatitis B cancer

Each tablet
weighs 0.3 g

Oral Deng et al.
(2011)

Disodium Cantharidinate
Injection

Injection Disodium Cantharidinate For primary liver cancer, etc. 0.1 mg/2 mL Intravenous
drip

Fan (2010)

0.25 mg/5 mL

0.5 mg/10 mL

Disdium Cantharidinate
and Vitamin B6 Injection

Injection Disodium Cantharidinate and
Vitamin B6

For liver cancer, lung cancer and
leukopenia. It can also be used
for hepatitis, cirrhosis and
hepatitis B virus carriers

0.05 mg/5 mL Intravenous
drip

Zhu K. et al.
(2020)

0.1 mg/10 mL

Compound Cantharidin
Capsule

Capsule Mylabris, Panax ginseng For primary liver cancer, lung
cancer, rectal cancer, malignant
lymphoma, gynecological
malignant tumor, etc.

0.25 g/capsule Oral He et al. (2021)

Astragali Radix, Acanthopanax
senticosus, Sparganii Rhizoma,
Scutellaria barbata, Curcuma
zedoaria, Corni Fructus, Ligustri
Lucidi Fructus

Bear bile powder, licorice, etc.
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requirements needed. Although these systems can improve the
therapeutic of CTD and its derivatives compared to direct
utilization of CTD, their delivery efficiency, cell and tissue
selectivity, and the physicochemical properties of the compounds
delivered can significantly impact the therapeutic effects of CTD (Li
et al., 2017). Hence, further research efforts are necessary to
investigate these factors to improve the therapeutic efficacy and
safety of CTD.

5 The clinical usage of cantharidin

Although CTD has some toxicity to humans, its anticancer
effects should not be overlooked. To reduce these side effects,
several CTD derivatives, such as norcantharidin, disodium
cantharidinate, and methylcantharidinmide, have been
produced. These derivatives retain the antitumor effects of
CTD, while reducing its toxic side effects and providing
application advantages. Currently, National Medical Products
Administration of China has approved several antitumor
chemicals based on these CTD derivatives and several
antitumor proprietary Chinese medicines containing Mylabris
for the treatment of various solid tumors, particularly liver
cancer. Table 4 provides a summary of the names, dosage
forms, compositions, indications, specifications, and usage of
these marketed preparations in China. However, it is vital to
acknowledge that while such marketed products, which include
CTD as one of the therapeutic components, have shown positive
therapeutic outcomes in clinical settings, these beneficial effects
may be attributed to other molecules contained within the
products. Therefore, further elucidation of the exact
pharmacological impacts of individual molecules is crucial to
enhance future clinical application and usage guidelines.

6 Conclusion

Despite the outstanding efficacy of CTD and high demand,
Chinese patent medicines made of Mylabris or CTD, such as Aidi
injection, disodium cantharidinate injection, and compound
Mylabris capsules, have excellent efficacy in treating malignant
tumors like liver cancer, breast cancer, leukemia, and other
difficult-to-treat diseases. However, the direct use of CTD
causes strong irritation to the skin and gastrointestinal mucosa,
as well as significant damage to major organs like the liver, kidney,
and heart, especially significant hepatotoxicity. Notably, drug-
related liver injury is a leading cause of drug development
interruption or marketed drug withdrawal, making it important
to increase studies on the toxicity of CTD and its derivatives
beyond hepatotoxicity to further enhance their clinical
applications (Kaplowitz, 2005; Navarro and Senior, 2006;
Hebels et al., 2014).

In this review, we summarized the mechanism by which CTD
induces hepatotoxicity, leading to different degrees of liver injury
through the activation of endogenous and exogenous pathways,
resulting in apoptosis and autophagy in hepatocytes. Future research
should focus on understanding the toxic reactions of CTD (Hong
et al., 2022), studying the mechanism of CTD toxicity in-depth, and

developing methods to reduce toxicity and improve the efficacy of
CTD analogs based on the mechanism of CTD toxic reactions.
Additionally, exploiting the unique advantage of CTD to enhance
leukocytes among many antitumor drugs and increasing the use of
CTD analogs alone or in combination with other antitumor drugs is
a promising approach (Swati and Raghuvir, 2022). Furthermore, the
development of nano-precision delivery systems to control the side
effects of CTDs and enhance their targeting of tumor sites presents
an exciting avenue for future research. By offering valuable insights
into the hepatotoxic mechanisms of CTD and outlining potential
avenues for future research, this review contributes to the ongoing
efforts to develop safer and more effective cantharidin-based
therapies.

In addition to these advancements, the development of targeted
protein degradation technology has revolutionized the study of
traditional small molecule compounds (Lin et al., 2022).
PROTAC molecules, composed of E3 ubiquitin ligase ligand,
protein of interest, and linker, have shown potential to break
through existing applications when using natural products as
protein of interest (Dhanusha and Craig, 2020). Therefore, the
use of CTD and its derivatives, or other toxic compounds from
traditional oriental drugs, as potential protein of interest, could
enhance the therapeutic potential of CTD (Miaomiao et al., 2022).
Although no results have been reported yet, this strategy deserves
attention. In addition to targeted nano-delivery systems, antibody-
drug conjugate technology offers a promising avenue by combining
“specific” targeting and “efficient” killing of cancer cells (Anish et al.,
2016). These drugs act like precision-guided “biological missiles”
that can destroy cancer cells with precision, increase the therapeutic
window, and reduce off-target side effects (Carmen et al., 2021).
Research in this area may provide a significant breakthrough in the
clinical use of CTDs, but further experimental validation is
necessary.
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